适用于密集人群的异常事件实时检测方法

2016-06-28 08:56潘磊周欢王明辉
计算机应用 2016年6期
关键词:卡尔曼滤波

潘磊 周欢 王明辉

摘 要:在密集人群场景下,针对现有异常检测算法在实时性和适用性方面的不足,提出了一种基于光流特征和卡尔曼滤波的实时检测方法。该方法首先提取图像的全局光流强度作为运动特征;然后对全局光流值进行卡尔曼滤波,并对残差进行分析;假设残差在正常状态下服从高斯分布,利用假设检验加以验证;运用最大似然(ML)估计得到残差的概率分布;在一定置信度下,确定正常状态的可信区间和异常状态的判定公式,并以此判断异常事件是否发生。实验结果表明,该方法对尺寸为320×240的视频,平均检测时间低至0.023s/frame,且准确率可达95%以上。因而,该方法在保证较高检测率的同时,还具有良好的实时性。

关键词:智能视频监控;异常事件检测;光流法;卡尔曼滤波;残差分析

中图分类号: TP391.41 文献标志码:A英文标题

猜你喜欢
卡尔曼滤波
卡尔曼滤波在雷达目标跟踪中的应用
卡尔曼滤波在雷达目标跟踪中的应用
基于改进连续自适应均值漂移的视频目标跟踪算法
基于MapReduce的城市道路旅行时间短时预测 
自平衡两轮电动车运动控制系统的硬件设计及实现
一种改进的卡尔曼滤波算法在测量移动物体参数中的应用
空管自动化系统中航迹滤波算法的应用与改进
两轮自平衡车实验平台的设计
利用步行惯性导航的室内定位融合算法研究
卡尔曼滤波在MEMS惯性姿态测量中的应用