小学数学体验式教学的四个策略

2016-05-03 04:22张勇
博览群书·教育 2016年1期
关键词:体验教学小学数学

张勇

摘 要:《数学课程标准》提出:”数学学习活动必须建立在学生已有的认知水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动的经验。”新课程标准的出现使我们的数学教育回归人文教育,凸现以人为本的教育理念,关注学生的体验性学习,体验使学习进入生命领域。

关键词:小学数学;体验教学;方式

课堂教学过程实际上是学生经过皮亚杰所说的同化、顺应、平衡等方式,实现由知道到内化,再到体道的转变。小学数学体验性学习就是要试图对现行的以知识本位、教师中心和传授、灌输为主要特征的课堂教学模式进行彻底改革,是教学过程真正建立在学生自主活动、主动探索的基础上,通过学生全面、多样的主题实践活动,促进创新精神、实践能力和多方面素质的整体发展,努力丰富学生对数学的感受和体验,强调注重学生对学习过程的过程参与和全身心的体验,充分激发学生的学习积极性,实现学生的意义、个性化、创造性的学习,真正实现学生学习方式的根本转变,促进学生全面、和谐、可持续的发展。

一、合作交流体验法

课堂上师生互动、生生互动的合作交流,能够构建平等自由的对话平台,使学生处于积极、活跃、自由的状态,能出现始料未及的体验和思维火花的碰撞,使不同的学生得到不同的发展。

例如,学习“分数化成小数”,首先让学生把分数一个个地去除,得出1/4、9/25、17/40能化成有限小数的分数。若像教材上一样再将各分数的分母分解质因数,看分母里是不是只含有质因数2或5,最后得出判断分数化成有限小数的方法,这样哪能培养学生的创造思维呢?学生的表情是木然的,像机器一样跟着教师转,如此没有兴趣的学习,效果又能如何呢?可以先让学生猜想:这些分数能化成有限小数,是什么原因?可能与什么有关?学生好像无从下手,几分钟后有学生回答“可能与分子有关,因为1/4、1/5都能化成有限小数”;马上有学生反驳:“1/3、1/7的分子同样是1,为什么不能化成有限小数?”另有学生说:“如果用4或5作分母,分子无论是什么数,都能化成有限小数,所以我猜想可能与分母有关。”“我认为应该看分母。从分数的意义想,3/4是把单位‘1平均分成4份,有这样的3份,能化成有限小数;而3/7表示把单位‘1平均分成7份,也有这样的3份,却不能化成有限小数。”老师再问:“这些能化成有限小数的分数的分母又有何特征呢?”学生们思考并展开讨论,几分钟后开始汇报:“只要分母是2或5的倍数的分数,都能化成有限小数。”“我不同意。如7/30的分母也是2和5的倍数,但它不能化成有限小数。”“因为分母30还含有约数3,所以我猜想一个分数的分母有约数3就不能化成有限小数。”“我猜想如果分母只含有约数2或5,它进能化成有限小数。”……可见,让学生在合作交流中充分地表达、争辩,在体验中“说数学”能更好地锻炼创新思维能力。

二、联系生活体验法

《数学课程标准》指出:“数学教学要体现生活性。人人学有价值的数学。”教师要创设条件,重视从学生的生活经验和已有知识出发,学习和理解数学;要善于引导学生把课堂中所学的数学知识和方法应用于生活实际,既可加深对知识的理解,又能让学生切实体验到生活中处处有数学,体验到数学的价值。

例如,学习简便运算125-98,可让学生采用“购物付款的经验”来理解:爸爸有一张百元大钞和25元零钱,买一件98元的上衣,他怎样付钱?营业员怎样找钱?最后爸爸还有多少钱?学生都能回答:爸爸拿出100元给营业员,营业员找给他2元,爸爸最后的钱是25+2=27元。引导学生真正理解“多減了要加上”的规律。以此类推理解121-103、279+98、279+102等习题。

又如:碧水公园的门票每张10元,50张以上可以购买团体票每张8元,我们班一共有45人,该如何购票?学生们通过思考、计算,得出了多种解法:45×10=450(元),50×8=400(元),50×8-5×8=360(元),50×8-5×10=350(元),在比较中选择最佳方案。

三、实践操作体验法

教与学都要以“做”为中心。陶行知先生早就提出“教学做合一”的观点,在美国也流行“木匠教学法”,让学生找找、量量、拼拼……因为“你做了你才能学会”。“做”就是让学生动手操作,在操作中体验数学。通过实践活动,可以使学生获得大量的感性知识,同时有助于提高学生的学习兴趣,激发求知欲。

例如,在学习“时分秒的认识”之前,让学生先自制一个钟面模型供上课用,远比带上现成的钟好,因为学生在制作钟面的过程中,通过自己思考或询问家长,已经认真地自学了一次,课堂效果能不好吗?又如:一张长30厘米,宽20厘米的长方形纸,在它的四个角上各剪去一个边长5厘米的小正方形后,围成的长方体的体积、表面积各是多少?学生直接解答有困难,若让学生亲自动手做一做,在实践操作的过程中体验长方形纸是怎样围成长方体纸盒的,相信大部分学生都能轻松解决问题,而且掌握牢固。

四、再度创造体验法

荷兰数学家弗赖登塔尔说过:“学习数学的唯一正确方法是实行再创造,也就是由学生把本人要学习的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造工作,而不是把现成的知识灌输给学生。”实践证明,学习者不实行“再创造”,他对学习的内容就难以真正理解,更谈不上灵活运用了。

例如,学完了“圆的面积”,出示:一个圆,从圆心沿半径切割后,拼成了近似长方形,已知长方形的周长比圆的周长大6厘米,求圆的面积(图略)。乍一看,似乎无从下手,但学生经过自主探究,便能想到:长方形的周长不就比圆周长多出两条宽,也就是两条半径,一条半径的长度是3厘米,问题迎刃而解。

总之,体验学习需要引导学生主动参与学习的全过程,在体验中思考,锻炼思维,在思考中创造,培养、发展创新思维和实践能力。当然,创设一个愉悦的学习氛围相当重要,可以减少学生对数学的畏惧感和枯燥感。让学生亲身体验,课堂上思路畅通,热情高涨,充满生机和活力;让学生体验成功,会激起强烈的求知欲望。同时,教师应该深入到学生的心里去,和他们一起历经知识获取的过程,历经企盼、等待、焦虑、兴奋等心理体验,与学生共同分享获得知识的快乐,与孩子们共同“体验学习”。

猜你喜欢
体验教学小学数学
优化体验教学,创建高效英语课堂
初中英语课堂中体验教学的模式和实施策略研究
新课程背景下做好中学历史教学工作的思考