王 鹏,张沙沙,张韶蕾,王德松,罗青枝
(河北科技大学理学院,河北石家庄 050018)
CDPVC/Ag3PO4复合光催化剂的制备及性能研究
王鹏,张沙沙,张韶蕾,王德松,罗青枝
(河北科技大学理学院,河北石家庄050018)
摘要:采用溶液浸渍法制备聚氯乙烯/磷酸银(PVC/Ag3PO4)复合微粒,经热处理使PVC脱除HCl得到PVC共轭衍生物/Ag3PO4(CDPVC/Ag3PO4)复合微粒,采用XRD,SEM,UV-vis DRS,PL和XPS等手段对CDPVC/Ag3PO4进行了分析表征。通过甲基橙在可见光下的降解反应,考察制备条件对CDPVC/Ag3PO4复合微粒可见光催化性能的影响。结果表明,CDPVC的复合有利于Ag3PO4微粒的分散,可以显著提高复合微粒的可见光吸收及光生电子-空穴的分离效率,当PVC占Ag3PO4的质量分数为0.03%、热处理温度为130 ℃、热处理时间为2 h时,复合微粒表现出良好的可见光催化活性和稳定性。
关键词:催化剂工程;Ag3PO4;聚氯乙烯共轭衍生物;溶液浸渍法;可见光催化;有机污染物降解
近些年逐渐发展起来的光催化氧化技术具有许多独特的优点,被认为是最具有发展潜力和应用前景的环境净化技术[1]。光催化氧化技术的基础和关键是纳米半导体光催化材料,国内外学者对氧化物[2-5]、硫化物[6-7]、氮氧化物[8-9]等多种类型的纳米半导体材料进行了深入而广泛的研究,但结果仍不尽如人意。因此,研究开发新型、高活性、可见光响应的光催化剂是光催化氧化技术中亟待解决的重要问题。
有学者发现磷酸银(Ag3PO4)的可见光催化活性明显高于典型的可见光催化剂TiO2-xNx和BiVO4,是一种高效的可见光催化剂[10]。但是磷酸银在水中微量溶解,且其光生电子极易将磷酸银中的Ag+还原成原子Ag0,造成磷酸银的组成与结构不稳定,影响其光催化性能。纳米银粒子[11-12],碳量子点[13],AgX[14],TiO2[15-16],ZnO[17-18],SnO2[19],Ag2S[20]及石墨烯[21-22]等被用来与Ag3PO4进行表面复合,利用不同组分之间的电子传导提高光生电子-空穴的分离效率,通过表面组分的附着作用减小磷酸银在水中的溶解度,使磷酸银的可见光催化活性和催化稳定性得到明显改善。研究发现,共轭聚合物不仅具有良好的成膜性,而且具有良好的电子输运性和一定的光敏性,已经成功应用于TiO2和ZnO等材料的改性,制备出性能良好的可见光催化剂[23-26]。本文采用溶液浸渍法在Ag3PO4微粒表面包覆一层聚氯乙烯(PVC),再经热处理使PVC脱除HCl,得到PVC共轭衍生物(CDPVC)修饰的CDPVC/Ag3PO4复合光催化剂,系统地考察了该复合光催化剂的组成、结构和可见光催化活性,并探讨其可见光催化活性的主要影响因素。
1实验部分
1.1实验原料
PVC(R1069),分析纯,天津勃天化工有限公司提供;磷酸氢二钠,分析纯,国药集团化学试剂有限公司提供;硝酸银,分析纯,天津东聚隆化工技术开发有限公司提供;四氢呋喃(THF),分析纯,天津市永大化学试剂有限公司提供;甲基橙,分析纯,天津市科密欧化学试剂开发中心提供;实验所用水均为去离子水。
1.2CDPVC/Ag3PO4复合微粒的制备
首先采用单注法制备纯Ag3PO4。将5.13 g的Na2HPO4溶于250 g水中,配成Na2HPO4溶液,在搅拌下将7.30 g AgNO3溶于120 g水中得到的稀AgNO3溶液滴入Na2HPO4溶液中,控制滴加时间为200 min,滴加完毕后避光持续搅拌4 h,然后抽滤、水洗,在50~60 ℃下烘干后得到亮黄色的Ag3PO4微粒。将1.5 g的Ag3PO4微粒加入到10 mL的PVC/THF溶液中,先密封超声分散0.5~1 h,再敞口搅拌至THF挥发完毕,然后经热处理得到CDPVC/Ag3PO4复合微粒。通过改变PVC在THF溶液中的浓度,得到PVC与Ag3PO4不同质量分数的CDPVC/Ag3PO4复合微粒,记为CDPVC/Ag3PO4-x%。
1.3样品表征
采用D/max-2500型X射线衍射仪(XRD,Rigaku Co.,Japan)分析样品晶型结构,样品形貌采用Hitachi S-4800-I扫描电子显微镜观察,用配有积分球的紫外-可见分光光度计(SHIMADZU-2550)测定样品的紫外-可见漫反射光谱,在荧光光谱仪(F-4600 FL Spectrophotometer,Hitachi,Japan)上测定样品的光致发光光谱,用配有单色光的Al-Ka的PHI 5000C ESCA型扫描能谱微探针仪器测定样品的X射线光电子光谱(XPS)。
1.4样品可见光催化活性测定
在可见光照射下,通过对甲基橙的降解实验测定CDPVC/Ag3PO4复合微粒的光催化活性。采用300 W碘钨灯(加盖滤光片滤除400 nm以下光)作为可见光源,将0.100 g的光催化剂样品加入到100 mL质量浓度为10 mg/L的甲基橙溶液中。先在黑暗中搅拌悬浮液30 min,使复合微粒对甲基橙达到吸附平衡;然后开启光源进行光降解反应,每隔20 min取7 mL悬浮液放入离心管中,离心分离移除光催化剂颗粒后,取上清液,用分光光度计在甲基橙最大吸收波长464 nm处测定吸光度,由甲基橙标准工作曲线即可得到不同降解时间的甲基橙质量浓度。
2结果与讨论
2.1CDPVC/Ag3PO4复合微粒的X射线衍射图谱表征分析
图1 纯Ag3PO4与CDPVC/Ag3PO4的XRD图谱Fig.1 XRD patterns of Ag3PO4 and CDPVC/Ag3PO4
Ag3PO4和CDPVC/Ag3PO4复合微粒的X射线衍射图谱如图1所示。由图1可以看出,在衍射角为20.90°,29.78°,33.38°,36.60°,47.83°,52.72°,55.05°及57.32°处出现了衍射峰,与Ag3PO4(PDF#01-084-0192)的特征衍射峰一致,对应于Ag3PO4的(110)、(200)、(210)、(211)、(310)、(222)、(320)、(321)晶面的衍射峰,表明所制备的Ag3PO4为体心立方结构。由图1还可以看出,CDPVC/Ag3PO4复合微粒的X射线衍射图谱与纯Ag3PO4的图谱基本相同,没有出现新的衍射峰,表明CDPVC的复合过程未改变Ag3PO4晶型结构。
2.2CDPVC/Ag3PO4复合微粒的扫描电镜表征
图2为Ag3PO4和CDPVC/Ag3PO4复合微粒的扫描电镜图片。从图2 a)、图2 c)可以看出:CDPVC/Ag3PO4复合微粒与Ag3PO4微粒的形貌和尺寸非常相似,均基本呈球形,粒径分布较均匀,平均粒径约为300 nm;由图2 b)可以看出Ag3PO4微粒间有一定聚集黏连,这是由于其表面能高造成的;图2 d)中CDPVC的复合则明显减轻了Ag3PO4微粒间的聚集。
图2 Ag3PO4及CDPVC/Ag3PO4的扫描电镜图片Fig.2 SEM images of Ag3PO4 and CDPVC/Ag3PO4
2.3CDPVC/Ag3PO4复合微粒的X射线光电子能谱分析
图3 CDPVC/Ag3PO4复合微粒及C 1s,Ag 3d,P 2p XPS图谱Fig.3 XPS spectra of CDPVC/Ag3PO4, C 1s, Ag 3d and P 2p
2.4CDPVC/Ag3PO4复合微粒的紫外可见漫反射吸收光谱分析
图4为Ag3PO4及不同条件制备的CDPVC/Ag3PO4复合微粒的紫外可见漫反射吸收谱图(DRS)。由图4 a)可以看出,Ag3PO4对500 nm以下的可见光具有良好的吸收,而CDPVC的复合可使复合微粒在可见光区的吸收进一步显著提高。随着CDPVC含量的增加,复合微粒在可见光区的吸收逐渐增加,表明CDPVC有利于提高复合材料对可见光的吸收;随着热处理温度的提高及时间的延长,CDPVC/Ag3PO4在可见光区的吸收逐渐增强(见图4 b)和图4 c))。其原因可能是PVC经低温热处理后脱去HCl形成共轭分子链,使得复合微粒对可见光的吸收增强。在PVC含量过少、热处理温度较低或时间较短时,CDPVC共轭结构不够完善;随着PVC含量增加、热处理温度升高或时间的延长,生成的共轭双键增多,共轭程度增加,因此光吸收增强。但热处理温度过高或时间过长时,也会造成共轭结构的氧化、断裂、分解等破坏,对可见光的吸收减弱。
图4 不同PVC含量、不同热处理温度及热处理时间下制备的 CDPVC/Ag3PO4的紫外-可见漫反射吸收谱图Fig.4 UV-vis diffuse reflectance spectra of CDPVC/Ag3PO4 composites with different contents of PVC and heated under different temperatures for different time
2.5CDPVC/Ag3PO4复合微粒荧光光谱分析
图5 Ag3PO4与不同比例的CDPVC/Ag3PO4 样品的荧光光谱图Fig.5 PL spectra of Ag3PO4 and CDPVC/Ag3PO4 with different contents of PVC
不同比例的CDPVC/Ag3PO4复合微粒的荧光光谱图见图5。由图5可以看出,纯Ag3PO4荧光强度很大,说明纯Ag3PO4对光的吸收效率很高,但光生电子-空穴复合几率也很大。而不同比例的CDPVC/Ag3PO4复合微粒的荧光强度比纯Ag3PO4要低,并且随着PVC含量的增大,CDPVC/Ag3PO4纳米复合微粒的荧光发射强度逐渐降低。这可能是因为随着PVC含量的增大,热处理后CDPVC共轭双键增多,对光生电子的转移能力增大,使得CDPVC/Ag3PO4复合微粒产生的光生电子-空穴的复合几率显著减小,因此荧光强度降低。
2.6CDPVC/Ag3PO4复合微粒的可见光催化活性
图6 CDPVC/Ag3PO4复合微粒对甲基橙的吸附率及不同CDPVC含量、不同热处理温度、时间制备的CDPVC/Ag3PO4复合微粒光催化下甲基橙浓度c/c0随光降解时间变化图Fig.6 Adsorption rate of CDPVC/Ag3PO4 composites for MO and the relationship between c/c0of MO and photodegradation time in the presence of neat Ag3PO4 and CDPVC/Ag3PO4 composites with different contents of PVC and heated under different temperatures for different time under visible light irradiation
图6为Ag3PO4及不同条件下制备的CDPVC/Ag3PO4复合微粒对甲基橙的吸附及在可见光照射下对甲基橙的光催化降解结果。由图6 a)可以看出,CDPVC的复合使得复合微粒对甲基橙的吸附较纯Ag3PO4提高,这更有利于复合微粒对甲基橙的光催化降解[27]。由图6可知,CDPVC/Ag3PO4复合微粒对甲基橙的降解率均明显高于纯Ag3PO4,表明CDPVC的共轭结构可以有效提高Ag3PO4的可见光催化活性。由图6还可以看出,随着复合微粒中CDPVC含量的增加、热处理温度的提高及时间的延长,复合微粒的光催化活性呈现先增大而后又降低的趋势,当PVC含量为0.03%(质量分数)、130 ℃下热处理 2 h时,CDPVC/Ag3PO4复合微粒的光催化效果最好。这是因为随着复合微粒中CDPVC含量的增加,CDPVC共轭双键增多,而热处理温度的提高及时间的延长,又有利于CDPVC共轭程度的提高,因而复合微粒的光催化活性提高。但CDPVC含量过多时,Ag3PO4表面附着的CDPVC过厚,反而会影响光生电子-空穴在CDPVC与Ag3PO4之间的迁移;热处理温度过高及时间过长时,会引起共轭结构的氧化、断裂、分解等,造成复合微粒的光催化活性降低。
2.7CDPVC/Ag3PO4复合微粒的光催化稳定性
将130 ℃热处理2 h的CDPVC/Ag3PO4-0.03%复合微粒在可见光下对甲基橙溶液进行光催化降解循环实验,考察其光催化稳定性,结果如图7所示。由图7 a)可以看出,随着光催化降解循环次数的增加,纯Ag3PO4的光催化活性衰减比较快,而CDPVC/Ag3PO4复合微粒的可见光催化活性衰减较小。将CDPVC/Ag3PO4-0.03%复合微粒及纯Ag3PO4循环降解4次甲基橙后的XRD图谱与磷酸银及单质银的标准卡片对比可以发现,两者在光照下催化降解甲基橙时都有微量的单质银生成,其中纯Ag3PO4样品中单质银含量为3.6%(质量分数,下同),复合微粒样品中单质银含量为2.9%,说明CDPVC的复合有利于提高Ag3PO4的光催化稳定性。这是因为CDPVC的共轭结构具有良好的电子输运性,其对光生电子的迁移提高了光生电子-空穴分离效果,从而提高光催化活性,同时使磷酸银表面光生电子密度减小,降低了电子还原银离子为单质银的几率,使得复合微粒光催化的稳定性提高。
图7 Ag3PO4和CDPVC/Ag3PO4复合微粒光催化降解甲基橙循环实验结果及循环降解4次甲基橙后的XRD图谱Fig.7 Cycling runs in photocatalytic degradation of MO in the presence of Ag3PO4 and CDPVC/Ag3PO4 composites and XRD patterns of Ag3PO4 and CDPVC/ Ag3PO4 after the 4th cycling in MO solution
2.8复合微粒光催化活性中心的确定
图8 捕捉剂对CDPVC/Ag3PO4复合微粒 可见光催化降解甲基橙的影响Fig.8 Effects of scavengers on MO photodegradation catalyzed by CDPVC/Ag3PO4 composites under visible-light irradiation
通过测试乙二胺四乙酸二钠(EDTA,空穴捕捉剂)、二甲基亚砜(DMSO,电子捕捉剂)、叔丁醇(TBA,羟基自由基捕捉剂)对甲基橙可见光催化降解反应的影响,考察了CDPVC/Ag3PO4复合微粒的光催化活性中心,结果如图8所示。由图8可以看出,加入DMSO和TBA后甲基橙的降解速率几乎不变,而加入EDTA后甲基橙的降解速率大幅度减小,说明光生空穴为CDPVC/Ag3PO4复合微粒可见光催化降解甲基橙的主要活性中心。
3结语
以磷酸氢二钠及硝酸银为主要原料,采用离子交换法制备Ag3PO4微粒,将溶液浸渍法与PVC进行复合,再经热处理得到CDPVC/Ag3PO4复合微粒。XRD及SEM结果表明,Ag3PO4为体心立方结构, CDPVC的复合过程未改变Ag3PO4晶型结构,但减轻了Ag3PO4微粒间的聚集。DRS及PL结果表明,CDPVC的复合使CDPVC/Ag3PO4复合微粒在可见光区的吸收进一步显著提高,且大幅度降低了光生电子-空穴的复合几率。光催化降解甲基橙的结果表明,CDPVC/Ag3PO4复合微粒具有良好的可见光催化活性和稳定性,其较适宜的制备条件为PVC占Ag3PO4的质量分数为0.03%、热处理温度为130 ℃、热处理时间为2 h。
参考文献/References:
[1]ELAHIFARD M R, RAHIMNEJAD S, HAQHIQHI S, et al. Apatite-coated Ag/AgBr/TiO2visible-light photocatalyst for destruction of bacterial[J]. Journal of the American Chemical Society, 2007, 129(31): 9552-9553.
[2] 徐莉,罗青枝,王德松,等. 以梳型聚合物为模板制备介孔Ag/AgBr/TiO2纳米复合材料[J]. 河北科技大学学报,2015, 36(1):23-29.
XU Li, LUO Qingzhi, WANG Desong, et al. Preparation of mesoporous Ag/AgBr/TiO2nanocomposites with comb-type polymer as templat[J]. Journal of Hebei University of Science and Technology, 2015, 36(1): 23-29.
[3] 曹根华,李二杰,王素红. 光催化降解与直接光解玫瑰红废水的机理研究[J]. 河北科技大学学报,2004, 25(4):68-71.
CAO Genhua, LI Erjie, WANG Suhong. Degradation patterns of rose red upon TiO2/UV or UV[J]. Journal of Hebei University of Science and Technology, 2004,25(4):68-71.
[4] 井立强,徐自力,孙晓君,等. ZnO和TiO2粒子的光催化活性及其失活与再生[J]. 催化学报,2003,24(3):175-180.
JING Liqiang, XU Zili, SUN Xiaojun, et al. Photocatalytic activity of ZnO and TiO2particles and their deactivation and regeneration [J]. Chinese Journal of Catalysis, 2003,24(3): 175-180.
[5] 韩忠霄,殷蓉,郭立达,等. 聚苯胺改性纳米TiO2的制备及其对含氰废水的降解研究[J]. 河北科技大学学报,2009, 30(2):171-174.
HAN Zhongxiao, YIN Rong, GUO Lida, et al. Preparation of polyaniline modified nanosized TiO2photocatalyst and degradation of CN- in wastewater[J]. Journal of Hebei University of Science and Technology, 2009, 30(2): 171-174.
[6]NEETESH K, VAMSI K K, VIRESH D. In-situ synthesis of Au-CdS plasmonic photocatalyst by continuous spray pyrolysis and its visible light photocatalysis[J]. Chemical Engineering Journal, 2014, 236: 66-74.
[7]YANG X Y, YAN Z Y, JIANG L, et al. Synthesis and photocatalysis of Al doped CdS templated by non-surfactant hypocrellins [J]. Procedia Environmental Sciences, 2013, 18: 572-578.
[8]KANADE K G, BAEG J O, KALE B B, et al. Rose-red color oxynitride Nb2Zr6O17-xNx:A visible light photocatalyst to hydrogen production [J]. International Journal of Hydrogen Energy, 2007, 32: 4678-4684.
[9]SASAKI R, MAEDA K, KAKO Y, et al. Preparation of calcium tantalum oxynitride from layered oxide precursors to improve photocatalytic activity for hydrogen evolution under visible light[J]. Applied Catalysis B: Environmental, 2012, 128: 72-76.
[10]YI Z,YE J,KIKUGAWA N,et al.An orthophosphate semiconducter with photooxidation properties under visible-light irradation[J].Nature Materials,2010, 9: 559-564.
[11] 徐秀泉,于小凤,戴杨叶,等. Ag/Ag3PO4的制备及其光催化性能[J]. 石油化工,2012, 41(10):1191-1195.
XU Xiuquan, YU Xiaofeng, DAI Yangye, et al. Preparation of Ag/Ag3PO4and its photocatalytic activity[J]. Petrochemical Technology, 2012, 41(10): 1191-1195.
[12]LIU Y P, FANG L, LU H D, et al. Highly efficient and stable Ag/Ag3PO4plasmonic photocatalyst in visible light[J]. Catal Commun, 2012, 17: 200-204.
[13]ZHANG H C,HUANG H, MING H, et al. Carbon quantum dots/Ag3PO4complex photocatalysts with enhanced photocatalytic activity and stability under visible light[J]. Journal of Materials Chemistry, 2012, 22:10501-10506.
[14]AMORNPITOKSUK P, SUWANBOON S. Photocatalytic decolorization of methylene blue dye by Ag3PO4-AgX(X=Cl-, Br-and I-) under visible light[J]. Advanced Power Technology, 2014, 25: 1026-1030.
[15]LI Y J, YU L M, LI N, et al. Heterostructures of Ag3PO4/TiO2mesoporous spheres with highly efficient visible light photocatalytic activity[J]. Journal of Colloid and Interface Science, 2015, 450: 246-253.
[16]CAI L, LONG Q Y, YIN C. Synthesis and characterization of high photocatalytic activity and stable Ag3PO4/TiO2fibers for photocatalytic degradation of black liquor[J]. Applied Surface Science, 2014, 319: 60-67.
[17]ZUO Y H, ZHU L G, YANG X, et al. ZnO nanorod arrays on cubic Ag3PO4microcrystals with enhanced photocatalytic property[J]. Materials Letters, 2015, 159: 325-328.
[18]DONG C, WU K L, LI M R, et al. Synthesis of Ag3PO4-ZnO nanorod composites with high visible-light photocatalytic activity[J]. Catal Commun, 2014, 46: 32-35.
[19]ZHANG L L, ZHANG H C, HUANG H, et al. Ag3PO4/SnO2semiconductor nanocomposites with enhanced photocatalytic activity and stability[J]. New Journal of Chemistry,2012, 36:1541-1544.
[20]TANG J T, GONG W, CAI T J, et al. Novel visible light responsive Ag/(Ag2S/Ag3PO4) photocatalysts: Synergistic effect between Ag and Ag2S for their enhanced photocatalytic activity[J]. RSC Advances, 2013, 3(8): 2543-2547.
[21]LIANG Q H, YAO S, MA W J, et al. Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4nanosoheres with grapheme oxide sheets[J]. Physical Chemistry Chemical Physics, 2012, 14: 15657-15665.
[22]WANG C, CAO M H, WANG P F, et al. Preparation of a magnetic graphene oxide-Ag3PO4composite photocatalyst with enhanced photocatalytic activity under visible light irradiation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45: 1080-1086.
[23]LUO Q, WANG X, WANG D, et al.TiO2/cyclized polyacrylonitrile hybridized nanocomposite: An efficient visible-light photocatalyst prepared by a facile “in situ” approach [J]. Materials Science and Engineering: B, 2015, 199: 96-104.
[24]LI X C, JIANG G G, HE G H, et al. Preparation of porous PPy-TiO2composites: Improved visible light photoactivity and the mechanism[J]. Chemical Engineering Journal, 2014, 236: 480-489.
[25]ESKIZEYBEK V, SAR F, GULCE H, et al. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations[J]. Applied Catalysis B: Environmental, 2012, 199/200:197-206.
[26]AHMED F, KUMAR S, ARSHI N, et al. Preparation and characterizations of polyaniline(PANI)/ZnO nanocomposites film using solution casting method [J]. Thin Solid Films, 2011, 519: 8375-8378.
[27]XU T, CAI Y, O′SHEA K E. Adsorption and photocatalyzed oxidation of methylated arsenic species in TiO2suspensions[J]. Environmental Science and Technology, 2007, 41: 5471-5477.
Study on preparation and performances of CDPVC/Ag3PO4composite photocatalyst
WANG Peng, ZHANG Shasha, ZHANG Shaolei, WANG Desong, LUO Qingzhi
(School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China)
Abstract:PVC/Ag3PO4 composites are prepared by solution-dipping method, and the as-prepared composites are heat-treated to release HCl from PVC molecules to obtain conjugated derivative of PVC/Ag3PO4(CDPVC/Ag3PO4) composites. The CDPVC/Ag3PO4 composites are characterized by XRD, SEM, UV-vis DRS, PL and XPS. The effects of preparation conditions on the visible-light photocatalytic performances of CDPVC/Ag3PO4 composites are investigated by evaluating the decomposition of methyl orange under visible light irradiation. The results reveal that the modification of CDPVC is beneficial to the dispersion of Ag3PO4 particles, and it can obviously improve the absorbance of the CDPVC/Ag3PO4 composites in the range of visible light and the charge separation efficiency. The CDPVC/Ag3PO4 composites exhibit excellent visible-light photocatalytic acitivity and stability when the mass percentage of PVC to Ag3PO4, heat-treatment temperature and time are 0.03%, 130 ℃, and 2 h, respectively.
Keywords:catalyst engineering; Ag3PO4; conjugated derivative of PVC; solution-dipping method; visible-light photocatalysis; degradation of organic pollutants
中图分类号:O649.4
文献标志码:A
通讯作者:罗青枝教授。E-mail:luoqingzhi@hebust.edu.cn
作者简介:王鹏(1990—),男,河北灵寿人,硕士研究生,主要从事可见光催化材料方面的研究。
基金项目:国家自然科学基金(21271061);河北省自然科学基金(B2014208103)
收稿日期:2015-07-24;修回日期:2015-09-05;责任编辑:张士莹
doi:10.7535/hbkd.2016yx02010
文章编号:1008-1542(2016)02-0173-07
王鹏,张沙沙,张韶蕾,等.CDPVC/Ag3PO4复合光催化剂的制备及性能研究[J].河北科技大学学报,2016,37(2):173-179.
WANG Peng,ZHANG Shasha,ZHANG Shaolei,et al.Study on preparation and performances of CDPVC/Ag3PO4composite photocatalyst[J].Journal of Hebei University of Science and Technology,2016,37(2):173-179.