区惠平, 周柳强, 黄美福, 黄金生, 韦运兰, 谢如林,曾 艳, 刘昔辉, 朱晓晖, 谭宏伟*
(1广西农业科学院农业资源与环境研究所,南宁 530007; 2广西农业科学院甘蔗研究所,南宁 530007)
不同施磷量下稻田土壤磷素平衡及其潜在环境风险评估
区惠平1, 周柳强1, 黄美福1, 黄金生1, 韦运兰1, 谢如林1,曾 艳1, 刘昔辉2, 朱晓晖1, 谭宏伟2*
(1广西农业科学院农业资源与环境研究所,南宁 530007; 2广西农业科学院甘蔗研究所,南宁 530007)
水稻; 磷; 流失; 风险
施磷肥是水稻增产和稳产的重要农业措施之一。但由于磷肥的不合理施用,加上稻季降水频繁,土壤磷随地表径流的损失成了水体中磷的重要污染源。曹宁等[1]指出,辽宁、 吉林和黑龙江省由农田进入水体环境的磷负荷2002年比上世纪80年代分别增加了3%、 229%和125%。农田水对沟渠水总磷的增荷率高达82%[2]。因此,科学管理农田磷素并防止其向水体的迁移对控制和减少磷的地表流失,减轻农业面源污染具有重要意义。
降低水稻种植期田面水磷含量是控制稻田磷径流流失的关键因子,利用田面水磷浓度与土壤Olsen-P含量间的关系,寻求引发田面水磷激增的土壤Olsen-P突变点,是当前评价磷素环境效应的有效方法。但受土壤性质、 气候、 农作管理等多种因素的影响,不同稻作区田面水中磷素的富集状况、 流失量以及对水体污染的潜在风险不一。例如,周萍等[3]在江汉平原稻作区的研究表明,施磷后7 d内田面水磷浓度较高,是磷素通过田面水流失的高危险期,常规施肥下田面水的安全排放期为施肥后24 d; 而施泽升等[4]在洱海北部稻作区的研究指出,施肥后2周内是控制磷损失的关键时期。因此,有必要针对具体稻作区进行土壤磷环境风险研究。目前的研究多侧重于太湖地区[5-6]、 紫色土稻作区[7]和北方稻作区[8],但关于南方赤红壤稻作区土壤磷素的径流风险鲜有报道。磷是作物必需的3大营养物质之一,前人关于结合作物产量效应、 磷素平衡及环境效应提出一个既能满足作物高产又不污染环境的施磷量阈值的试验较少,且国内的研究多为一年监测试验,多年连续监测试验较少。本研究以南方赤红壤稻作区为研究对象,通过定位试验,连续3年监测不同施磷水平下水稻产量、 土壤磷素平衡与田面水磷素浓度变化特征,从农学和环境方面揭示磷肥施用与稻田磷素流失风险之间的关系,为科学评估赤红壤区稻田施磷的环境效应及合理施磷、 减轻农业面源污染提供参考。
1.1试验区概况
1.2试验设计
试验设置4个磷水平: 对照(不施磷肥,P0); 当地磷肥施用量(P1); 2倍当地磷肥施用量(P2); 4倍当地磷肥施用量(P3),每处理3次重复。不同年份早、 晚稻具体施肥量见表1。小区面积19.52 m2[4 m(宽)× 4.88 m(长)],共12个小区,随机区组排列。各小区间用33 cm高的铝塑板隔开,并设独立的排灌口。铝塑板高出田面13 cm,以防小区间跑水、 蹿水、 串肥,铝塑板交接口用塑料薄膜密封。
表1 不同年份双季稻施肥量(kg/hm2)Table 1 Fertilizer application rates in double rice field in different years
1.3样品采集与测定方法
田面水总磷采用过硫酸钾氧化—钼蓝比色法[9]测定; 植株全磷采用H2SO4-H2O2消煮,钒钼黄比色法[10]测定; 土壤Olsen-P测定采用0.5 mol/L NaHCO3浸提—钼蓝比色法[10]测定。
水稻地上部磷素养分累积量和土壤磷素表观盈余量根据下式计算:
地上部磷素养分累积量=秸秆产量×秸秆含磷量+稻谷产量×稻谷含磷量;
土壤磷素表观盈余量=施磷量-地上部磷素养分累积量。
1.4数据处理
试验数据采用Excel 2007与DPS 7.5进行处理, Origin 6.0和Excel 2007软件作图,LSD法进行多重比较,用split-line模型预测在该供试土壤上发生径流时的土壤Olsen-P临界值。
2.1不同施磷量对水稻的产量效应
表2 不同施磷水平下的水稻产量(kg/hm2)Table 2 Rice yields under different phosphate application rates
注(Note): 同列数据后不同字母表示处理间差异达5%显著水平 Values followed by different letters in a column are significant among treatments at the 5% level.
2.2不同施磷量对土壤磷素累积平衡的影响
土壤Olsen-P含量也表现出随施磷量的增加而提高的趋势(表5),两者呈显著线性关系(图1)。P0和P1处理的土壤Olsen-P含量差异不显著,P2处理在2012年晚稻显著高于P0和P1处理,P3处理在每造水稻收获后,土壤Olsen-P含量均显著高于其它处理。随着植稻次数的增加,P0和P1处理,土壤Olsen-P含量有波动下降的趋势,2年平均分别较试验前下降了13.9%和6.7%,而P2和P3处理均呈波动上升趋势,2年平均分别较试验前增加6.4%和43.1%。
表3 不同施磷量下的土壤磷素平衡(kg/hm2)Table 3 Soil P balance under different phosphate application rates
注(Note): 同列数据后不同字母表示处理间差异达5%显著水平 Values followed by different letters in a column are significant among treatments at the 5% level.
表4 土壤表观磷盈余量与施磷量的关系Table 4 Relationship between P surplus and phosphate application rate
表5 不同施磷量下稻田土壤Olsen-P含量 (mg/kg)Table 5 Soil Olsen-P concentrations under different phosphate application rates
注(Note): 同列数据后不同字母表示处理间差异达5%显著水平Valuesfollowedbydifferentlettersinacolumnaresignificantamongtreatmentsatthe5%level.
图1 施磷量与土壤Olsen-P含量的关系Fig.1 Relationship between phosphate application rate and soil Olsen-P concentration
2.3不同施磷量对稻田田面水总磷的影响
图2 稻田田面水总磷含量的动态变化Fig.2 Dynamic change of total P concentration in surface water of paddy fields
2.4土壤Olsen-P与田面水总磷浓度的关系
CTP=-0.2643+0.0318COlsen-P
(n=15, r=0.4345, P=0.1056);
CTP= -1.2638+0.0843COlsen-P
(n=32, r=0.8217, P<0.0001)。
此分段模型的拐点处Olsen-P含量为19.0mg/kg,即当耕层土壤Olsen-P低于该含量范围值时,田面水总磷浓度随土壤Olsen-P含量的增加而增大不明显; 而当土壤Olsen-P浓度大于该范围值时,田面水总磷浓度会在短期内迅速升高。根据图1,由施磷量与土壤Olsen-P的关系计算出该拐点处Olsen-P含量对应的施磷量为P2O562.9kg/hm2。
图3 耕层土壤Olsen-P含量与田面水总磷浓度的关系Fig.3 Relationship between Olsen-P concentration in surface soil of paddy fields and total P in surface water
Wang等[17]和谢学俭等[18]指出,稻田磷流失主要是田面水中磷随降雨溢出水田或人工排水而损失。在本试验条件下,人工排水仅发生在分蘖末期和拔节期,因而施肥后由排水而引起的稻田磷流失风险较小。相反,广西雨季集中于夏季,且近45a年,广西春播期降水全区性增加,其中南部沿海降水明显增加[19],因此,在不施磷肥的情况下,扰动施肥后稻田磷素主要存在随降雨溢出而流失的风险,尤其在施肥后第1d,田面水总磷浓度在国家环境保护总局规定的农业用水区允许直接进入湖、 库的地表水总磷浓度临界值(0.2mg/L)之上。因此,应避免雨天施肥以防止田面水中的磷以农田径流方式进入水体。
综上所述,考虑到磷素在土壤中过量累积而引发的环境风险、 水稻产量效应以及土壤磷素表观收支平衡,在赤红壤地区双季稻体系下,以施磷量P2O563kg/hm2为宜。
[1]曹宁, 曲东, 陈新平, 等. 东北地区农田土壤氮、 磷平衡及其对面源污染的贡献分析[J]. 西北农林科技大学学报(自然科学版), 2006, 34(7): 127-133.
CaoN,QuD,ChenXP, et al.Analysisofthecontributiontonon-pointpollutionmadebybalancedfertilizerinNortheastChina[J].JournalofNorthwestA&FUniversity(NaturalScienceEdition), 2006, 34(7): 127-133.
[2]汤秋香, 任天志, 雷宝坤, 等. 洱海北部地区不同轮作农田氮、 磷流失特征研究[J]. 植物营养与肥料学报, 2011, 17(3): 608-615.
TangQX,RenTZ,LeiBK, et al.CharacteristicsofnitrogenandphosphoruslossinvariouscroprotationsystemsinnorthernwatershedofErhaiLake[J].PlantNutritionandFertilizerScience, 2011, 17(3): 608-615.
[3]周萍, 范先鹏, 何丙辉, 等. 江汉平原地区潮土水稻田面水磷素流失风险研究[J]. 水土保持学报, 2007, 21(4): 47-50, 116.
ZhouP,FanXP,HeBH, et al.ResearchonlossriskofphosphorusinsurfacewaterofpaddysoilinJianghanPlainregion[J].JournalofSoilandWaterConservation, 2007, 21(4): 47-50, 116.
[4]施泽升, 续勇波, 雷宝坤, 等. 洱海北部地区不同氮、 磷处理对稻田田面水氮磷动态变化的影响[J]. 农业环境科学学报, 2013, 32(4): 838-846.
ShiZS,XuYB,LeiBK, et al.DynamicchangesofnitrogenandphosphorusconcentrationsinsurfacewatersofpaddysoilsinthenorthernareaofErhaiLake[J].JournalofAgro-EnvironmentScience, 2013, 32(4): 838-846.
[5]赵建宁, 沈其荣, 冉炜. 太湖地区侧渗水稻土连续施磷处理下稻田磷的径流损失[J]. 农村生态环境, 2005, 21(3): 29-33.
ZhaoJN,ShenQR,RanW.PhosphoruslosswithrunofffromasidebleachingpaddysoilundercontinualPapplicationinTaihuLakeregion[J].RuralEco-Environment, 2005, 21(3): 29-33.
[6]颜晓, 王德建, 张刚, 等. 长期施磷稻田土壤磷素累积及其潜在环境风险[J]. 中国生态农业学报, 2013, 21(4): 393-400.
YanX,WangDJ,ZhangG, et al.Soilphosphorousaccumulationinlong-termPfertilizationpaddyfieldanditsenvironmentaleffects[J].ChineseJournalofEco-Agriculture, 2013, 21(4): 393-400.
[7]李学平, 石孝均. 紫色水稻土磷素动态特征及其环境影响研究[J]. 环境科学, 2008, 29(2): 434-439.
LiXP,ShiXJ.Dynamiccharacteristicsofphosphorusinpurplepaddysoilanditsenvironmentalimpact[J].EnvironmentalScience, 2008, 29(2): 434-439.
[8]周全来, 赵牧秋, 鲁彩艳, 等. 施磷对稻田土壤及田面水磷浓度影响的模拟[J]. 应用生态学报, 2006, 17(10): 1845-1848.
ZhouQL,ZhaoMQ,LuCY, et al.EffectsofPapplicationonPconcentrationsinpaddysoilanditssurfacewater:Asimulationtest[J].ChineseJournalofAppliedEcology, 2006, 17(10): 1845-1848.
[9]国家环保局. 中华人民共和国国家标准GB11893-89 水质总磷的测定-钼酸铵分光光度法[M]. 北京: 中国环境科学出版社, 1989.
SEPA.NationalstandardsofPeoplesRepublicofChinaGB11893-89waterqualitydeterminationoftotalphosphorous-Ammoniummolybdatespectrophotometricmethod[S].Beijing:ChinaEnvironmentalSciencePress, 1989.
[10]鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
LuRK.Theanalysismethodsofsoilsandtheiragrochemistries[M].Beijing:ChinaAgriculturalScienceandTechnologyPress, 2000.
[11]国家环境保护总局, 国家质量监督检验检疫总局.GB3838-2002 地表水环境质量标准[M]. 北京: 中国环境科学出版社, 2002.
SEPA,AQSIQ.GB3838-2002environmentalqualitystandardsforsurfacewater[S].Beijing:ChinaEnvironmentalSciencePress, 2002.
[12]鲁如坤. 土壤磷素水平和水体环境保护 [J]. 磷肥与复肥, 2003, 18(1): 4-8.
LuRK.Thephosphoruslevelofsoilandenvironmentalprotectionofwaterbody[J].Phosphate&CompoundFertilizer, 2003, 18(1): 4-8.
[13]廖宗文, 林东教, 王建林. 红壤的磷肥有效性差异及其土壤化学特点的初步研究[J]. 华南农业大学学报, 1996, 17(l): 67-71.
LiaoZW,LinDJ,WangJL.ApreliminarystudyonthedifferenceofPfertilizeravailabilityinredearthsandrelativecharacteristicsofsoilchemistry[J].JournalofSouthChinaAgriculturalUniversity, 1996, 17(l): 67-71.
[14]张志剑, 王珂, 朱荫湄, 等. 水稻田表水磷素的动态特征及其潜在环境效应的研究[J]. 中国水稻科学, 2000, 14(1): 55-57.
ZhangZJ,WangK,ZhuYM, et al.Dynamiccharacteristicsofphosphorusinsurfacewaterofpaddyfieldanditspotentialenvironmentalimpact[J].ChineseJournalofRiceScience, 2000, 14(1): 55-57.
[15]HeZL,WilsonMJ,CampbellCO, et al.Distributionofphos-
phorusinsoilaggregatefractionsanditssignificancewithregardtophosphorustransportinagriculturalrunoff[J].WaterAirandSoilPollution, 1995, 83(1-2): 69-84.
[16]夏小江, 胡清宇, 朱利群, 等. 太湖地区稻田田面水氮磷动态特征及径流流失研究[J]. 水土保持学报, 2011, 25(4): 21-25.
XiaXJ,HuQY,ZhuLQ, et al.StudyondynamicchangesofnitrogenandphosphorusinsurfacewaterofpaddyfieldandrunofflossinTaihuregion[J].JournalofSoilandWaterConservation, 2011, 25(4): 21-25.
[17]WangK,ZhangZJ,ZhuYM, et al.Surfacewaterphosphorusdynamicsinricefieldsreceivingfertilizerandmanurephosphorus[J].Chemosphere, 2001, 42: 209-214.
[18]谢学俭, 冉炜, 沈其荣. 淹水条件下水稻田中磷的淋溶研究[J]. 土壤, 2003, 35(6): 506-509.
XieXJ,RanW,ShenQR.Plossthroughverticalleachingfrompaddyfieldundersubmergedconditions[J].Soils, 2003, 35(6): 506-509.
[19]黄嘉宏, 李江南, 李自安, 等. 近45a广西降水和气温的气候特征[J]. 热带地理, 2006, 26(1): 23-28.
HuangJH,LiJN,LiZA, et al.Climaticcharacteristicsofprecipitationandtemperatureinthepast45yearsinGuangxi[J].TropicalGeography, 2006, 26(1): 23-28.
Phosphorus balance in paddy soils and its environmental effect under different phosphorus application rates
OU Hui-ping1, ZHOU Liu-qiang1, HUANG Mei-fu1, HUANG Jin-sheng1, WEI Yun-lan1, XIE Ru-lin1,ZENG Yan1, LIU Xi-hui2, ZHU Xiao-hui1, TAN Hong-wei2*
(1AgriculturalResourceandEnvironmentResearchInstitute,GuangxiAcademyofAgriculturalSciences,Nanning530007,China;2SugarcaneResearchInstitue,GuangxiAcademyofAgriculturalSciences,Nanning530007,China)
【Objectives】 The objective is to provide the basis for reducing agricultural non-poimt source pollution by evaluating phosphorus (P) balance in paddy soils in red soil zone of south China and its environmental effect under different P application rates. 【Methods】 A continuous 3-year (2011-2013) field experiment design was used, and 4 different P application rates were selected, P2O50, 63-81, 126-162 and 252-324 kg/hm2. In this study, yields and P concentrations of grain and straw of both early cropping rice and late cropping rice were detected, and P surplus was calculated by the difference of P levels and aboveground P accumulation. Moreover, total P in field water above soil surface at 1, 2, 3, 5,7 and 9 days after the basal and earing fertilizing was also detected, then the relation between total P in field water above soil surface and soil Olsen-P concentration from 2011 to 2012 year was analyzed by the split-line model. 【Results】The P2O563-81 kg/hm2phosphorus treatment significantly improves the rice yield as compared with the non P fertilization control, and not significant as compared with the treatment of double and 4 times P rates of the fertilizer. The fertilizer-P application increases the aboveground P accumulation, soil P surplus and soil Olsen-P concentration which are increased with the increment of the P fertilizer amounts. The total phosphorus (TP) in the field water is high during the first 1-3 days in the control, which is the dangerous duration for P running off. Compared with the control, the TP content in the surface water of the P2O563-81 kg/hm2treatment is significantly higher within 2 days after the fertilization, and always high during the monitoring period in the P2O5252-324 kg/hm2treatment. The simulation with the split line model on the relationship between soil Olsen-P and field water TP above soil surface shows that the change point of soil Olsen-P which relates to the field water TP concentration above soil surface is 19.0 mg/kg, corresponding to a P application rate of about P2O563 kg/hm2, and equals to the recommended fertilizer rate based on the line relationship model between fertilizer-P application rate and P surplus. 【Conclusions】 As far as the rice yield, soil P surplus and its environmental effect are considered, P2O563 kg/hm2is suitable for the double rice cropping system in red soils of South China.
rice; phosphorus; loss; risk
2014-06-17接受日期: 2014-09-17网络出版日期: 2015-06-01
农业部科技专项(201003014,WX-2-07-13,201203030,201203021); 广西农科院基金项目(2014JZ18,2013YQ01,2012YZ20,2015YT30,2012YZ20); 广西自然科学基金项目(2012GXNSFBA053062,桂科合14125008-2-15); 国家自然科学基金项目(21467004,U1033004); IPNI项目资助。
区惠平(1983—),女,广东江门人,副研究员,主要从事作物营养与生态环境方面的研究。E-mail: ouhuiping2006@163.com
E-mail: hwtan@gxaas.net
S511.062; X53
A
1008-505(2016)01-0040-08