黄敬群,张军勇,李伟中,张亮,高颖,李光
槲皮素对痛风性关节炎大鼠的治疗作用及肾功能的影响
黄敬群1,张军勇2,李伟中3,张亮1,高颖1,李光1
摘要:目的探讨槲皮素对急性痛风性关节炎大鼠的治疗作用及其对肾功能的影响。方法70只雄性SD大鼠随机均分为空白对照组,模型组,秋水仙碱组(0.5 mg/kg),别嘌醇组(20 mg/kg),槲皮素低、中、高剂量组(100、200、400 mg/kg)。连续灌胃给药7 d,第5天采用微晶尿酸钠和次黄嘌呤法制备大鼠急性痛风性关节炎模型。造模前和造模后2、6、12、24和48 h用缚线法测取右后肢小腿踝关节同一部位周径,计算肿胀率;采用比色法、酶联免疫吸附法等测定大鼠血清中尿酸(UA),β2-微球蛋白(β2-MG),胱素C (Cys-C),尿素(Urea),肌酐(Cr)含量。脱颈处死大鼠,取肾脏称质量,计算肾脏指数。结果槲皮素、秋水仙碱、别嘌醇能够显著抑制痛风性关节炎大鼠踝关节肿胀率;造模后8 h,秋水仙碱、槲皮素组血清UA水平均高于空白对照组和别嘌醇组,别嘌醇组低于空白对照组;48 h后,除别嘌醇组血清UA水平明显低于其余组外,其余组间差异均无统计学意义。各组比较,空白对照组β2-MG、Cys-C水平最低,别嘌醇组Urea、Cr水平及肾脏指数均最高(均P<0.05)。结论槲皮素对急性痛风性关节炎大鼠有显著的抗炎作用,但造模可能导致肾功能不同程度的损害。槲皮素对轻度肾损伤未见明显的保护作用,别嘌醇给药后加重肾功能损伤。
关键词:痛风性关节炎;高尿酸血症;槲皮素;秋水仙碱;别嘌醇;肾功能
痛风性关节炎(gouty arthritis,GA)是由于血液尿酸(uric acid, UA)增高,尿酸盐结晶(monosodium urate crystals,MSU)沉积在关节囊、滑膜、软骨等组织,受累关节出现红、肿、热、痛,导致关节畸形及功能障碍[1-3]。大多数痛风性关节炎患者存在高尿酸血症,其被认为是痛风发展的一个关键性危险因素[4]。UA产生过多、肾脏UA排泄障碍或者这两个因素的综合作用可导致高尿酸血症的发生[5-6]。痛风性关节炎的治疗一方面需要降低血清UA水平,另一方面需要控制急性炎症发作[7]。目前治疗药物包括非甾体类抗炎药吲哚美辛、秋水仙碱、糖皮质激素和别嘌醇等,但其均具有严重的不良反应,如胃肠毒性、肝肾功能损害和胃肠道出血等[8-9]。因此,从天然产物中寻求安全有效的成分治疗痛风性关节炎是未来的研究热点。黄酮类化合物槲皮素广泛存在于茶叶、洋葱、西兰花、苹果、桃子、荞麦等几乎所有的植物性食物中,具有抗菌、抗病毒、抗氧化、抗炎和诱导变异细胞凋亡等生物活性[10-11]。本课题组前期研究发现,槲皮素不能够降低正常和高尿酸血症小鼠血清UA水平[12],但能够显著抑制痛风性关节炎大鼠踝关节肿胀度和炎症因子含量,提高机体抗氧化酶活性,通过抗炎和抗氧化作用发挥治疗痛风性关节炎功效[13]。高尿酸血症和痛风性关节炎可能影响到肾脏,尿酸盐不仅沉积在关节滑膜组织,还会沉积在肾实质中,导致肾功能不全[14]。本研究采用微晶尿酸钠和次黄嘌呤法[15-16]建立大鼠急性痛风性关节炎模型,探讨槲皮素对急性痛风性关节炎大鼠的治疗作用并观察其对肾功能的影响,为槲皮素的进一步研发提供实验依据。
1.1材料
1.1.1动物雄性SD大鼠70只,体质量(200±20)g,清洁级,购自军事医学科学院实验动物中心,许可证编号:SCXK-2012-0004。分笼饲养,自由饮水、进食,温度(25±2)℃,通风良好,自然光照。
1.1.2药物与试剂秋水仙碱片(西双版纳版纳药业有限责任公司,0.5 mg/片,批号:130505);别嘌醇片[世贸天阶制药(江苏)有限责任公司,0.1 g/片,批号:20140610]。槲皮素(上海将来实业有限公司,纯度98%,批号:A007353-50g);微晶尿酸钠(批号:U2875-5G)、次黄嘌呤(批号:H9377-5G)均购自Sigma公司。UA试剂盒:柏定生物工程(北京)有限公司,尿酸酶比色法。尿素(Urea)试剂盒:柏定生物工程(北京)有限公司,尿酶-谷氨酸脱氢酶法。β2-微球蛋白(β2-microglob⁃ulin,β2-MG)试剂盒、胱素C (Cystatin C, Cys-C)试剂盒:罗氏诊断产品上海有限公司,ELISA法。肌酐(Creatinine, Cr)试剂盒:北京九强生物技术股份有限公司,肌氨酸氧化酶法。
1.1.3仪器FA1104型电子天平(上海精科天平有限公司);日立7600-020全自动生化分析仪(日立公司);Thermo Scientific Multiskan Go全波长酶标仪(Thermo go公司)。
1.2动物分组70只SD大鼠适应性喂养1周后,采用随机数字表法分为空白对照组,模型组,秋水仙碱组(0.5 mg/kg),别嘌醇组(20 mg/kg),槲皮素低、中、高剂量组(100、200、400 mg/kg),每组10只。
1.3溶液制备
1.3.1秋水仙碱混悬液的制备将秋水仙碱片20片放入研钵内研成细末,溶解于200 mL蒸馏水中,充分混匀,制备成浓度为0.05 g/L的秋水仙碱混悬液。
1.3.2别嘌醇混悬液的制备将别嘌醇片4片放入研钵内研成细末,溶解于200 mL蒸馏水中,制备成浓度为2 g/L的别嘌醇混悬液。
1.3.3槲皮素混悬液的制备分别精密称取槲皮素2.0、4.0 和8.0 g,放入研钵内研成细末,溶解于200 mL蒸馏水中,制备成浓度为10、20和40 g/L的槲皮素混悬液。
1.3.4尿酸钠混悬液的制备精密称取尿酸钠结晶400 mg,放入研钵内研成极细粉末,加入10 mL生理盐水,充分混匀,制备成浓度为40 g/L的尿酸钠混悬液。
1.3.5次黄嘌呤混悬液的制备精密称取次黄嘌呤粉末8.0 g,溶解于160 mL生理盐水中,制备成浓度为50 g/L的次黄嘌呤混悬液。
1.4给药方法以每100 g大鼠体质量灌胃1 mL为标准,空白对照组和模型组分别灌胃蒸馏水;阳性药对照组分别灌胃秋水仙碱和别嘌醇混悬液,槲皮素低、中、高剂量组分别灌胃对应浓度槲皮素混悬液。每日1次,连续7 d,第5天给药1 h后造模。
1.5造模方法空白对照组腹腔注射1 mL/100 g生理盐水,模型组、秋水仙碱组、别嘌醇组和槲皮素低、中、高剂量组分别按1 mL/100 g(500 mg/kg)腹腔注射次黄嘌呤混悬液。腹腔注射完毕后大鼠乙醚麻醉,模型组、秋水仙碱组、别嘌醇组和槲皮素低、中、高剂量组大鼠用75%乙醇消毒右后肢小腿踝关节,用6号注射针在大鼠右后踝关节背侧45°方向插入至胫骨肌腱内侧,感觉有落空感后将充分混匀的0.1 mL尿酸钠混悬液注入到关节腔内,缓慢拔出针头,防止尿酸钠混悬液漏出。空白对照组右后肢小腿踝关节注射等体积生理盐水。
1.6检测指标
1.6.1大鼠踝关节肿胀率造模前和造模后2、6、12、24、48 h用缚线法测量大鼠右后肢踝关节同一部位周径,计算肿胀率。肿胀率=(致炎后踝关节周径-致炎前踝关节周径)/致炎前踝关节周径×100%。
1.6.2血清UA、Urea、Cr、β2-MG和Cys-C水平测定造模后8 h用玻璃毛细管从各大鼠眼底静脉丛取血1.5 mL,室温下放置1 h后4 000 r/min离心10 min,取上清,7600-020全自动生化分析仪测定血清UA水平。第7天给药后1 h大鼠乙醚麻醉,腹主静脉取血5.0 mL,室温下放置1 h后4 000 r/min离心10 min,取上清,放入-80℃冰箱待测。分别用7600-020全自动生化分析仪和Thermo go全自动酶标仪测定血清中UA、Urea、Cr、β2-MG和Cys-C水平。
1.6.3脏器指数测定大鼠腹主静脉取血后脱颈处死,取肾脏称质量,计算肾脏指数。肾脏指数=肾脏质量/体质量× 100%。
1.6.4组织病理学检查取大鼠肾脏组织,10%中性福尔马林溶液中固定,梯度乙醇脱水,透明,常规石蜡包埋切片,HE染色,光镜下观察组织病理形态学改变。
1.7统计学方法采用SPSS 19.0统计软件进行数据分析。计量资料用±s表示,不同时间点多组间比较采用单因素方差分析,进一步组间多重比较采用LSD-t检验,2组间比较采用独立样本t检验,P < 0.05为差异有统计学意义。
2.1槲皮素对大鼠踝关节肿胀率的影响尿酸钠诱导的急性痛风性关节炎大鼠踝关节肿胀率在造模后均明显增加(均P<0.05),说明造模成功。各造模组大鼠在48 h后肿胀开始明显减轻,说明此模型适用于痛风性关节炎的急性期。秋水仙碱组,别嘌醇组,槲皮素低、中、高剂量组在2~48 h与模型组比较,踝关节肿胀率均显著降低(均P < 0.05);槲皮素低、中、高剂量组量效关系不显著(均P>0.05),见图1。
Fig. 1 Comparison of ankle joint swelling rates at different time points between seven groups图1 各组大鼠造模后不同时间点踝关节肿胀率比较
2.2槲皮素对大鼠血清UA水平的影响造模后8 h,模型组大鼠血清UA水平显著高于空白对照组,表明大鼠腹腔注射次黄嘌呤500 mg/kg成功诱导出高尿酸血症模型;秋水仙碱组,槲皮素低、中、高剂量组血清UA水平均明显高于空白对照组和别嘌醇组,别嘌醇组低于空白对照组(均P<0.05);模型组,秋水仙碱组,槲皮素低、中、高剂量组间多重比较差异均无统计学意义。48 h后,除别嘌醇组血清UA水平明显低于其余组外,其余组间差异均无统计学意义。见表1。
Tab. 1 Comparison of serum uraic acid levels of rat at different time points between seven groups表1 各组间不同时间点大鼠血清UA水平的比较(n=10,µmol/L,±s)
Tab. 1 Comparison of serum uraic acid levels of rat at different time points between seven groups表1 各组间不同时间点大鼠血清UA水平的比较(n=10,µmol/L,±s)
*P < 0.05;a与空白对照组比较,b与模型组比较,c与秋水仙碱组比较,d与别嘌醇组比较,P < 0.05
组别空白对照组模型组秋水仙碱组别嘌醇组槲皮素低剂量组槲皮素中剂量组槲皮素高剂量组F 8 h UA 184.40±46.66 349.90±49.72a339.90±50.46a83.20±15.92abc322.50±53.47ad325.20±44.38ad322.80±37.54ad52.750*48 h UA 144.50±19.54 150.40±40.09 149.00±25.10 18.90±3.14abc135.50±22.87d148.50±42.77d150.80±29.33d28.809*
2.3槲皮素对大鼠β2-MG、Cys-C、Urea和Cr水平的影响模型组,秋水仙碱组,别嘌醇组,槲皮素低、中、高剂量组β2-MG、Cys-C水平均高于空白对照组(均P<0.05);空白对照组,模型组,秋水仙碱组,槲皮素低、中、高剂量组Urea、Cr水平均明显低于别嘌醇组(均P<0.05);其余组间差异均无统计学意义。见表2。
Tab. 2 Comparison of serum levels of β2-MG, Cys-C, Urea, and Cr in rats between seven groups表2 各组大鼠血清β2-MG、Cys-C、Urea和Cr水平比较(n=10,±s)
Tab. 2 Comparison of serum levels of β2-MG, Cys-C, Urea, and Cr in rats between seven groups表2 各组大鼠血清β2-MG、Cys-C、Urea和Cr水平比较(n=10,±s)
*P < 0.05;a与空白对照组比较,b与模型组比较,c与秋水仙碱组比较,d与别嘌醇组比较,P < 0.05
组别空白对照组模型组秋水仙碱组别嘌醇组槲皮素低剂量组槲皮素中剂量组槲皮素高剂量组F β2-MG (mg/L) 27.32±7.19 36.27±2.08a35.96±2.66a35.42±5.22a32.95±3.50a31.80±3.30a32.81±5.21a4.882*Cys-C (µg/L) 14.88±3.04 21.17±2.91a20.09±3.15a20.92±0.82a18.28±2.95a18.47±2.47a21.05±1.49a8.001*Urea (mmol/L) 7.60±0.96 6.44±0.74 5.95±0.35 57.60±7.39abc6.70±0.91d6.66±0.77d6.49±1.18d440.278*Cr (µmol/L) 19.20±1.81 22.20±2.66 23.30±1.77 287.60±35.96abc21.70±1.77d21.80±2.10d20.90±1.85d537.523*
2.4槲皮素对大鼠肾脏指数的影响别嘌醇组肾脏指数(0.78±0.04)%均明显高于空白对照组(0.35± 0.03)%,模型组(0.33±0.03)%,秋水仙碱组(0.36± 0.05)%,槲皮素低(0.34±0.02)%、中(0.36±0.03)%、高剂量组(0.35±0.01)%,差异有统计学意义(F= 248.227,P<0.05)。
2.5病理组织形态学结果空白对照组,模型组,秋水仙碱组,槲皮素低、中、高剂量组大鼠肾外观及切面正常,别嘌醇组大鼠各肾外观均水肿明显,被膜紧张。空白对照组镜检可见肾小管、肾小球结构清楚,无明显改变;模型组,秋水仙碱组,槲皮素低、中、高剂量组肾小球及近端肾小管组织结构清楚,形态和染色基本正常,个别区域肾小管上皮细胞轻度水肿,毛细血管轻度扩张充血。别嘌醇组可见广泛的小血管及静脉严重充血,肾小球体积轻度增大,球囊粘连,系膜细胞增生,系膜基质增宽,肾小管间质毛细血管扩张充血,上皮细胞空泡变性,见图2。
痛风性关节炎的发病机制是高尿酸血症伴随着尿酸盐结晶在关节及其周围组织沉积,噬中性粒细胞渗出,产生红、肿、热、痛[17]。对痛风来说,两个重要的治疗目标是减轻炎症反应和降低血清的UA水平[18-19]。文献报道,注射尿酸钠结晶16~24 h后大鼠踝关节关节液中噬中性粒细胞大量聚集,同时滑膜表面和衬里有大量白细胞渗入[20]。本研究采用大鼠腹腔内注射次黄嘌呤诱导产生高尿酸血症,同时将尿酸钠晶体注入大鼠踝关节腔内造成急性痛风性关节炎病变模型,该模型符合临床急性痛风性关节炎的发生机制。结果显示,大鼠造模后2 h开始出现踝关节肿胀,24 h达到高峰,48 h后症状开始缓解。与模型组比较,秋水仙碱组,别嘌醇组,槲皮素低、中、高剂量组能够显著抑制痛风性关节炎大鼠踝关节肿胀率,提示这3种药给药后均能够显著减少模型大鼠关节腔内关节液的容积,减轻炎症反应。
本研究显示,造模后8 h,模型组,秋水仙碱组,槲皮素低、中、高剂量组大鼠血清UA水平均显著高于空白对照组;48 h后,其血清UA水平均降低到正常范围;而别嘌醇组的血清UA水平在8 h和48 h时均明显低于其他各组,提示应用此模型观察大鼠血清UA水平时,应该在8 h左右取血测定比较合适;48 h时别嘌醇仍能够显著降低高尿酸血症大鼠血清UA水平,而槲皮素和秋水仙碱对高尿酸血症大鼠血清UA水平无明显影响,与以往文献报道一致[12,15,21]。
多项流行病学、临床及基础实验研究表明,UA的升高可以直接使肾小球入球小动脉发生微血管病变[22-23]。黄嘌呤氧化酶抑制剂别嘌醇临床广泛用于抑制UA合成,但口服该药会加重肝肾功能不全患者的肾脏负担,有报道称可引起药源性急性肾衰和肝坏死[24]。微管解聚剂秋水仙碱可通过抑制多形核白细胞的活性和运动产生抗炎作用[25-26],目前主要用于治疗痛风性关节炎的急性发作,但同时具有比较严重的毒性反应,如胃肠道反应、骨髓毒性反应、肝肾功能损害、精神抑郁等,药物过量甚至可导致死亡[27]。临床常用内源性标志物β2-MG、Cys-C、Urea 和Cr等评价肾脏功能。β2-MG是一种体内有核细胞产生的小分子循环蛋白质,肾小球滤过后,99.9% 的β2-MG在近端肾小管被重吸收,在肾小管细胞的溶酶体中降解,最后经尿排出[28]。Cys-C是一种反映肾小球滤过膜通透性早期变化的理想的内源性标志物,可以在肾小球滤过率轻微降低时升高,有较强的敏感性[29]。血清β2-MG和Cys-C的升高可灵敏地反映早期肾小球滤过率的降低。本研究显示,模型组,秋水仙碱组,别嘌醇组,槲皮素低、中、高剂量组β2-MG、Cys-C水平均高于空白对照组,这可能是与高尿酸血症有关的肾损伤的早期表现,而秋水仙碱和槲皮素并没有明显降低β2-MG和Cys-C水平而表现出对肾损伤的保护作用。
Urea和Cr也是反映肾脏功能损伤的实验室指标之一[30],但是对肾小球滤过率的诊断不够灵敏,在肾功能损害早期,血Urea和Cr可在正常范围,只有当肾小球滤过率下降至正常的50%以上时,Urea和Cr开始迅速上升,因此当Urea和Cr明显高于正常时,常表示肾功能已严重损害。本研究中别嘌醇组血清Urea和Cr水平均明显高于空白对照组,而且肾脏指数显著升高,组织病理学检查结果也可见别嘌醇给药后造成一定程度的肾功能损伤。
综上所述,槲皮素、秋水仙碱、别嘌醇对急性痛风性关节炎大鼠有显著的抗炎作用。微晶尿酸钠和次黄嘌呤法制备的大鼠急性痛风性关节炎模型可能导致肾功能不同程度的损害,槲皮素对轻度肾损伤未见明显的保护作用,给予别嘌醇后会加重肾损伤。
(图2见插页)
[1] Sabina EP, Rasool M. An in vivo and in vitro potential of Indian ay⁃urvedic herbal formulation Triphala on experimental gouty arthritis in mice[J]. Vascul Pharmacol, 2008, 48(1): 14-20.
[2] Meng ZQ, Tang ZH, Yan YX, et al. Study on the anti-gout activity of chlorogenic Acid: improvement on hyperuricemia and gouty in⁃flammation[J]. Am J Chin Med, 2014, 42(6): 1471- 1483. doi: 10.1142/S0192415X1450092X.
[3] Wang Y, Wang L, Li E, et al. Chuanhu anti-gout mixture versus col⁃chicine for acute gouty arthritis: a randomized, double-blind, dou⁃ble- dummy, non- inferiority trial[J]. Int J Med Sci, 2014, 11(9): 880-885. doi: 10.7150/ijms.9165.
[4] Burbage G. Gout: clinical presentation and management[J]. Nurs Stand, 2014, 29(2): 50-56. doi: 10.7748/ns.29.2.50.e8464.
[5] Silva CR, Fröhlich JK, Oliveira SM, et al. The antinociceptive and anti-inflammatory effects of the crude extract of Jatropha isabellei in a rat gout model [J]. J Ethnopharmacol, 2013, 145(1): 205-213. doi: 10.1016/j.jep.2012.10.054.
[6] Xilifu D, Abudula A, Rehemu N, et al. Effect of rosuvastatin on hy⁃peruricemic rats and the protective effect on endothelial dysfunction [J]. Exp Ther Med, 2014, 8(6): 1683-1688.
[7] Curiel RV, Guzman NJ. Challenges associated with the management of gouty arthritis in patients with chronic kidney disease: a systemat⁃ic review [J]. Semin Arthritis Rheum, 2012, 42(2): 166-178. doi: 10.1016/j.semarthrit.2012.03.013.
[8] Shi L, Xu L, Yang Y, et al. Suppressive effect of modified Simi⁃aowan on experimental gouty arthritis: an in vivo and in vitro study [J]. J Ethnopharmacol, 2013, 150(3): 1038-1044. doi: 10.1016/j. jep.2013.10.023.
[9] Lee HP, Huang SY, Lin YY, et al. Soft coral-derived lemnalol alleviates monosodium urate-induced gouty arthritis in rats by inhibiting leu⁃kocyte infiltration and iNOS, COX-2 and c-Fos protein expression [J]. Mar Drugs, 2013, 11(1): 99-113. doi: 10.3390/md11010099.
[10] Chan ST, Chuang CH, Yeh CL, et al. Quercetin supplementation suppresses the secretion of pro-inflammatory cytokines in the lungs of Mongolian gerbils and in A549 cells exposed to benzo[a]pyrene alone or in combination with β-carotene: in vivo and ex vivo stud⁃ies [J]. J Nutr Biochem, 2012, 23(2): 179-185. doi: 10.1016/j.jnut⁃bio.2010.11.014.
[11] MilesSL,McFarlandM,NilesRM.Molecularandphysiologicalactions ofquercetin:needforclinicaltrialstoassessitsbenefitsinhumandisease [J].NutrRev,2014,72(11):720-734.doi:10.1111/nure.12152.
[12] Huang J, Wang S, Zhu M, et al. Effects of genistein, apigenin, quer⁃cetin, rutin and astilbin on serum uric acid levels and xanthine oxi⁃dase activities in normal and hyperuricemic mice[J]. Food Chem Toxicol, 2011, 49(9): 1943-1947. doi: 10.1016/j.fct.2011.04.029.
[13] Huang J, Zhu M, Tao Y, et al. Therapeutic properties of quercetin on monosodium urate crystal- induced inflammation in rat [J]. J Pharm Pharmacol, 2012, 64(8): 1119-1127. doi: 10.1111/j.2042-7158.2012.01504.x.
[14] De Giorgio F, Abbate A, Zoccai GB, et al. An unusual cause of fatal pulmonary embolism [J]. Int J Cardiol. 2007, 114(3): 393-395.
[15] Yao L, Dong W, Lu F, et al. An improved acute gouty arthritis rat model and therapeutic effect of rhizoma Dioscoreae nipponicae on acute gouty arthritis based on the protein-chip methods [J]. Am J Chin Med, 2012, 40(1): 121-134.
[16] Wang RC, Jiang DM. PPAR-γ agonist pioglitazone affects rat gouty arthritis by regulating cytokines[J]. Genet Mol Res, 2014, 13(3): 6577-6581. doi: 10.4238/2014.August.28.2.
[17] Chen L, Mola M, Deng X, et al. Dolichos falcata Klein attenuated the inflammation induced by monosodium urate crystals in vivo and in vitro [J]. J Ethnopharmacol, 2013, 150(2): 545-552. doi: 10.1016/ j.jep.2013.08.063.
[18] Zhang W, Doherty M, Bardin T, et al. EULAR evidence based rec⁃ommendations for gout. Part II: Management. Report of a task force of the EULAR Standing Committee for International Clinical Stud⁃ies Including Therapeutics (ESCISIT) [J]. Ann Rheum Dis, 2006, 65 (10): 1312-1324.
[19] Khanna D, Khanna PP, Fitzgerald JD, et al. American College of Rheumatology. 2012 American College of Rheumatology guidelines for management of gout. Part 2: therapy and antiinflammatory pro⁃phylaxis of acute gouty arthritis[J]. Arthritis Care Res (Hoboken), 2012, 64(10): 1447-1461. doi: 10.1002/acr.21773.
[20] Getting SJ, Christian HC, Flower RJ, et al. Activation of melanocor⁃tin type 3 receptor as a molecular mechanism for adrenocorticotrop⁃ic hormone efficacy in gouty arthritis[J]. Arthritis Rheum, 2002, 46 (10):2765-2775.
[21] Taylor TH, Mecchella JN, Larson RJ, et al. Initiation of allopurinol at first medical contact for acute attacks of gout: a randomized clini⁃cal trial[J]. Am J Med, 2012, 125(11): 1126-1134. doi: 10.1016/j. amjmed.2012.05.025.
[22] Kang DH, Chen W. Uric acid and chronic kidney disease: new un⁃derstanding of an old problem[J]. Semin Nephrol, 2011, 31(5): 447-452. doi: 10.1016/j.semnephrol.2011.08.009.
[23] Lapsia V, Johnson RJ, Dass B, et al. Elevated uric acid increases the risk for acute kidney injury[J]. Am J Med, 2012, 125(3): 302-317. doi: 10.1016/j.amjmed.2011.06.021.
[24] Biagioni E, Busani S, Rinaldi L, et al. Acute renal failure and liver necrosis associated to allopurinol therapy[J]. Anaesth Intensive Care, 2012, 40(1): 190-191.
[25] Kurenda A, Pieczywek PM, Adamiak A, et al. Effect of Cytochalasin B, Lantrunculin B, Colchicine, Cycloheximid, Dimethyl Sulfoxide and Ion Channel Inhibitors on Biospeckle Activity in Apple Tissue [J]. Food Biophys, 2013, 8(4): 290-296.
[26] Gao C, Peng F, Peng L. Post-transplant recurrent pericarditis with pericardial tamponade is successfully treated with colchicine: A case report[J]. Exp Ther Med, 2014, 8(3): 801-804.
[27] Todd BA, Billups SJ, Delate T, et al. Assessment of the association between colchicine therapy and serious adverse events[J]. Pharma⁃cotherapy, 2012, 32(11): 974-980. doi: 10.1002/phar.1125.
[28] Liu D, Huang P, Li X, et al. Using inflammatory and oxidative bio⁃markers in urine to predict early acute kidney injury in patients un⁃dergoing liver transplantation[J]. Biomarkers, 2014, 19(5): 424-429. doi: 10.3109/1354750X.2014.924997.
[29] Ruan ZB, Zhu L, Yin YG, et al. Cystatin C, N-terminal probrain na⁃triuretic peptides and outcomes in acute heart failure with acute kid⁃ney injury in a 12-month follow-up: Insights into the cardiorenal syndrome[J]. J Res Med Sci, 2014, 19(5): 404-409.
[30] Gu H, Yang M, Zhao X, et al. Pretreatment with hydrogen-rich sa⁃line reduces the damage caused by glycerol-induced rhabdomyoly⁃sis and acute kidney injury in rats[J]. J Surg Res, 2014, 188(1): 243-249. doi: 10.1016/j.jss.2013.12.007.
(2015-03-01收稿2015-09-16修回)
(本文编辑陈丽洁)
作者单位:1中国人民解放军第252医院制剂中心(邮编071000),2院部,3检验科
The therapeutic effect of quercetin on gouty arthritis and its influence in renal function in rats
HUANG Jingqun1, ZHANG Junyong2, LI Weizhong3, ZHANG Liang1, GAO Ying1, LI Guang1
1 Center of Praeparatum, 2 Command Institution, 3 Department of Laboratory Medicine, NO. 252 Hospital of PLA, Baoding,
Hebei 071000, China
Abstract:Objective To investigate the therapeutic effect of quercetin on acute gouty arthritis and its influence in re⁃nal function in rats. Methods Seventy male Sprague-Dawley rats were randomly divided into normal control group, model group, colchicine group (0.5 mg/kg), allopurinol group (20 mg/kg), quercetin 100, 200 and 400 mg/kg groups (n=10 for each group). Rats were administered various drugs by oral gavage once a day for seven consecutive days throughout the experi⁃ment. On the fifth day, the animal model of acute arthritis was set up by giving monosodium urate crystal combined with hypo⁃xanthine. The inflammatory reaction was detected by measuring the circumference of right hind leg anklejoint with a tie line method at 0, 2, 6, 12, 24 and 48 h. The swelling ratio was calculated. The serum levels of uric acid (UA),β2-microglobulin (β2-MG), cystatin C (Cys-C), urea nitrogen (Urea) and creatinine (Cr) were detected by colorimetry and enzyme-linked im⁃munosorbent assay.Rats were sacrificed at the end of experiment, and the kidney was weighed and the renal index was calcu⁃lated. Results Treatment with quercetin, colchicine or allopurinol can significantly attenuate swelling rate in rats of acute gouty arthritis. The serum levels of UA were significantly higher in colchicine group and quercetin group than those of nor⁃mal control group and allopurinol group. The serum levels of UA was significantly lower in allopurinol group than that of nor⁃mal control group. After 48-h modeling, there was no significant difference in serum UA level between seven groups except allopurinol group. The levels of β2-MG and Cys-C were the lowest in normal control group than those of other groups. The se⁃rum levels of Urea and Cr and renal index were the highest in allopurinol group compared with those of other groups (P < 0.05). ConclusionQuercetin shows a significant effect of anti-inflammatory on acute gouty arthritis in rats. The model es⁃tablishment may lead to different degrees of renal damage. Quercetin has no protective effect against renal injury, and allopu⁃rinol aggravates kidney injury.
Key words:gouty arthritis; hyperuricemia; quercetin; colchicines; allopurinol; renal function
中图分类号:R965.3
文献标志码:A
DOI:10.11958/58360
基金项目:中国博士后科学基金项目(2012M512105)
作者简介:黄敬群(1970),男,主管药师,博士,主要从事中药药理研究