孟凡德, 袁国栋, 韦婧, 毕冬雪, 王海龙, 刘兴元
(1.中国科学院烟台海岸带研究所/中国科学院海岸带环境过程与生态修复重点实验室/山东省海岸带环境过程重点实验室,山东 烟台 264003;2.中国科学院大学,北京 100049;3.浙江农林大学环境与资源学院,浙江 临安 311300;4.广东大众农业科技股份有限公司,广东 东莞 523169)
风化煤提取的胡敏酸对镉的吸附性能及其应用潜力
孟凡德1,2, 袁国栋1*, 韦婧1, 毕冬雪1,2, 王海龙3,4, 刘兴元4
(1.中国科学院烟台海岸带研究所/中国科学院海岸带环境过程与生态修复重点实验室/山东省海岸带环境过程重点实验室,山东 烟台 264003;2.中国科学院大学,北京 100049;3.浙江农林大学环境与资源学院,浙江 临安 311300;4.广东大众农业科技股份有限公司,广东 东莞 523169)
以“碱溶酸析”法从新疆风化煤中提取的胡敏酸为研究对象,对其理化性质和表面形态进行表征,并通过吸附试验探究反应时间、溶液pH、镉离子(Cd2+)质量浓度对胡敏酸吸附Cd2+的影响。结果表明:风化煤提取的胡敏酸碳元素质量分数高达58.68%,羧基的质量摩尔浓度为5.81 mol/kg,等电点为2.7;该胡敏酸含Cd量为0.15 mg/kg,符合国家土壤环境质量标准。胡敏酸对Cd2+的吸附在8 h内达到平衡,吸附量随Cd2+质量浓度(0~100 mg/L)和溶液pH升高而增加,到pH=6.0时最大,之后胡敏酸开始溶解导致吸附量降低。Langmuir方程比Freundlich方程能更好地拟合胡敏酸对Cd2+的吸附等温线,显示出单分子层吸附的特点。在pH=5.0时,胡敏酸对Cd2+的饱和吸附量达137.37 mg/g,相当于用去了酸度系数(pKa)为3的羧基含量的71%。在pH=4.3、Cd2+初始质量浓度为80 mg/L的同等条件下,新疆风化煤提取的胡敏酸对Cd2+的吸附量为86.97 mg/g, 高于国际腐殖质协会胡敏酸标样1R106H对Cd2+的吸附量(73.49 mg/g)。风化煤来源广、储量大、价格低,以它为原料制备获得的胡敏酸产量高、吸附能力强、环境友好、施用安全,有望作为吸附剂用于含重金属废水处理,以及作为钝化剂和土壤调理剂用于重金属污染土壤的修复。
镉; 胡敏酸; 吸附; 风化煤; 污染土壤
Summary Cadmium (Cd) is a toxic and carcinogenic contaminant released from a wide range of industries. Its accumulation in soil and water is of growing environmental and health concerns. Thus, there is an increasing demand for materials that are effective for Cd adsorption, economically feasible, and unlikely to create new environmental problems.
Humic acid (HA) is ubiquitous in soil and sediment. It can also be extracted from lignite and leonardite, which can be viewed as ancient biochar and oxidized ancient biochar, respectively. Being abundant in carboxyl and hydroxyl groups (—COOH, —OH), HA has a strong propensity for adsorbing heavy metal cations by forming inner-sphere complexes, thus reducing their mobility and bioavailability. A leonardite (Leo) from Xinjiang, China was used to produce HA by ultrasonically dispersing Leo in 0.1 mol/L NaOH solution at 40 ℃ for 30 min, and then flocculating the supernatant with 6 mol/L HCl. The obtained HA (Leo-HA) was characterized for its surface properties by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), and was analyzed for elemental compositions, carboxyl group, and isoelectric point (pI). Further, its adsorption characteristics were determined by kinetic and batch experiments, and its potential applications in removing Cd2+from water and immobilizing Cd2+in soils were assessed based on its technical reliability, economic feasibility, and environmental impact. For environmental relevance, a relatively low range of Cd2+concentrations (0-100 mg/L) was used in adsorption experiment, during which the pH of solution was maintained constant.
Results showed that Leo-HA had a low pI of 2.7 and a high C content of 58.68%, which is not unusual for coal-derived HA. FTIR confirmed the abundance of —COOH and —OH groups. The carboxyl group was determined at 5.81 mol/kg. The low Cd concentration (0.15 mg/kg) of Leo-HA met the prerequisite for safe use in agricultural land, as regulated by Farmland Environmental Quality Standards. Kinetic studies showed that Cd2+adsorption onto Leo-HA reached equilibrium in 8 h and the process was pH-dependent. The adsorption increased with pH within 2.0-6.0, and then decreased as pH further increased to 7.0. This is because Leo-HA starts to dissolve as solution pH approaches to neutral. Adsorption data were better fitted into Langmuir equation (R2=0.991) than Freundlich equation (R2=0.891), suggesting the monolayer nature of Cd2+adsorption onto Leo-HA. At pH 5.0, the maximum adsorption capacity (Qm) derived from the Langmuir equation was 137.37 mg/g, which was equivalent to 71% of the carboxyl groups of Leo-HA. ThisQmwas much higher than what had been reported in the literature for lignite, lignite-derived HA, and soil HA. A simple comparison at pH 4.3 and an initial Cd2+concentration of 80 mg/L showed that the Leo-HA adsorbed more Cd2+(86.97 mg/g) than the reference HA 1R106H (73.49 mg/g) from IHSS did, even though the later had a higher carboxyl content (6.82 mol/kg). This apparent discrepancy was due to the fact that dissolution of 1R106H was observed at pH 4.3, whereas the Leo-HA was stable at this pH.
Leonardite is abundant across China. Leo-HA has the advantages of low cost, high adsorption capacity, and low Cd content, thus it is a prospective adsorbent for immobilizing Cd2+in contaminated soils or removing Cd2+from water. Lime has widely been used to immobilize Cd2+in soils, but it tends to reduce soil organic matter content, damage soil structure, and pose a hazard to the safety of its users in the field. In contrast, Leo-HA is beneficial to soil structure and soil quality, as well as safe to handle in the field. Field trials of applying Leo-HA onto heavy metal contaminated soils would be a logical step to follow.
环境保护部和国土资源部2014年联合公布的《全国土壤污染状况调查公报》显示,我国土壤污染总超标率为16.1%,污染类型以无机型为主;无机污染物超标点位数占全部超标点位的82.8%,其中,镉(Cd)是首要的重金属污染物[1]。不合理的矿山开采和冶炼、金属电镀、磷肥施用和铅镉蓄电池处理等是产生Cd污染的重要原因[2]。我国生活饮用水对Cd的最大允许值是0.005 mg/L,然而,我国水体环境状况总体不容乐观,长江、黄河等七大水系均受到不同程度的重金属污染[3-9]。Cd、Pb等重金属可通过饮用水和食物链进入人体,严重威胁人体健康[10-11]。因此,研究和制备符合性能稳定可靠、不产生新的环境问题、经济可行3个条件的吸附材料[12]用于重金属污染水体和土壤的修复既重要又紧迫。
近10年来,生物质炭作为一种新型环保材料在污染物吸附及污染水体和土壤修复方面受到重视,从制备技术和吸附性能到应用前景和限制因素等都已有很好的分析和讨论[13-15]。目前,商品化的生物质炭供应有限,价格偏高,使其大规模的应用受到限制。从实际应用角度考虑,生物质炭的物料来源需要拓宽,制备过程需要改进,与其他产业的共通互联需要加强。
生物质炭是生物质在缺氧条件下经热解过程脱气、排液而产生的固体物质,常作为土壤调理剂使用。煤是古代生物质(泥炭)在挤压、增温、缺氧条件下经地质热解过程脱水、排气(甲烷)所剩的固体物。暴露于地表的煤层在氧气和水分的共同作用下转变成富含腐殖酸的风化煤。因此,广义上,煤是古老的生物质炭,风化煤是富氧的古老生物质炭,而腐殖酸则是以富氧的古老生物质炭为原料经过碱性活化的产物。
腐殖酸是工业名称,与胡敏酸大致相当,因制备条件不同可含有不同数量的富里酸。胡敏酸(humic acid,HA)是广泛存在于土壤和底泥的天然有机胶体,能和黏土矿物形成稳定的有机-矿质复合体,起到疏松土壤、保蓄水分、改良土壤理化性质等作用,是土壤生态功能的物质基础[16]。胡敏酸含有多种官能团,如羧基和羟基等。前人对胡敏酸吸附重金属的过程、机制和效果已有充分和深入的研究[17-22]。TAN总结了Zn2+与胡敏酸反应的3种方式[23],即COO-与Zn2+的静电吸引、—OH与Zn2+的络合作用及—COOH和—OH对Zn2+的螯合作用。这些作用可降低重金属离子在土壤中的迁移能力和生物有效性,从而减少植物对重金属的吸收。由于风化煤来源广、国内储量大(超过1 000亿t),制备胡敏酸方法简单、阳离子交换量高,因此,胡敏酸应用于重金属污染水体和土壤修复的潜力较大。
胡敏酸吸附重金属的研究大多集中于对高浓度重金属吸附方面,在吸附过程中溶液pH未保持恒定,这些与实际应用条件明显不符。为了能够更好地弄清楚可商品化的胡敏酸对重金属的吸附能力和效果,我们利用风化煤提取的胡敏酸对低质量浓度Cd2+进行吸附动力学试验和等温吸附试验,研究反应时间、溶液pH、重金属离子浓度对吸附的影响,评估风化煤提取的胡敏酸应用于修复重金属污染水体和土壤的可能性。
1.1胡敏酸的制备及理化性质表征
风化煤(leonardite,Leo)原料来自新疆维吾尔自治区昌吉州奇台县一露天煤矿,其可采储量在2 000万t以上。风化煤因长期暴露于地表,其腐殖酸组分经空气自然氧化,羧基、羟基等官能团丰度较高。
胡敏酸的制备方法:将风化煤粉末与0.1 mol/L NaOH按固液质量体积比1∶10混合,在40 ℃恒温下超声30 min,静置24 h后将上层溶液倒出,重复提取5次,累计溶出率达90%。用6 mol/L HCl调节上述提取溶液至pH=2.0,静置絮凝、以3 000 r/min离心15 min后将上清液倒掉,沉淀物用去离子水洗3遍,去除盐分及残留富里酸后得到胡敏酸,于40 ℃烘干,用玛瑙研钵磨细,备用。
风化煤和胡敏酸的理化性质分析:官能团定性采用傅里叶变换红外光谱仪(FT/IR-4100,日本Jasco公司)在波长500~4 000 cm-1范围内分析;表面形态采用扫描电镜(S-400,日本日立公司)分析;元素含量采用元素分析仪(Vario Micro cube,德国Elementar公司)测定(80 ℃烘干样品);灰分含量是在马弗炉中经800 ℃煅烧4 h,根据前后质量差计算;官能团含量根据国际腐殖质协会(International Humic Substances Society,IHSS)提供的方法(www.humicsubstances.org/acidity.html)测定,将含有(0.36±0.01) g/L胡敏酸溶液的pH调节至3.0,然后用煮沸的去离子水配置的0.100 mol/L NaOH溶液滴定至pH=8.0,计算羧基含量,继续滴定至pH=10.0,计算酚羟基含量;等电点依据FERRO-GARCíA等[24]的方法测定,将胡敏酸和风化煤分别加入到50 mL初始pH(pH0)为2.0、3.0、4.0、5.0、6.0的0.01 mol/L KCl溶液中,并置于(25±1) ℃恒温振荡器中振荡24 h后测定溶液pH,记为pHE,根据pH0和△pH(△pH=pHE-pH0)作图,在△pH=0时的pH值即是等电点;重金属元素含量测定采用3酸(HNO3-HF-HClO4)消解[25],电感耦合等离子体质谱法(inductively coupled plasma mass spectrometry, ICP-MS)测定。
1.2吸附试验
1.2.1吸附动力学试验
称取0.549 4 g四水硝酸镉[Cd(NO3)2·4H2O,分析纯]用超纯水溶解定容至100 mL,溶液Cd2+质量浓度为2 g/L,按需稀释后供吸附试验用。
向50 mL离心管中添加40 mg(精确至0.000 1 g)胡敏酸,再加入40 mL初始pH=5.0、以1 mmol/L NaNO3为背景电解质的Cd(NO3)2溶液(Cd2+质量浓度为80 mg/L)。其中,1 mmol/L NaNO3常被用来模拟湿润地区酸性土壤溶液中的离子强度。吸附试验于(25±1) ℃的恒温振荡器中进行,振荡时间分别为0.25、0.5、1、1.5、2、4、8、12、24 h,每个时间点2个平行样。振荡结束后测定pH,过0.45 μm聚醚砜滤膜,于4 ℃条件下保存溶液。
1.2.2pH对吸附的影响
称取30 mg(精确至0.000 1 g)胡敏酸于50 mL离心管中,分别加入40 mL以1 mmol/L NaNO3为背景电解质、不同pH(2.0、3.0、4.0、5.0、6.0、7.0)的Cd(NO3)2溶液(Cd2+的初始质量浓度为80 mg/L),每个pH点2个平行样。吸附试验于(25±1) ℃的恒温振荡器中进行,每隔8 h用0.2 mol/L HCl或NaOH调节一次溶液pH,保持pH恒定。48 h后过0.45 μm聚醚砜滤膜,于4 ℃条件下保存溶液
1.2.3等温吸附试验
称取30 mg(精确至0.000 1 g)胡敏酸于50 mL离心管中,分别加入40 mL pH=5.0、以1 mmol/L NaNO3为背景电解质的不同初始质量浓度的Cd(NO3)2溶液(Cd2+的初始质量浓度分别为0、10、20、40、60、80、100 mg/L),每个质量浓度梯度设2个平行样。吸附试验于(25±1) ℃的恒温振荡器中进行。在吸附过程中每隔8 h用0.2 mol/L HCl或NaOH调节一次溶液pH,保持pH=5.0。在48 h后过0.45 μm聚醚砜滤膜,于4 ℃条件下保存溶液。
1.2.4单点吸附对比试验
称取30 mg(精确至0.000 1 g)风化煤提取的胡敏酸和IHSS标样1R106H于50 mL离心管中,分别加入40 mL以1 mmol/L NaNO3为背景电解质、初始pH=5.0的Cd(NO3)2溶液(Cd2+的初始质量浓度为80 mg/L),每个吸附材料设2个平行样。吸附试验于(25±1) ℃的恒温振荡器中进行。在吸附过程中每隔8 h用0.2 mol/L HCl或NaOH调节一次溶液pH,保持胡敏酸和1R106H吸附溶液最终的pH相同(4.3)。48 h后过0.45 μm聚醚砜滤膜,于4 ℃条件下保存溶液。
溶液pH采用Mettler-Toledo pH计测定;Cd2+质量浓度用原子吸收分光光度计(TAS-990,北京普析通用公司)测定(标线质量浓度范围为0~1.5 mg/L)。根据吸附前后溶液中Cd2+质量浓度的变化计算胡敏酸对Cd2+的吸附量,用平衡质量浓度和吸附量绘制吸附等温线。数据处理、绘图采用软件Origin 8.0。
2.1供试材料的理化性质
2.1.1元素组成和灰分含量分析
对流坑村文物建筑、古街巷空间重新划定保护区和保护点,并区分保护层次,如核心保护区:参照文化遗产保护要求进行保护,修缮重要古建筑群,明确“七横一竖”轴线关系,营造富有文化特色的街巷空间;建设控制区:对次要古建筑的保护,在保护传统面貌不变的基础上,可根据需要置换内部功能;环境协调区:属于外围区域,也是古建筑群的缓冲区,可根据周边建筑风格改建或新建相关设施,并充分保护原生环境[4]。
风化煤和胡敏酸的C、H、N、S和灰分含量如表1所示。作为对比,表1中列出了国际腐殖质协会从新西兰湿润地带牧区土壤——典型不饱和湿润始成土(typic Dystrudept)中提取的腐殖质标样1R106H的理化性质。胡敏酸的C含量比风化煤高,这和胡敏酸的灰分含量较低有关。新疆风化煤提取的胡敏酸的C含量比1R106H胡敏酸高,而N含量很低,反映了不同成因对胡敏酸组分的影响。2种胡敏酸都有较高的羧基(—COOH)含量,表明它们即使在酸性条件下也对金属阳离子有较强的吸附能力。
表1 风化煤和胡敏酸的理化性质
元素和灰分含量以干物质为基础计算。a)无灰基干物质为基础计量;b)无灰基样品测定(数据来自IHSS).
Leo: Leonardite; HA: Leonardite-derived humic acid; IHSS: International Humic Substances Society. Elemental and ash compositions were calculated on dry matter mass;a)On water- and ash-free basis;b)Ash-free basis (data from IHSS).
经3酸(HNO3-HF-HClO4)消解,ICP-MS测定分析得到新疆风化煤含Cd、Pb、Cu、Zn的量分别为0.15、2.81、6.51、69.56 mg/kg,风化煤提取的胡敏酸含Cd、Pb、Cu、Zn的量分别为0.15、3.23、6.09、19.57 mg/kg,重金属含量较低,均符合HJ/T332—2006《食用农产品产地环境质量评价标准》的要求,可以作为土壤调理剂和修复剂使用。
2.1.2胡敏酸表面形态分析
扫描电镜照片(图1)显示,经过40 ℃烘干磨细的胡敏酸主要呈现2类表面形态:一类是表面较为光滑的结块,另一类是表面粗糙的多孔团聚体。胡敏酸的脱水方法可能会影响到表面形态,如WILLEY等[26]报道冻干的胡敏酸不易结块、表面粗糙多孔;因此,不同脱水方法得到的胡敏酸是否会影响其对重金属离子的吸附动力学值得今后研究。
图1 胡敏酸的扫描电镜图Fig.1 Scanning electron microscopic image of the humic acid derived from leonardite
2.1.3傅里叶变换红外光谱分析
胡敏酸中对金属阳离子起吸附作用的主要是羧基、羟基等酸性官能团。SCHNITZER等[27]报道,胡敏酸羧基和羟基官能团的质量摩尔浓度范围分别为2.40~5.40和1.50~4.40 mol/kg。从图2可以看出,风化煤与胡敏酸的红外光谱图相似;参考MACCARTHY等[28]对胡敏酸类物质红外光谱图的解析,本研究供试的胡敏酸和风化煤都含有羟基(3 300~3 500 cm-1)、羧基或羰基(1 706 cm-1)。
2.1.4等电点分析
如图3所示,初始pH(pH0)对△pH具有明显影响,风化煤的等电点(4.3)明显大于胡敏酸(2.7)。风化煤提取的胡敏酸结合点被氢离子结合[21],灰分(矿物质)含量较低,从而引起胡敏酸的等电点明显小于风化煤:表明其官能团以酸性官能团为主。
HA: Humic acid; Leo: Leonardite.图2 胡敏酸和风化煤的红外光谱图Fig.2 Fourier transform infrared spectrograms of leonardite and its derived humic acid
2.2胡敏酸对Cd2+的吸附分析
2.2.1吸附动力学试验
反应时间对胡敏酸吸附Cd2+具有明显影响,胡敏酸对Cd2+的吸附量随着反应时间的延长而增加,特别是在0~1.5 h之间吸附量明显增加,之后吸附量增加幅度减小直至吸附平衡(图4)。在吸附过程中起作用的主要是羧基官能团,因为羧基、羟基的酸度系数(pKa)分别为pH=3.0和pH=9.0[23],在酸性条件下羟基基本不解离。吸附试验初始,溶液的pH随着反应时间增长快速降低,之后降低幅度减小直至趋于稳定。结合吸附量和溶液pH随时间的变化,胡敏酸吸附Cd2+达到平衡所需时间为8 h。
HA: Humic acid; Leo: Leonardite.图3 风化煤与胡敏酸的等电点Fig.3 Isoelectric points of leonardite and its derived humic acid
2.2.2溶液pH对胡敏酸吸附Cd2+的性能影响
溶液pH是控制吸附过程的关键因子之一[22]。如图5所示,在pH<5.0时,胡敏酸对Cd2+的吸附量受pH影响显著,随着pH升高,胡敏酸对Cd2+的吸附量逐渐上升,当pH=6.0时达到最大。通常,溶液pH升高有利于胡敏酸对阳离子的吸附[29]。当pH>6.0时,胡敏酸对Cd2+的吸附量降低。在低pH时,溶液中的H+、Cd2+与COO-竞争结合;随着溶液pH的升高,H+竞争减少,Cd2+的吸附增多。当pH=7.0时部分胡敏酸已经溶解,导致固相胡敏酸质量减少,从而降低了对Cd2+的吸附量。
图4 反应时间对Cd2+吸附量和溶液pH的影响Fig.4 Effects of reaction time on Cd2+ adsorption and solution pH
图5 pH对胡敏酸吸附Cd2+的影响Fig.5 Effect of pH on Cd2+ adsorption by leonardite-derived humic acid
2.2.3吸附等温线
目标重金属浓度是影响吸附反应的另一重要控制因子[30]。本试验通过在恒定pH=5.0条件下胡敏酸对Cd2+的吸附,探讨胡敏酸对Cd2+的吸附能力。图6表明,当Cd2+的初始质量浓度小于60 mg/L(平衡质量浓度<2 mg/L)时,胡敏酸对Cd2+的吸附量随着Cd2+质量浓度的增加快速增大;之后,胡敏酸对Cd2+的吸附量小幅度增加至趋于稳定。由于羧基的酸度系数(pKa)=3,当pH=5.0时,胡敏酸中[COO-]/[COOH]的比值为100∶1,大部分羧基官能团可用于Cd2+的吸附。当Cd2+质量浓度低时,阳离子结合点充足,能够有效吸附Cd2+;随着Cd2+质量浓度增加,羧基被阳离子饱和,达到饱和吸附量[31]。
图6 胡敏酸对Cd2+的吸附等温线Fig.6 Isotherm of Cd2+ adsorption by leonardite-derived humic acid
对试验数据采用Langmuir和Freundlich吸附模型进行拟合分析。Langmuir模型是表层单分子吸附,吸附过程在吸附材料表面进行且表面吸附能量均匀;Freundlich模型是一个经验模型,描述了吸附体系是复杂的,吸附过程不仅仅发生单分子层吸附。
Langmuir方程:
Q=Qm·KL·Ce/(1+KL·Ce).
(1)
Freundlich方程:
Q=KF·Ce1/n.
(2)
其中:Q为吸附平衡时的吸附量,mg/g;Qm为用Langmuir方程计算吸附饱和时的最大吸附量,mg/g;Ce为吸附平衡时金属离子质量浓度,mg/L;KL为Langmuir常数,L/mg,表征吸附能力;KF和1/n是Freundlich常数,分别表征亲和系数和吸附强度。拟合结果表明,Langmuir模型能更好地描述胡敏酸对Cd2+的吸附行为(表2),胡敏酸对Cd2+的吸附更符合单分子层吸附。经过Langmuir方程计算,在本试验条件下胡敏酸对Cd2+的饱和吸附量达137.37 mg/g。与文献报道的饱和吸附量(表3)进行比较发现,从新疆风化煤提取的胡敏酸对Cd2+的饱和吸附量远高于表3中其他研究者所用的从煤炭和土壤提取的胡敏酸对Cd2+的饱和吸附量。从新疆风化煤提取的胡敏酸对Cd2+有较高的吸附量,可能与其较高的官能团含量有关,其羧基质量摩尔浓度高达5.81 mol/kg(表1)。在pH=5.0时的饱和吸附量(137.37 mg/g)只相当于占用了胡敏酸中71%的羧基。从新疆风化煤提取的胡敏酸对Cd2+的饱和吸附量也高于赤泥[32]、杉叶[33]、劣质煤[34]对Cd2+的吸附量。
表2 胡敏酸吸附Cd2+的Langmuir和Freundlich模型拟合参数
Qm:最大吸附量。Qm: Maximum adsorption capacity.
表3 胡敏酸对Cd2+的吸附效果对比
Qm:最大吸附量。Qm: Maximum adsorption capacity; HA: Humic acid; Leo: Leonardite.
2.2.4风化煤提取的胡敏酸与IHSS标样吸附量的比较
在pH=4.3、Cd2+初始质量浓度为80 mg/L的相同试验条件下,风化煤提取的胡敏酸和IHSS标样1R106H对镉的吸附量分别是86.97和73.49 mg/g。虽然前者的COOH含量略小(表1),但其吸附量反而较大,这可能是因为1R106H标样在吸附试验过程中已经有少量溶解,部分与羧基络合的Cd2+存在于溶液中,导致测得的吸附量较低。这从另一个方面显示出新疆风化煤提取的胡敏酸的一个实用优点,即在酸性条件下比较稳定,在pH<6.0时基本不溶解,用于酸性土壤不太会造成Cd2+和胡敏酸形成可溶态复合物随水迁移。这也正是农田重金属钝化/稳定化技术的基础。
风化煤俗称露头煤,是接近于地表的烟煤、褐煤、无烟煤等经过空气、阳光、雨雪等自然条件风化作用形成的产物。它含氧量高、热值低,不适合作为燃料使用。但新疆昌吉产的风化煤腐殖质丰富,是提取胡敏酸的优质原料,且储量大、价格低;提取的胡敏酸含很高的羧基(5.81 mol/kg),对Cd2+的吸附量随Cd2+质量浓度和pH升高而增加,在pH=6.0时最高。在酸性(pH=5.0)及1 mmol/L NaNO3共存(模拟湿润地区酸性土壤溶液的离子强度)条件下对Cd2+的饱和吸附量仍高达137.37 mg/g。这对于开发该风化煤在酸性重金属污染土壤修复中的应用至关重要。
目前,我国南方农田重金属污染严重,带来食品安全和人体健康方面的担忧[10-11]。重金属污染土壤的修复方法有很多,钝化/稳定化技术具备操作简单、不破坏土壤结构、不影响农业生产等优点,有望成为修复重金属污染农田的重要技术之一。在钝化技术中,修复材料的选择是难点之一。胡敏酸具备环境友好、价格适中、在土壤中保留时间较长、吸附量大等优点,倍受重视。从新疆风化煤提取的胡敏酸对Cd2+具有很强的吸附能力,且风化煤本身(Cd 、Pb、Cu 、Zn 分别为0.15、2.81、6.51、69.56 mg/kg)及提取的胡敏酸(Cd 、Pb、Cu、Zn分别为0.15、3.23、6.09、19.57 mg/kg)重金属含量都不高,符合现有土壤环境质量标准。因此,它们有望在修复重金属污染土壤方面得到实际应用。
我国南方农田以酸性土壤(pH=4.5~6.0)为主,普遍具有土壤养分有效性低、矿质养分流失严重的问题,重金属在酸性土壤中活性高,易被作物吸收,添加胡敏酸可提供离子交换和络合作用以降低土壤溶液中的Cd2+浓度[37],减少作物吸收。当土壤pH接近于中性时,少量胡敏酸会溶解,可带着Cd2+随渗滤液向下移动。但酸性土壤底土通常都有铁-铝-锰(水合)氧化物,易与胡敏酸和Cd2+形成稳定的矿物-有机质-Cd复合体[38],从而被截留在底土。因此,胡敏酸既有钝化表土的Cd2+、减少作物吸收的功效,又有带着表土中的Cd2+向下移动、固定在底土的潜能,在治理酸性土壤重金属污染方面具有一定潜力,值得进行小规模田间试验。此外,胡敏酸还能改善土壤物理、化学及生物学性质,不会像施用石灰那样造成有机质分解和土壤板结,且胡敏酸的田间施用过程比较安全,不会灼伤操作人员。
从新疆风化煤中提取的胡敏酸含量高达90%(含7.87%灰分)。与风化煤相比,提取的胡敏酸的C、—COOH含量增大,灰分含量明显降低。风化煤和胡敏酸的等电点分别是4.3和2.7。胡敏酸对Cd2+的吸附在8 h时达到平衡;pH明显影响胡敏酸对Cd2+的吸附,当pH=6.0时胡敏酸对Cd2+的吸附量最大;在pH=5.0、Cd2+的初始质量浓度为0~100 mg/L时,胡敏酸对Cd2+的饱和吸附量达137.37 mg/g,比已有的相关文献报道的吸附量高,这和本文所用胡敏酸羧基含量较高有关。在相同试验条件下,Cd2+初始质量浓度为80 mg/L时,胡敏酸对Cd2+的吸附能力(86.97 mg/g)高于IHSS标样1R106H(73.49 mg/g)。由于风化煤来源广、储量大、价格低,制备获得的胡敏酸产量高、吸附能力强、环境友好,胡敏酸有望作为吸附剂用于含重金属废水处理,作为钝化剂和土壤调理剂用于重金属污染土壤的修复。
[1]环境保护部和国土资源部.全国土壤污染状况调查公报(2014).中国环保产业,2014(5):10-11.
The Ministry of Environmental Protection and the Ministry of Land and Resources. Bulletin on national survey of soil contamination (2014).ChinaEnvironmentalProtectionIndustry, 2014(5):10-11. (in Chinese)
[2]RAO M M, RAMESH A, RAO G P C,etal. Removal of copper and cadmium from the aqueous solutions by activated carbon derived fromCeibapentandrahulls.JournalofHazardousMaterials, 2006,129(1/2/3):123-129.
[3]吴兴让,尹平河,赵玲.珠江广州段微表层和次表层水中重金属分布与风险的初步评价.暨南大学学报(自然科学与医学版),2010,31(1):84-88.
WU X R, YIN P H, ZHAO L. Health risk assessment of heavy metals in the water of surface and subsurface microlayer from Guangzhou section of Pearl River.JournalofJinanUniversity(NaturalScience&MedicineEdition), 2010,31(1):84-88. (in Chinese with English abstract)
[4]SONG Y X, JI J F, MAO C P,etal. Heavy metal contamination in suspended solids of Changjiang River: Environmental implication.Geoderma, 2010,159(3):296-295.
[5]YU T, ZHANG Y, HU X N,etal. Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu Lake, China.EcotoxicologyandEnvironmentalSafety, 2012,81:55-64.
[6]贺勇,黄河,严家平.淮河中下游底泥中的重金属与有机质研究.安徽建筑工业学院学报(自然科学版),2006,13(6):79-82.
HE Y, HUANG H, YAN J P. Study on the heavy metals and organic matter in sediments from the middle and lower reaches of Huaihe River.JournalofAnhuiInstituteofArchitecture&Industry(NaturalScience), 2006,13(6):79-82. (in Chinese with English abstract)
[7]RUI Y K, QU L C, KONG X B. Effects of soil use along Yellow River basin on the pollution of soil by heavy metals.SpectroscopyandSpectralAnalysis, 2008,28(4):934-936.
[8]张玲,王刚,叶红梅,等.2010年海河流域沉积物重金属潜在生态风险评价.现代农业科技,2013(4):233-234.
ZHANG L, WANG G, YE H M,etal. Assessment of potential ecological risk of heavy metals in sediments from Haihe River at 2010.ModernAgriculturalScienceandTechnology, 2013(4):233-234. (in Chinese)
[9]苏丹,王彤,刘兰岚,等.辽河流域工业废水污染物排放的时空变化规律研究.生态环境学报,2011,19(12):2953-2959.
SU D, WANG T, LIU L L,etal. Research on the spatio-temporal variation of pollutant discharged from industrial wastewater in the Liaohe River Basin.EcologyandEnvironmentalSciences, 2011,19(12):2953-2959. (in Chinese with English abstract)
[10]DU Y, HU X F, WU X H,etal. Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan Province, Central South China.EnvironmentalMonitoringandAssessment, 2013,185(12):9843-9856.
[11]HU J L, WU F Y, WU S C,etal. Phytoavailability and phytovariety codetermine the bioaccumulation risk of heavy metal from soils, focusing on Cd-contaminated vegetable farms around the Pearl River Delta, China.EcotoxicologyandEnvironmentalSafety, 2013,91:18-24.
[12]YUAN G. Nanomaterials to the rescue.Nanotoday, 2008,3(1/2):61.
[13]ZHANG X K, WANG H L, He L Z,etal. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.EnvironmentalScienceandPollutionResearch, 2013,20(12):8472-8483.
[14]AHMAD M, RAJAPAKSHA A U, LIM J E,etal. Biochar as a sorbent for contaminant management in soil and water: A review.Chemosphere, 2014,99:19-33.
[15]BEESLEY L, MORENO-JIMéNEZ E, GOMEZ-EYLES J L,etal. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils.EnvironmentalPollution, 2011,159(12):3269-3282.
[16]YUAN G, THENG B K G. Clay-organic interactions in soil environments//HUANG P M, SUMNER M, LI Y C.HandbookofSoilScience:ResourceManagementandEnvironmentalImpacts. Boca Raton, USA: CRC Press, Taylor & Francis Group, 2011:2-1-2-20.
[17]谢晓梅,翁棣.有机酸对红壤等温吸附镉的影响.浙江大学学报(农业与生命科学版),2003,29(5):485-489.
XIE X M, WENG D. Effects of organic acids on adsorption isotherms of cadmium in red soils.JournalofZhejiangUniversity(AgricultureandLifeSciences), 2003,29(5):485-489. (in Chinese with English abstract)
[18]BRADL H B. Adsorption of heavy metal ions on soils and soils constituents.JournalofColloidandInterfaceScience, 2004,277(1):1-18.
[19]YANG K, MIAO G F, WU W H,etal. Sorption of Cu2+on humic acids sequentially extracted from a sediment.Chemosphere, 2015,138:657-663.
[20]CONTE P, AGRETTO A, SPACCINI R,etal. Soil remediation: Humic acids as natural surfactants in the washings of highly contaminated soils.EnvironmentalPollution, 2005,135(3):515-522.
[23]TAN K H.HumicMatterinSoilandtheEnvironment:PrinciplesandControversies. Boca Raton, USA: CRC Press, 2014:476.
[25]陈皓,何瑶,陈玲,等.土壤重金属监测过程及其质量控制.中国环境监测,2010,26(5):40-43.
CHEN H, HE Y, CHEN L,etal. The monitoring process of heavy metals in soils and its quality control measures.EnvironmentalMonitoringinChina, 2010,26(5):40-43. (in Chinese with English abstract)
[26]WILLEY R J, RADWAN A, VOZZELLA M E,etal. Humic acid gel drying with supercritical carbon dioxide.JournalofNon-CrystallineSolids, 1998,225:30-35.
[27]SCHNITZER M, KODAMA H. Reactions of minerals with soil humic substances//DIXON J B, WEED S B, KITTRICK J A,etal.MineralsinSoilEnvironments. Madison, USA: Soil Science Society of America Inc., 1977:741-770.
[28]MACCARTHY P, RICE J A. Spectroscopic methods (other than NMR) for determining functionality in humic substances//AIKEN G R, MCKNIGHT D M, WERSHAW R L,etal.HumicSubstancesinSoil,SedimentandWater.Geochemistry,Isolation,andCharacterization. New York, USA: John Wiley & Sons, 1985:527-559.
[30]LIU A, GONZALEZ R D. Modeling adsorption of copper(Ⅱ), cadmium(Ⅱ) and lead(Ⅱ) on purified humic acid.Langmuir, 2000,16(8):3902-3909.
[31]IGBERASE E, OSIFO P. Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution.JournalofIndustrialandEngineeringChemistry, 2015,26:340-347.
[32]APAK R, GÜÇLÜ K, TURGUT M H. Modeling of copper(Ⅱ), cadmium(Ⅱ), and lead(Ⅱ) adsorption on red mud.JournalofColloidandInterfaceScience, 1998,203(1):122-130.
[33]SERENCAM H, GUNDONGDU A, UYGUR Y,etal. Removal of cadmium from aqueous solution by Nordmann fir (Abiesnordmanniana(Stev.) Spach. Subsp.nordmanniana) leaves.BioresourceTechnology, 2008,99(6):1992-2000.
[35]李光林,魏世强,青长乐.镉在胡敏酸上的吸附动力学和热力学研究.土壤学报,2004,41(1):74-80.
LI G L, WEI S Q, QING C L. Kinetics and thermodynamics of cadmium adsorption on humic acid.ActaPedologicaSinica, 2004, 41(1):74-80. (in Chinese with English abstract)
[36]SHAKER M A, ALBISHRI H M. Dynamics and thermodynamics of toxic metals adsorption onto soil-extracted humic acid.Chemosphere, 2014,111:587-595.
[37]王晶,张旭东,李彬,等.腐殖酸对土壤中Cd形态的影响及利用研究.土壤通报,2002,33(3):185-187.
WANG J, ZHANG X D, LI B,etal. The effect of humid acid on the cadmium transformation and the mechanism.ChineseJournalofSoilScience, 2002,33(3):185-187. (in Chinese with English abstract)
[38]YUAN G, PERCIVAL H J, THENG B K G,etal. Sorption of copper and cadmium by allophane-humic complexes//VIOLANTE A, HUANG P M, BOLLAG J M,etal.SoilMineral-OrganicMatter-MicroorganismInteractionsandEcosystemHealth. Amsterdam, Netherlands: Elsevier, 2002:37-47.
Humic acid from leonardite for cadmium adsorption and potential applications.JournalofZhejiangUniversity(Agric. &LifeSci.), 2016,42(4):460-468
MENG Fande1,2, YUAN Guodong1*, WEI Jing1, BI Dongxue1,2, WANG Hailong3,4, LIU Xingyuan4
(1.KeyLaboratoryofCoastalEnvironmentalProcessesandEcologicalRemediation/YantaiInstituteofCoastalZoneResearch,ChineseAcademyofSciences;ShandongProvincialKeyLaboratoryofCoastalEnvironmentalProcesses,Yantai264003,Shandong,China; 2.UniversityofChineseAcademyofSciences,Beijing100049,China; 3.SchoolofEnvironmentalandResourceSciences,ZhejiangA&FUniversity,Lin’an311300,Zhejiang,China; 4.GuangdongDazhongAgricultureScienceCo.,Ltd.,Dongguan523169,Guangdong,China)
cadmium; humic acid; adsorption; leonardite; contaminated soil
广东省东莞市引进创新科研团队资助项目(2014607101003).
Corresponding author):袁国栋(http://orcid.org/0000-0002-2008-3099),E-mail:gdyuan@yic.ac.cn
联系方式:孟凡德(http://orcid.org/0000-0002-6985-0877),E-mail:fdmeng@yic.ac.cn
2016-01-22;接受日期(Accepted):2016-05-16;网络出版日期(Published online):2016-07-18
X 52; X 53
A
URL:http://www.cnki.net/kcms/detail/33.1247.S.20160718.2024.006.html