王俊英, 王华青, 梁晓东, 刘景辉
(1 中国农业科学院生物技术研究所, 北京 100081; 2 新疆农业科学院粮食作物研究所, 乌鲁木齐 830091;3 内蒙古农业大学, 呼和浩特 010019)
水培燕麦根系形态和氮吸收流量对硝态氮供应浓度的响应
王俊英1*, 王华青1, 梁晓东2, 刘景辉3*
(1 中国农业科学院生物技术研究所, 北京 100081; 2 新疆农业科学院粮食作物研究所, 乌鲁木齐 830091;3 内蒙古农业大学, 呼和浩特 010019)
水培; 燕麦; 根系形态; 氮流量; 硝态氮
1.1试验材料
供试材料为来自张家口地区的3个裸燕麦栽培品种,即坝莜9号、 坝莜3号和200215,由张家口市农科院田长叶研究员选育。
1.2材料培养与不同浓度硝酸盐处理
区域内地表没有岩浆岩出露。根据航空物探磁测资料显示,位于箭猪坡矿床NNE方向3~13km的深部,有隐伏的花岗岩体存在,这个隐伏岩体是五圩地区岩浆期后热液多金属矿床成矿物质来源的提供者[6]。
温室培养为14 h光照(25℃), 10 h黑暗(20℃),湿度80%,冠层光强400 μmol/(m2·s)。
1.3测定项目和方法
数据分析使用非损伤微测系统专用数据处理软件Mageflux进行,离子的流速根据Fick第一扩散定律公式J=-D·(dc/dx) 制作的流速换算表(版本: JCal V3.2.2)计算,流速值J正值为外流,负值为内流。
1.4数据处理
应用SPSS v16.0 统计分析软件对所有试验数据进行单因素ANOVA方差分析,差异显著性水平为P<0.05。
2.1不同硝态氮浓度对燕麦根系形态的影响
表1 不同硝态氮浓度供应下3种燕麦的根系形态
2.2不同硝态氮浓度处理下燕麦品种不同直径范围内根系长度的分布
表2 不同硝态氮浓度下不同直径范围内根系长度 (mm)
注(Note): 同列数据后不同字母表示处理间差异达5%显著水平 Values followed by different letters in a column are significant among treatments at the 5% level. 括号内数据为不同直径范围内根系长度占总根长的百分比Values in the parentheses show the percentage of the length of root with various diameters in total root length (%).
图1 不同硝态氮浓度供应下不同燕麦品种根部的流量变化Fig.1 The flux changes of various oats root under different -N concentration supply
2.4不同燕麦品种的根系氮吸收量
图2 不同燕麦品种在不同硝态氮浓度供应下根部流量Fig.2 The flux of various oats root underdifferent -N concentration supply[注(Note): 柱上不同字母表示处理间差异达5% Different letters above the bars mean significant among treatments at the 5% levels.]
3.1不同硝态氮浓度对燕麦苗期根系生长的影响
[1]杨海鹏, 孙泽民. 中国燕麦[M]. 北京: 中国农业出版社, 1989.
Yang H P, Sun Z M. China oats[M]. Beijing: China Agriculture Press, 1989.
[2]Wang S P, Wang Y F, Schnug E,etal. Effects of nitrogen and sulphur fertilization on oats yield, quality and digestibility and nitrogen and sulphur metabolism of sheep in the Inner Mongolia Steppes of China[J]. Nutrient Cycling in Agroecosystems, 2002, 62: 195-202.
[3]郭孝, 介晓磊, 胡华锋, 等. 基施硒肥对裸燕麦营养水平的影响[J]. 草业学报, 2013, 22(1): 53-59.
Guo X, Jie X L, Hu H F,etal. Effects of basal Se fertilizers on nutrition values of naked oats[J]. Acta Prataculturae Sinica, 2013, 22(1): 53-59.
[4]Collins M, Brinkman M A, Salman A A. Forage yield and quality of oat cultivars with increasing rates of nitrogen fertilization[J]. Agronomy Journal, 1990, 82: 724-728.
[5]肖小平, 王丽宏, 叶桃林, 等. 施N量对燕麦“保罗”鲜草产量和品质的影响[J]. 作物研究, 2007, (1): 19-21.
Xiao X P, Wang L H, Ye T L,etal. Effect of nitrogen applcation rate on fresh grass yield and quality of Oat “Baoluo”[J]. Crop Research, 2007, (1): 19-21.
[6]周川姣, 肖相芬, 周顺利, 等. 施氮量对两种类型燕麦物质积累和产量的影响[J]. 作物杂志, 2009, (3): 58-61.
Zhou C J, Xiao X F, Zhou S L,etal. Effect of nitrogen application amount on matter accumulation and yield of two types oat[J]. Crops, 2009, (3): 58-61.
[7]肖相芬, 周川姣, 周顺利, 等. 燕麦氮吸收利用特性与适宜施氮量的定位研究[J]. 中国农业科学, 2011, 44(22): 4618-4626.
Xiao X F, Zhou C J, Zhou S L,etal. Characteristics of N absorption, utilization and optimum N-fertilizer rate based on a long-term fertilization experiment of oats[J]. Scientia Agricultura Sinica, 2011, 44(22): 4618-4626.
[8]Lynch J. Root architecture and plant productivity[J]. Plant Physiology, 1995, 109(1): 7-13.
[9]Sattelmacher B, Gerendas J, Thoms K. Interaction between root growth and mineral nutrition[J]. Environmental and Experimental Botany, 1993, 33(1): 63-73.
[10]Mengel K. Response of various crop species and cultivars to fertilizer[J]. Plant and Soil, 1983, 72: 305-319.
[11]王艳, 米国华, 陈范骏, 张福锁. 玉米氮素吸收的基因型差异及其与根系形态的相关性[J]. 生态学报, 2003, 23(2): 297-302.
Wang Y, Mi G H, Chen F J, Zhang F S. Genotypic differences in nitrogen uptake by maize inbred lines and its relation to root morphology[J]. Acta Ecological Sinica, 2003, 23(2): 297-302.
[12]樊明寿, 孙亚卿, 邵金旺, 等. 不同形态氮素对燕麦营养生长和磷素利用的影响[J]. 作物学报, 2005, 31(1): 114-118.
Fan M S, Sun Y Q, Shao J W,etal. Influence of nitrogen forms on oat growth and phosphorus uptake[J]. Acta Agronomica Sinica, 2005, 31(1): 114-118.
[13]Sun J, Dai S, Wang R,etal. Calcium mediates root K+/Na+homeostasis in poplar species differing in salt tolerance[J]. Tree Physiology, 2009, 29(9): 1175-1186.
[14]Luo J, Li H, Liu T,etal. Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability[J]. Journal of Experimental Botany, 2013, 64(14): 4207-4224.
[16]Forde B G, Lorenzo H. The nutritional control of root development[J]. Plant and Soil, 2001, 232(2): 51-68.
[17]Forde B G, Walch-Liu P. Nitrate and glutamate as environmental cues for behavioral responses in plant roots[J]. Plant, Cell and Environment, 2009, 32(6): 682-693.
[18]Walch-Liu P, Forde B G. Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises l-glutamate-induced changes in root architecture[J]. Plant Journal, 2008, 54(5): 820-828.
[19]陈磊, 王盛锋, 刘荣乐, 汪洪. 不同磷供应水平下小麦根系形态及根际过程的变化特征[J]. 植物营养与肥料学报, 2012, 18(2): 324-331.
Chen L, Wang S F, Liu R L, Wang H. Changes of root morphology and rhizosphere processes of wheat under different phosphate supply[J]. Plant Nutrition and Fertilizer Science, 2012, 18(2): 324-331.
[20]Tang Z, Fan X, Li Q,etal. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx[J]. Plant Physiology, 2012, 160(4): 2052-2063.
[22]Taylor A R, Bloom A J. Ammonium, nitrate, and proton fluxes along the maize root[J]. Plant, Cell and Environment, 1998, 21(2): 1255-1263.
Response of root morphology and N absorption to nitrate nitrogen supply in hydroponic oats
WANG Jun-ying1*, WANG Hua-qing1, LIANG Xiao-dong2, LIU Jing-hui3*
(1BiotechnologyResearchInstituteofChineseAcademyofAgriculturalSciences,Beijing100081,China; 2CropResearchInstituteofXinjiangAcademyofAgriculturalSciences,Wulumuqi830091,China; 3InnerMongoliaAgriculturalUniversity,Hohhot010019,China)
hydroponics; oat; root morphology; N flux; nitrate nitrogen
2015-02-11接受日期: 2015-05-06网络出版日期: 2015-08-19
现代农业产业技术体系建设专项资金(CARS-08-B-5)资助。
王俊英(1971—), 女, 内蒙古呼和浩特人, 博士, 副研究员, 主要从事作物水肥高效利用机制研究。
E-mail: wangjunying@caas.cn; cauljh@163.com
S512.6.01
A
1008-505X(2016)04-1049-07