心电信号采集的模拟前端集成电路设计

2016-06-29 09:35周前能上官培阳李红娟

周前能,陈 飞,上官培阳,庞 宇,李红娟,罗 伟

(1.重庆邮电大学 光电工程学院,重庆 400065; 2. 四川理工学院, 四川 自贡 643000 )



心电信号采集的模拟前端集成电路设计

周前能1,陈飞1,上官培阳1,庞宇1,李红娟1,罗伟2

(1.重庆邮电大学 光电工程学院,重庆 400065; 2. 四川理工学院, 四川 自贡 643000 )

摘要:基于SMIC 0.18μm 1P6M CMOS混合工艺设计了一种适用于心电信号采集的模拟前端集成电路,主要由前置放大器、带通滤波器、工频滤波器及后级放大器等组成。通过采用低噪声前置放大器技术,有效地改善了模拟前端集成电路的信噪特性;通过采用陷波器技术,有效地抑制了50 Hz工频干扰信号。模拟前端集成电路获得了43.44 dB的中频增益以及通带为0.095 6—107.3 Hz;在0.1 Hz与100 Hz频率处,模拟前端集成电路分别获得与745 nV的等效输入噪声电压;在1.8 V电源电压条件下,模拟前端集成电路的静态功耗仅为912.5 nW。仿真结果表明,所设计的模拟前端集成电路适合于心电信号采集要求。

关键词:无线体局域网;心电信号;模拟前端集成电路;陷波器

0引言

生物医学信号是直接反映人体生物体征的信号,如心电信号(electrocardiogram,ECG)、脑电信号(electroencephalograph,EEG)、胃电信号、肌电信号等[1-3]。事实上,ECG是一种强噪声背景下的低频微弱生物医学信号,具有微弱、低频、噪声强、易受50 Hz工频干扰、不稳定及随机性强等特点[4]。因而,需要模拟前端电路对心电信号进行放大、整形,并去除50 Hz工频干扰以及直流偏移,为后续模数转换器(analog to digital converter, ADC)提供能抑制带外噪声、不失真且放大到合适幅值的心电信号。

目前,医疗设备ECG采集的模拟前端电路大多采用商用芯片的印刷板级电路,具有体积大、成本高、功耗大等缺点,不利于小型化、可穿戴式、便携式发展。近年来,随着集成电路技术的发展,使得ECG采集的模拟前端电路单芯片成为可能。国际上对ECG采集的模拟前端电路的研究开展比较早[5-10],而国内在此方面的研究处于初步探索阶段[11-12]。无论怎样,由于ECG具有频率低、易受噪声影响及比较难获取等问题,因而传统模拟前端电路需借助外部电阻及电容来实现滤波,不易单片集成。同时,模拟前端电路作为ECG检测中一个重要模块,其性能特性直接影响获取ECG的性能特性,因而有必要研究高性能ECG采集的模拟前端电路。

本文基于ECG信号特点,采用SMIC 0.18 μm CMOS混合工艺,设计出一种高性能的ECG采集的模拟前端芯片电路。通过该模拟前端芯片电路,可以有效地提取出微弱的ECG信号,为后续记录诊断提供依据。

1ECG采集的模拟前端集成电路系统

本文设计的模拟前端集成电路系统结构如图1所示,由前置放大器、带通滤波器、工频陷波器及后级放大器组成。前置放大器不仅实现采集电极与后续系统的隔离及缓冲作用,也实现心电信号预放大作用。带通滤波器的主要作用在于滤出心电信号频率(0.1—100 Hz)之外的低频和高频干扰信号,减小系统噪声,从而更好地采集心电信号。无论怎样,所采集的心电信号通常伴有50 Hz工频干扰,且干扰信号幅度[2]约为5 mV,和心电信号幅值相当,将降低系统的动态范围。为此,本文在ECG采集的模拟前端集成电路中增加抑制50 Hz工频干扰的陷波器。后级放大器将心电信号放大到合适幅值并为后续心电信号处理电路提供足够的驱动能力,因而要求后级放大器具有高增益及低输出阻抗特性。

图1 ECG采集的模拟前端电路系统Fig.1 Analog front-end system of ECG acquisition

2电路设计

2.1前置放大器设计

前置放大器不仅实现采集电极与系统的隔离与缓冲作用,同时也对心电信号进行预放大。基于此,本文设计一种交流耦合的前置放大器,如图2所示。前置放大器由低噪声运算放大器A1、4个电容及2个电阻组成,Vcm为共模电平。

图2 前置放大器结构Fig.2 Structure of pre-amplifier

图3 MOS伪电阻Fig.3 MOS resistance

图4 MOS伪电阻的仿真曲线Fig.4 Simulation results of MOS resistance

图5 低噪声运算放大器Fig.5 Low-noise operation amplifier

图6 运算放大器的噪声模型Fig.6 Noise model of operational amplifier

(1)

(2)

(3)

(3)式中:

(4)

(5)

由(2)—(3)式可知,通过合理选择M1与M2,M6与M7的沟道宽度W与沟道长度L,图5显示的电路能获得非常低的等效输入电压噪声谱密度。

2.2带通滤波器

本文设计的带通滤波器如图7所示,由低通滤波器(low-passfilter,LPF)与高通滤波器(high-passfilter,HPF)组成。低通滤波器LPF由电阻Rf1—Rf3、电容Cf1—Cf2与高增益放大器Af1组成,高通滤波器HPF由电阻Rf4—Rf5,电容Cf3—Cf5与高增益放大器Af2组成。其中,放大器Af1与Af2是完全一样的,电路结构与图5所示电路相同,区别在于带通滤波器中的放大器Af1与Af2是高增益运算放大器,即直流增益Ad≫1,此处就不赘述了。电阻Rf1—Rf5均采用图3中的伪电阻结构,其不同阻值通过设置相应MOS管的沟道宽长来实现。则低通滤波器LPF的传输函数H(s)LPF和高通滤波器HPF的传输函数H(s)HPF可分别表示为

(6)

(7)

由(6)—(7)式可分别求得低通滤波器LPF的截止频率fLPF0与高通滤波器HPF的截止频率fHPF0,分别表示为

(8)

(9)

由(8)—(9)式可知,合理选择电容Cf1—Cf5的容值及MOS伪电阻Rf1—Rf5的阻值,能获得通带为0.1—100Hz的带通滤波器。

图7 带通滤波器Fig.7 Band-pass filter

2.3工频陷波器及输出级放大器

工频陷波器结构如图8所示,主要由高增益运算放大器AT1—AT3、电阻R1—R6及电容C1—C5组成。高增益运算放大器AT1—AT3是完全一样,其电路结构与带通滤波器中的运算放大器Af1完全相同。电容C4与C5、电容C2与C3分别具有相同的容值,电阻R2与R3具有相同的阻值,电阻R1与R6具有相同的阻值,即C2=C3,C4=C5,R2=R3及R1=R6。因而陷波器的传输函数H(s)TR可表示为

(10)

根据(10)式,陷波器的中心频率fTR0可表示为

(11)

(11)式说明,通过合理选择电容C1与C4的容值、电阻R1与R4的阻值,能获得所期望的陷波中心频率。而且陷波器的品质因素Q值与R5的阻值有关,因而可通过选择R5的阻值来调节Q值。

图8 工频馅波器Fig.8 Notch-filter of power frequency

图9为输出级放大器的基本结构,其中运算放大器AB1与带通滤波器中的运算放大器Af1完全相同,电阻Ro1也采用图3所示的MOS伪电阻结构。其中,Ro1和Co2实现高通滤波的功能。

图9 输出级放大器Fig.9 Output-stage amplifier

3仿真结果

为验证所设计的ECG采集的模拟前端集成电路,在1.8 V电源电压条件下采用SMIC 0.18 μm CMOS混合工艺对所设计电路进行仿真验证。

图10为模拟前端集成电路的交流仿真曲线。仿真结果显示模拟前端集成电路获得43.44 dB的中频增益,0.095 6—107.3 Hz的通频带;系统低频端衰减大于60 dB/dec,高频端衰减约为-60 dB/dec;系统陷波中心频率为49.93 Hz,Q值为1.67,陷波衰减达到43.1 dB,满足滤除工频干扰的需求。

图10 模拟前端集成电路的交流仿真曲线Fig.10 Simulation results of AC responsefor analog front-end IC

在有效输入信号上叠加5 mV幅值的50 Hz工频正弦波干扰信号的瞬态输入/输出仿真曲线如图12所示。仿真结果显示,本文设计的模拟前端集成电路能有效地抑制50 Hz工频干扰信号。图13为模拟前端集成电路的各个模块的功耗分布情况。在电源电压为1.8 V条件下,模拟前端集成电路的整体静态功耗仅912.5 nW。

图12 模拟前端集成电路的瞬态仿真曲线Fig.12 Simulated transient response of analog front-end IC

图13 模拟前端集成电路的功耗分布Fig.13 Power distribution of analog front-end IC

4结论

本文设计了一种ECG采集的模拟前端集成电路,包括前置放大器、带通滤波器、工频干扰陷波器和输出级放大器等4个部分主体电路。采用SMIC 0.18 μm CMOS混合工艺对模拟前端集成电路进行了仿真验证。仿真结果显示,模拟前端集成电路获得了非常好的等效输入噪声、功耗、中频增益及动态范围等性能特性,满足ECG等生物医学信号采集要求。

参考文献:

[1]WEBSTER J G. Medical Instrumentation: Application and Design [M]. 3rd ed. New York: Wiley, 1998.

[2]ROBERT M B. Design of Pulse Oximeters [M]. London: Institute of Physics, 2003.

[3]龙正吉,刘光远. 用小波变换提取心电信号的情感特征[J]. 西南大学学报:自然科学版,2011,33(03):109-113.

LONG Zhengji, LIU Guangyuan. Extracting Emotion Features from ECG by Using Wavelet Transform[J]. Journal of Southwest University:Natural Science Edition,2011,33(03):109-113.

[4]SERGIO S B, JOSé S M. Design Considerations for Biomedical Signal Interfaces [C]// Third International Workshop on Design of Mixed-Mode Integrated Circuits and Applications. Puerto Vallarta, Mexico: IEEE Press, 1999: 187-191.

[5]TSAI T H, HONG J H, WANG L H, et al. Low-Power Analog Integrated Circuits for Wireless ECG Acquisition Systems [J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16 (5): 907-917.

[6]WEN M Y, CHENG Y Y, LI Y. A Full Custom Analog Front-End for Long-time ECG Monitoring [C]// 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Osaka, Japan:IEEE Press,2013: 3234-3237.

[7]CHEN Y Y, WANG J, WEN M Y, et al. A Low Power ECG Acquisition System Implemented with a Fully Integrated Analog Front-End [C]// IEEE International Symposium on Low Power Electronics and Design. Beijing, China: IEEE Press, 2013: 408.

[8]NG K A, CHAN P K. A CMOS Analog Front-End IC for Portable EEG/ECG Monitoring Applications [J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2005, 52(11):2325-2347.

[9]KIMMO L, JUHA K. A 1-V Analog CMOS Front-End for Detecting QRS Complex in a Cardiac Signal [J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2005, 52(12):2584-2594.

[10] HUNG H C, WEI D, CHEN W X. A CMOS Analog Front End Design in Multi-Lead ECG System for Ubiquitous Healthcare [C]// International Conference on Biomedical and Health Informatics. Shenzhen, China: IEEE Press, 2012: 281-284.

[11] 张金勇,李斌,王磊. 生物医学信号采集的多通道模拟前端集成电路 [J]. 中国生物医学工程学报, 2010, 29(2): 283-287, 304.

ZHANG Jinyong, LI Bin, WANG Lei. Multi-channel Analogue Front-end IC for Biomedical Signal Acquisition [J]. Chinese Journal of Biomedical Engineering, 2010, 29(2): 283-287, 304.

[12] 陈铖颖, 胡晓宇, 范军, 等. 用于巨磁阻生物传感器检测的模拟前端电路[J]. 半导体技术, 2011, 36(7): 529-532, 537.

CHEN Chengying, HU Xiaoyu, FAN Jun, et al. Analog Front-End Circuit for the Detection of GMR Biosensor [J]. Semiconductor Technology, 2011, 36(7): 529-532, 537.

[13] PHILLIP E A, DOUGLAS R H. CMOS Analog Circuit Design[M]. 2nd ed. Kingdom: Oxford University Press, 2002.

周前能(1973-),男,四川资中人,副教授,博士,硕士导师,主要研究方向为模拟集成电路、数模混合集成电路、RF集成电路。E-mail: zhouqn@cqupt.edu.cn。

陈飞(1990-),男,四川眉山人,硕士研究生,主要研究方向为模拟集成电路。

上宫培阳(1992-),男,学士,主要方向为模拟集成电路。

庞宇(1978-),男,四川泸州人,副教授,博士,硕士生导师,主要研究方向为集成电路。

李红娟(1977-),女,吉林人,硕士,主要研究方向为嵌入式系统。

罗伟(1968-),男,学士,主要研究方向为嵌入式系统。

(编辑:刘勇)

Performance of different DCSK schemes over the UWB in-body channel

CAO Xuepeng1,LV Yibo2,HUANG Tingting2, WANG Lin2

(1.College of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R.China;2.School of Information Science and Technology, Xiamen University, Xiamen 361005, P.R. China)

Abstract: Because of its characteristics, differential chaos shift keying(DCSK) system is well suited for wireless short-range communication system. Based onM-ary DCSK, FM-DCSK and QCS-DCSK respectively, the ultra wideband wireless in-body communication systems are proposed. By deeply analyzing main characteristics about these systems, studying and simulating factors such as guard interval and integration time which affect performance of ultra wideband wireless in-body communication systems based onM-ary DCSK, FM-DCSK and QCS-DCSK, some optimizations have been made for these factors. The BER performance of those three schemes demonstrates that QCS-DCSK can provide better communication quality and require lower power consumption compared to other two DCSK schemes. For given spreading factorβand duration timeTc, the simulation results of QCS-DCSK over in-body channel with different guard intervals show that the optimal guard interval can ensure the best performance of QCS-DCSK over the UWB in-body channel. With given spreading factorβ, duration timeTcand guard intervalTg, the optimal integration interval can improve the performance of FM-DCSK over the UWB in-body channel.

Keywords:differential chaos shift keying(DCSK);ultra wideband(UWB);in-body channel;guard interval; integration interval

CLC number:TN92Document code:A

Article ID:1673-825X(2016)01-0072-06

Design of analog front-end IC for ECG signal acquisition

ZHOU Qianneng1, CHEN Fei1, SHANGGUAN Peiyang1, PANGYu1, LI Hongjuan1, LUO Wei2

(1. College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China;2. Sichuan University of Science and Engineering, Zigong 643000, P.R. China)

Keywords:wireless body area network; electrocardiogram signal; analog front-end IC; notch filter

Abstract:A kind of analog front-end IC for Electrocardiogram (ECG) signal acquisition is designed in SMIC 0.18μm 1P6M CMOS mixed-signal process, which includes pre-amplifier, band-pass filter, notch filter of power frequency and post-amplifier. Performance of signal to noise is effectively improved by adopting low noise preamplifier in the analog front-end IC. 50 Hz power interference can be effectively rejected by adopting the technique of notch filter. The analog front-end IC achieves an IF gain of 43.44 dB and a passband ranging from 0.0956Hz to 107.3 Hz. The analog front-end IC at 0.1 Hz and 100Hz achieves the equivalent input noise voltage of 15.1and 745 nVrespectively. The standby power consumption of the designed analog front-end IC is only 912.5 nW with 1.8 V power supply voltage. Simulation results show that the designed analog front-end IC is suitable for the requirement of ECG signal acquisition.

DOI:10.3979/j.issn.1673-825X.2016.01.010 10.3979/j.issn.1673-825X.2016.01.011

收稿日期:2015-03-19

修订日期:2015-10-24通讯作者:周前能zhouqn@cqupt.edu.cn

基金项目:国家自然科学基金(61102075,61301124,61471075);国家物联网发展专项基金;重庆市教委科学技术研究项目(KJ120503);重庆高校创新团队建设计划(智慧医疗系统与核心技术创新团队);重庆创新青年人才培养项目(cstc2013kjrc-qnrc10001);重庆“121”科技支撑示范工程 (cstc2014jcsfglyjsX0028,cstc2014zktjccxyyBX009)

Foundation Items:The National Natural Science Foundation of China(61102075,61301124,61471075); The Special Project of Internet of Things from Ministry of Industry and Information Technology; The Science and Technology Research Program of Chongqing Municipal Education Commission(KJ120503); The 2013 Program for Innovation Team Building at Institutions of Higher Education in Chongqing (The Innovation Team of Smart Medical System and Key Technology); The Chongqing Development Plan of Innovative Young Talents (cstc2013kjrc-qnrc10001); The “121” Project of CQ CSTC(cstc2014jcsfglyjsX0028, cstc2014zktjccxyyBX0009)

中图分类号:TN432;Q424

文献标志码:A

文章编号:1673-825X(2016)01-0066-06

作者简介: