膜分离技术在色谱分析中的应用

2016-04-09 07:52梁君妮赵钰玲李春喜杨丽君烟台出入境检验检疫局山东烟台64000威海出入境检验检疫局山东威海6400
食品研究与开发 2016年1期
关键词:色谱分析应用

梁君妮,赵钰玲,李春喜,杨丽君,*(.烟台出入境检验检疫局,山东烟台64000;.威海出入境检验检疫局,山东威海6400)



膜分离技术在色谱分析中的应用

梁君妮1,赵钰玲1,李春喜2,杨丽君2,*
(1.烟台出入境检验检疫局,山东烟台264000;2.威海出入境检验检疫局,山东威海264200)

摘要:阐述了膜分离技术在色谱分析中的应用及发展,展望了膜分离技术在色谱分析方面的发展趋势和应用前景。关键词:膜分离技术;色谱分析;应用

随着农兽药大量的使用,农兽药残留对人类健康危害的严重化,人们越来越关心农兽药残留对食品安全方面的影响。目前,农兽药残留的检测方法主要是色谱分析,而在色谱分析过程中用于样品制备的时间约占整个分析过程的三分之二,而只有10 %时间来进行仪器分析[1]。因此,改善和优化色谱分析样品的前处理方法对提高检测效率具有重要意义,已经成为色谱分析发展的关键环节。

膜分离技术是一项高新技术,发展时间虽然不长,但由于其独具的优越性,目前在工业中已得到广泛的应用,例如在化工、医药、污水处理、仿生和能源等领域都得到了广泛的应用[2]。膜分离技术由于具备分离效率高、低污染、可在线连接液相色谱系统和其它检测设备等优势,已经成为前处理技术领域的研究热点[3]。

目前用于液相色谱样品前处理的膜可分为多孔膜和非多孔膜两类[4]。多孔膜的选择性依赖于孔径的尺寸和分布,大分子物质无法透过。利用多孔膜,主要进行过滤、渗析和电渗析等样品前处理,不涉及化学分离,也无法实现对目标化合物的富集。非多孔膜是液体浸润膜或聚合物薄膜,目标化合物在两相及膜间按照分配系数进行传输。利用非多孔膜,主要进行支载液体膜萃取、液相微萃取、电膜萃取、微孔膜液液萃取、连续流动膜萃取等。

1多孔膜样品分离技术

1.1过滤(filtration)

膜过滤是以功能性分离膜作为过滤介质,当膜两侧存在推动力(压力差、蒸汽分压差、浓度差、电势差等)时,样品中大小合适的目标化合物分子由给体通过膜孔转移到受体的过程。伴随合成化学工业的迅速发展,分离膜具备了更小的孔径、更窄的孔径分布、几乎不吸附目标化合物并具有更长的使用寿命等优良特性。依据膜孔径从大到小的顺序,可分为微滤(microfiltration,孔径0.05 μm~8 μm)、超滤(ultrafiltration,孔径2 nm~100 nm)、纳滤(nano-filtration,孔径1 nm~ 2 nm)和反渗透(reverse osmosis,孔径0.1 nm~1 nm)等。微滤膜是均匀的多孔薄膜,具有过滤精度高、滤速快、不参与化学反应、吸附量少且无介质脱落等特点,可以去除水中的大部分微粒、细菌以及双酚丙烷A等[5]化合物,一般作为超滤的前处理过程。超滤膜利用膜表面及膜孔对杂质的吸附、膜孔阻塞和阻滞以及膜孔的机械筛分截留作用,实现蛋白质等大分子的分级、纯化。纳滤膜本身带有电荷,通过静电相互作用,阻碍多价离子的渗透,用于分离溶液中相对分子质量为200~1 000的低分子量物质,如抗生素、氨基酸、维生素等,其分离性能介于超滤与反渗透之间。反渗透膜利用界面现象和吸附作用,将溶液中的水优先吸附,并以水流的形式通过膜的毛细管排除,具有良好的化学性质。一般用于阻截除溶剂外所有的组分,主要用于小分子产品的浓缩。一般来说,影响膜过滤的主要因素除膜自身的阻力(膜面积、厚度以及膜孔径和分布等)和传质阻力(累积在膜表面的不能透过膜的物质形成浓度极化层)外,还包括膜两侧的推动力、样品黏度等参数[4]。膜过滤与液相色谱联用的研究报道不多,Li等[6]使用高效液相色谱蒸发光散射检测器,拓宽了纳滤膜使用范围。

1.2渗析(dialysis)

渗析是最早被发现的膜分离过程,目标化合物在膜两侧浓度梯度的作用下,从给体穿过膜进入受体。该过程可使用扁平膜或中空纤维膜,后者可浸在给体中而受体在纤维膜中流动,通过扩大接触面积增大分离效率,但存在不易操作和清洗困难等缺陷。膜渗析的主要机理是筛分和吸附扩散,主要影响因素是膜自身阻力(膜面积和厚度、膜孔径尺寸和分布等)、膜两侧的浓度梯度、温度、受体的流速、目标化合物的疏水性、pH、离子浓度以及样品的黏度等[7]。膜渗析与液相色谱联用,可开展医药学以及食品中添加剂成分检测。例如,Liu等[8]分析了人血清白蛋白中山茱萸复杂成分,Alexander[9]等提出了肿瘤治疗中皂角甙的一步提取法,Kritsunankul[10]等同时测定了软饮料和其它液体食物中食品添加剂。

微渗析与液相色谱联用技术除用于食品检测外[11-12],对于活体内复杂成分的分析也得到了快速发展,将带有选择性渗透膜的微渗析装置植入活体,获得低分子量的灌流成分,直接加入高效液相色谱检测系统或收集起来进一步分析,避免了样品继续代谢带来干扰,可动态检测细胞外液成分的变化[13],如监测小鼠纹状体中黄嘌呤和次黄嘌呤[14]以及研究药物在血液、胆汁中的代谢动力学和药物代谢作用[15]。此外,在线微渗析既可以结合固相萃取,以降低尿中氯胺酮及其代谢产物在高效液相色谱检测中的基质效应[16],也可以联用超高速液相色谱质谱测定活鼠脑中川芎内酯等药物[17],显示出巨大的应用前景。

1.3电渗析(electro-dialysis)

电渗析是在渗析过程中,引入阴、阳电极施加电压,在分离膜两侧产生的电势差的推动下,带电的溶质透过分离膜发生定向迁移。电渗析膜是带有离子交换基团的网状立体高分子膜,阳离子交换膜选择性透过阳离子而截留阴离子,阴离子交换膜选择性透过阴离子而截留阳离子。电渗析过程中乳酸发酵液氨基酸迁移表明,各种不同氨基酸的迁移速率主要受自身初始浓度、电迁移率、阴离子交换膜对其选择性以及给体和受体间pH的差值等因素影响[18];此外,目标化合物的分子体积与其所带电荷也是成为电渗析的主要影响因素,电渗析可与色谱在线联用,检测人血浆中麻黄素以及环境水样中的一些酸碱化合物(蒽醌-1,8-二磺酸、百草枯、苯胺等)[19-21]。

2非多孔膜样品处理技术

2.1支载液体膜萃取(supported liquid membrane extraction,SLME)

在分析样品前处理过程中,支载液体膜萃取方便高效,是应用最广泛的膜萃取技术,一般用于萃取极性或中等极性物质。它是包含一个有机相(有机液体)和两个水相(水性给体和水性受体)的三相萃取系统:支载膜内的毛细管压力可将有机相(有机液体)固定在支载膜上,水性给体中的目标化合物,通过该疏水支撑膜被萃取到水性受体中。这与典型的化学液-液萃取与反萃取相类似,可视为两种不同的平衡过程,引入反萃取过程的目的是为了显著地增强萃取的选择性。Audunsson等[22]以样品胺的萃取为例,阐述了支载液体膜萃取的基本原理:首先通过调高给体槽中样品液的pH,使胺分子不带电从而可被含有机相的支载膜萃取;由于膜另一侧的受体槽内充满静止的酸性缓冲液,离子化的胺分子(BH+)只能从支载膜分散到受体槽中,而不能重返有机膜相,该过程不断进行,最终被水性受体富集。碱性样品液中的中性复合物也可通过支载膜,但由于动态平衡,在受体液中不能富集;而强酸性化合物和始终带有电荷的化合物完全被支载膜排除在外。也就是说,支载膜对于小分子碱性化合物具有高度选择性。研究表明,选用孔径为0.2 μm的Fluoropore FGLP作为支载膜富集效果最好;为避免有机相挥发和流失,目前多采用具备非极性、低挥发性、低黏度等特点的正十一烷、二正己基醚、三正辛基磷酸脂等有机溶剂[23-24]。以此类推,调低给体槽中样品的pH可萃取酸性复合物[25]。此外,在受体中加入离子对试剂或螯合试剂[26-27],可用来萃取始终带有电荷的化合物以及金属离子等。

支载液体膜萃取已经发展出一系列商品化、制式化的自动在线或离线操作设备。典型的膜萃取流动系统通常由几个单元组成:膜萃取、动力以及用于连接色谱分析的接口等单元。膜萃取单元主要用于完成分析样品的膜萃取。目前应用最多的膜萃取单元可分为小体积的直线型、大体积的螺旋形单元两类。二者均由支载液体膜和两块带有凹槽(给体槽和受体槽)的惰性物质构成,凹槽的体积为10 μL~1000 μL。对于100 mL或更多的适当样品,可以采用蠕动泵作为萃取动力单元。在不具备实验室条件的现场环境,甚至可以采用手动注射器作为萃取动力。对于1 mL或更少的样品,必须使用注射器泵,以弥补蠕动泵准确性不足的缺点。该技术需要更小的样品量以及更精确的时间和泵入量。为了尽可能多的将分析物(约1 mL~2 mL)用于自动化的高效液相色谱分析,还必须增加一个接口单元。该单元可采用自动化的预柱[28]或中心切割技术,前者由计算机控制气动或电动进样阀,后者利用样品环调整进入高效液相色谱的萃取物体积。此外,连接注射器泵的自动进样针也可吸取适当的缓冲液来调节样品的pH。通过典型的膜萃取流动系统,实现了样品从受体槽到高效液相色谱的样品环的完整萃取,在样品进入高效液相色谱进行分析的同时,下一个样品的萃取已在进行。这样,系统的循环时间被色谱分析时间所决定,萃取时间并没有增加整个分析时间。该技术可广泛应用于检测环境水中多种残留抗生素(氟环丙沙星、恩氟沙星、氟哌酸和达氟沙星等)[29]、污染物及其代谢产物(氯酚类化合物[30]、磺酰脲类除草剂[31]、苯氧羧酸类除草剂和酚类化合物[32]),也可以检测生物体液中的化学物质(人尿中杂环芳族胺[33])。

2.2液相微萃取(hollow fiber liquid phase Micro-extraction,HF-LPME)

Rasmussen等[34]将SLME精简微型化,提出了液相微萃取技术。Lee等[35-36]也设计了与之相似的设备。首先将一根疏水性聚丙烯中空多孔纤维管用有机溶剂侵润饱和后,浸入盛有给体的样品瓶,使给体在纤维管外、受体在纤维管内不断流动,目标化合物不断地被萃取到受体中。疏水性聚丙烯中空多孔纤维管与扁平膜相比较,具有如下优点:长度可达80 cm[37],扩大了接触面积,可将受体浓缩至更小的体积(1 μL~2 μL);大分子、杂质等无法透过纤维孔(孔径0.2 μm),可以实现50倍~100倍的样品富集[38];设备简单,可获得更高的灵敏度和更低的检测限[39]。可平行展开,适合大批量样品的处理;节省有机溶剂,尤其适合生物体液等复杂样品中的酸、碱等离子性化合物[40]。HF-LPME与液相色谱质谱联用,可用于检测食品(酒精饮料[41]、蜂蜜[42])、环境样品(水中16种不同极性和化学种类的杀虫剂[43]、淤泥中甲氧萘丙酸和双氯芬酸检测)以及生物体液样品(罗西格列酮[44])。

2.3电膜萃取(Electromembrane Extraction,EME)

电膜萃取借鉴了HF-LPME的设计理念,两者之间的化学区别是EME引入了电路:铂电极提供的电压产生了膜两侧的电势差,推动带电荷的目标化合物从给体转移到膜中的有机物溶剂,再扩散到带相反电荷的受体。这样,萃取机制在单纯被动扩散的基础上,增加了电动转移。Gjelstad等[45]以氟派啶醇为例,对两者的萃取机制、时间、回收率和选择性进行了比较。由于EME的主要推动力是电势差,为使目标化合物完全离子化,必须控制严格好给体和受体的pH[46-51]。渗透到SLM膜中的有机溶剂的性质对于EME至关重要,在膜有机溶剂中低溶解的强极性药物可以抵制电场的作用。为增加目标分析物在膜有机物溶剂中的溶解性,可加入离子对试剂,但增加了释放到受体的难度,也会影响萃取效率。有机溶剂的萃取效率严格依赖膜上施加的电势[52],因此,针对不同种类目标化合物,应对有机溶剂和电势差进行综合考虑,以获得最佳萃取效果。其它参数还包括对流速度、给体与受体间的离子平衡、温度等[53]。总体上,EME在HF-LPME基础上引入了另一种推动力,显著降低了的萃取时间,可迅速、准确地分离和富集离子化目标化合物;可直接从未处理的生物体液(血浆、全血、尿液和乳汁等)中萃取目标化合物[54-55],避免了烦琐的化学处理过程;同时,可用一个简单的9 V电池作为单一电源供应[56],使现场样品前处理成为可能。EME除了可与毛细管电泳和离子色谱联用外[57],也可方便地与高效液相色谱联用,检测复杂样品中的多种成分[58]。

2.4微孔膜液液萃取(microporous membrane liquidliquid extraction,MMLLE)

微孔膜液液萃取利用传统的液-液萃取原理,它是包含一个水相(水性给体)和一个有机相(含有机溶剂的受体)的两相流动萃取系统:有机溶剂渗入疏水性、惰性高分子膜(通常为聚四氟乙烯扁平膜或聚丙烯构成的中空纤维)的微孔中与水性给体中的目标化合物接触,进而将其富集于含有机溶剂的受体中。如果将惰性高分子膜视为两个水相间的有机相,该系统在化学理论上相当于支载液体膜萃取;反之,支载液体膜萃取也可视为含有一个有机相的微孔膜液液萃取。由此可见,惰性高分子膜的材质、厚度、孔径(一般为0.2 μm~0.4 μm)和孔的分布是微孔膜液液萃取的重要影响因素;此外,给体的pH、有机溶剂的分配系数和受体流速等也可影响萃取效率。在与正相液相色谱联用时,可将目标化合物萃取入体积较小、分配系数较大的静止有机溶剂液;或将萃取后的目标化合物低速连续转入色谱的预柱,以改善富集效果。微孔膜液-液萃取联用高效液相色谱,可以检测环境水中含量在10-9水平以下的可离子化、非极性化合物(甲基硫菌灵及其代谢物[59])。

2.5连续流动膜萃取(continuous-flow liquid membrane extraction CFLME)

Liu等[60]等利用流动液-液萃取和支载液体膜萃取化学原理,设计了连续流动液膜萃取装置。由于扩大了有机溶剂选择的使用范围,液膜可在系统中长期稳定、连续流动,可显著提高极性化合物的萃取效率,从而较好地弥补了支载液体膜萃取的弱点。具有高选择性、低成本、易与各种分析仪器联用的优点。该装置主要由恒流泵、混合圈、微量柱塞泵或注射泵、聚四氟乙烯萃取盘管和支载液体膜萃取单元等组成。样品在该装置中不断流动,完成整个萃取过程。CFLME的影响因素同SLME相似,主要是微孔膜材料、有机溶剂性质、给体与受体的pH等。Liu等通过对5种磺酰脲类除草剂及双酚A连续流动萃取的研究,认为萃取圈的内径和长度、样品流速、试剂及有机溶剂的流速对萃取也有重要的影响。CFLME可方便地与HPLC的在线联用,将富集的目标化合物接入液相色谱的预柱或液相色谱进样阀的样品环中进行分析,可用于磺酰脲类除草剂和氯酚检测。

3结束语

与其它样品前处理技术的发展趋势相同,膜分离技术的研究热点主要有两个方向:一方面是已有成熟方法的自动化、商品化、标准化,以满足简便、快捷、稳定和价格低廉的要求;另一个方面是继续推进新原理、新技术的开发与整合,以满足复杂样品处理、痕量分析等特殊要求。例如,利用微滴液相微萃取(dropletmembrane-droplet liquid-phase microextraction)和微芯片原理,已经实现了实验室条件下的生物体液样品的分离,初步评估了人尿中酸碱药物成分,显示出膜分离技术在样品制备中的巨大应用前景。

参考文献:

[1] Keith LH, Walker MM. Handbook of Air Toxics: Sampling,Analysis and Properties[M]. CRC Lewis Publisher, 1995:469-484

[2]王华,刘艳飞,等.膜分离技术的研究进展及应用展望[J].应用化工,2013,42(3):532-534

[3] Pawliszyn Janusz. New directions in sample preparation for analysis of organic compounds[J]. Trends in Analytical Chemistry, 1995, 14 (3): 113-122

[4] NC van de Merbel. Membrane-based sample preparation coupled on-line to chromatography or electrophoresis[J]. Journal of Chromatography A, 1999, 856: 55-82

[5] Dong Bing zhi, Chu Huaqiang, Wang Lin, The removal of bisphenol A by hollow fiber microfiltration membrane[J]. Desalination, 2010, 250(2):693-697

[6] Li Xianfeng, Monsuur Fred, Denoulet Bart, et al. Evaporative Light Scattering Detector: Toward a General Molecular Weight Cutoff Characterization of Nanofiltration Membranes[J]. Anal. Chem, 2009, 81 (5): 1801-1809

[7] NC Merbel, JM Teule, H Lingeman,et al. Dialysis as an on-line sample-pretreatment technique for column liquid chromatography: Influence of experimental variables upon the determination of benzodiazepines in human plasma[J]. Journal of Pharmaceutical and Biomedical Analysis, 1992, 10(2/3): 225-233

[8] Liu Xiao, Han Zhi-Ping, Wang Yu-Ling, et al. Analysis of the interactions of multicomponents in Cornusofficinalis Sieb.et Zucc.with human serum albumin using on-line dialysis coupled with HPLC[J]. Journal of Chromatography B, 2011, 879(9/10): 599-604

[9] Alexander Weng, Kristina Jenett-Siems,Peter Schmieder, et al. A convenient method for saponin isolation in tumour therapy[J]. Journal of Chromatography B, 2010, 878(7/8):713-718

[10] Kritsunankul Orawan, Jakmunee Jaroon. Simultaneous determination of some food additives in soft drinks and other liquid foods by flow injection on-line dialysis coupled to high performance liquid chromatography[J]. Talanta, 2011, 84(5): 1342-1349

[11] CHAO Yu-Ying, WEI Yu-Tzu, LEE Cheuch-Ting,et al. Membrane Sampling with Microdialysis Coupled to HPLC/UV for On-line Simultaneous Determination of Melamine and Cyanuric Acid in Nondairy Coffee Creamer[J]. Analytical Sciences , 2011, 27 (10) :1025-1030

[12] Schneider Marilyn J. Multiresidue Analysis of Fluoroquinolone Antibiotics in Chicken Tissue Using Automated Microdialysis–Liquid Chromatography[J]. Journal of Chromatographic Science, 2001, 39 (8) : 351-356

[13] Chu Yang, Wang Xiangyang, Guo Jiahua,et al. Pharmacokinetic study of unbound forsythiaside in rat blood and bile by microdialysis coupled with HPLC method[J].European Journal of Drug Metabolism and Pharmacokinetics, 2012, 37(3): 173-177

[14] Li Lin, Caiyong Song, Liyun Xie, et al. Electrochemical determination of xanthine and hypoxanthine in rat striatum with an acetylene black -dihexadecyl hydrogen phosphate composite film modified electrode by HPLC coupled with in vivo microdialysis[J].Microchimica Acta, 2010, 170(1/2): 47-52

[15] Weiss David J, LunteCraig E,LunteSusan M, In vivo microdialysis as a tool for monitoring pharmacokinetics[J]. TrAC Trends in Analytical Chemistry, 2000, 19(10): 606-616

[16] Chen Shing-Jung, Cheng Fu-Chou, Jen Jen-Fon.On-line microdialysis coupled solid-phase extraction to decrease matrix interference in the HPLC analysis of urinary ketamine and its metabolite[J]. Journal of Separation Science, 2010, 33(13): 2010-2016

[17] Guo Jianming, Shang Er-xin, Duan Jin-ao, et al. Determination of ligustilide in the brains of freely moving rats using microdialysis coupled with ultra performance liquid chromatography/mass spectrometry[J]. Fitoterapia, 2011, 82(3): 441-445

[18]王丽静,杨鹏波,吴霞,等.乳酸发酵液电渗析过程中氨基酸的迁移现象[J].过程工程学报, 2010, 10(3):451-456

[19] Debets A JJ, Kok W Th, Hupe K-P, et al. Electrodialytic sample treatment coupled on-line with high-performance liquid chromatography[J]. Chromatographia, 1990, 30(7/8): 361-366

[20] Debets AJJ, Hupe K-P, Electrodialytic sample treatment coupled on-line with column liquid chromatography for the determination of basic and acidic compounds in environmental samples[J]. Journal of Chromatography A, 1992, 600(2):163-173

[21] Matthieu G M, Gruenewegen, Nico C, et al. Automated Determination of Weakly Acidic and Basic Pollutants in Surface Water by Online Electrodialysis Sample[J]. Treatment and Column Liquid Chromatography, 1994, 11(9): 1753-1758

[22] Audunsson Gudjon. Aqueous/aqueous extraction by means of a liquid membrane for sample cleanup and preconcentration of amines in a flow system[J].Anal Chem, 1986, 58(13): 2714-2723

[23] Jan魡keJ觟nsson, Lennart Mathiasson. Liquid membrane extraction in analytical sample preparation: I Principles[J]. TrAC Trends in Analytical Chemistry, 1999, 18(5): 318-325

[24] María Ramos Payán, Miguel魣ngel Bello López, Rut FernándezTorres, et al. Electromembrane extraction (EME) and HPLC determination of non-steroidal anti-inflammatory drugs (NSAIDs) in wastewater samples[J].Talanta, 2011, 85 (1): 394-399

[25] G觟ran Nilvé, Magnus Knutsson, Jan魡keJ觟nsson. Liquid chromatographic determination of sulfonylurea herbicides in natural waters after automated sample pretreatment using supported liquid membranes[J]. Journal of Chromatography A, 1994, 688(1/2):75-82

[26] J觟nsson J魡, Mathiasson L, Membrane extraction in analytical chemistry[J]. Journal of separation science, 2001, 24(7): 495-507

[27] Knutsson M,Mathiasson L,J觟nsson J魡,et al. Supported liquid membrane work -up in combination with liquid chromatography and electrochemical detection for the determination of chlorinated phenols in natural water samples[J]. Chromatographia, 1996, 42 (3/4): 165-170

[28] Berhanu T, Liu JF, Romero R, et al. Determination of trace levels of dinitrophenolic compounds in environmental water samples using hollow fiber supported liquid membrane extraction and high performance liquid chromatography[J]. J Chromatogr A, 2006, 1103(1):1-8

[29] Anna Poliwoda, Ma覥gorzataKrzyz觶ak,Piotr P,et al. Supported liquid membrane extraction with single hollow fiber for the analysis of fluoroquinolones from environmental surface water samples[J]. Journal of Chromatography A , 2010,1217(22): 3590-3597

[30] Jin-Feng Peng, Jing-Fu Liu, Xia-Lin Hu, et al. Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography[J]. Journal of Chromatography A,2007,1139(2): 165-170

[31] Jing-bo Chao, Jing-fu Liu, Mei-juanWen, et al. Determination of sulfonylurea herbicides by continuous-flow liquid membrane extraction on-line coupled with high-performance liquid chromatography[J]. Journal of Chromatography A, 2002, 955(2): 183-189

[32] Hu Xia-lin, Huang Yuan-jian, Tao Yong, et al. Hollow fiber membrane supported thin liquid film extraction for determination of trace phenoxy acid herbicides and phenols in environmental water samples[J]. Microchimica Acta , 2010, 168(1/2) : 23-29

[33] FaizUllah Shah, ThaerBarri, Jan魡keJ觟nsson, et al. Determination of heterocyclic aromatic amines in human urine by using hollow-fibre supported liquid membrane extraction and liquid chromatographyultraviolet detection system[J]. Journal of Chromatography B, 2008, 870 (2):203-208

[34] Pedersen-Bjergaard S, Rasmussen KE. Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis[J]. Anal Chem, 1999, 71(14):2650-2656

[35] Ling yan, Chuan hong, HianKee Lee. Liquid-Phase Microextraction of Phenolic Compounds Combined with On-Line Preconcentration by Field-Amplified Sample Injection at Low pH in MicellarElectrokinetic Chromatography[J]. Analytical chemistry, 2001, 73(23): 5655-5660

[36] LS de Jager, ARJ Andrews, Preliminary studies of a fast screening method for cocaine and cocaine metabolites in urine using hollow fibre membrane solvent microextraction (HFMSME) [J]. Analyst, 2001(126):1298-1303

[37] Jing-bo Chao, Jing-fu Liu, Mei-juan Wen. Determination of sulfonylurea herbicides by continuous-flow liquid membrane extraction on-line coupled with high-performance liquid chromatography [J].Journal of Chromatography A, 2002,955(2): 183-189

[38] Rasmussen KE, Pederson-Bjergaard S, Krogh M, et al. Development of a simple in-vial liquid-phase microextractionde vice for drug analysis compatible with capillary GC, CE and HPLC[J].Chromatogr, 2000, 873(1):3

[39] Francisco Barahona, Astrid Gjelstad, Stig Pedersen-Bjergaard, Hollow fiber-liquid-phase microextraction of fungicides from orange juices[J].Journal of Chromatography A, 2010, 1217(13):1989-1994

[40] Tatjana Trti-Petrovic , Jelena Dordevic , NikolinaDujakovic , et,al. Determination of selected pesticides in environmental water by employing liquid-phase microextraction and liquid chromatographytandem mass spectrometry[J]. Anal Bioanal Chem, 2010, 397(6): 2233-2243

[41] P Plaza Bola觡os, R Romero-González, A GarridoFrenich, Application of hollow fibre liquid phase microextraction for the multiresidue determination of pesticides in alcoholic beverages by ultra -highpressure liquid chromatography coupled to tandem mass spectrometry[J]. Journal of Chromatography A, 2008,1208(1/2):16-24

[42] Gizelle Cristina Bedendo, Isabel Cristina Sales Fontes Jardim, Eduardo Carasek et al. A simple hollow fiber renewal liquid membrane extraction method for analysis of sulfonamides in honey samples with determination by liquid chromatography–tandem mass spectrometry[J]. Journal of Chromatography A, 2010, 1217(42): 6449-6454

[43] Ezoddin M, J觟nsson J魡, Kyani A. Equilibrium sampling through membrane based on a hollow fiber for determination of naproxen and diclofenac in sludge slurry using Taguchi orthogonal array experimental design[J].Desalination and Water Treatment, 2013(1): 1-9

[44] Ezoddin M, J觟nsson J魡, Kyani A, et al. Equilibrium sampling through membrane based on a hollow fiber for determination of naproxen and diclofenac in sludge slurry using Taguchi orthogonal array experimental design[J]. Desalination and Water Treatment, 2013(1): 1-9

[45] Astrid Gjelstad, TorillMarita Andersen, Knut Einar Rasmussen, et al. Microextraction across supported liquid membranes forced by pH gradientsandelectricalfields[J]. Journalof Chromatography A, 2007, 1157(1/2):38-45

[46] Jing-Fu Liu, Jing-Bo Chao, Gui-Bin Jiang. Continuous flow liquid membrane extraction: a novel automatic trace-enrichment technique based on continuous flow liquid–liquid extraction combined with supported liquid membrane[J]. Analytica Chimica Acta, 2002, 455 (1):93-101

[47] Astrid Gjelstad, Knut Einar Rasmussen, Stig Pedersen-Bjergaard, Electrokinetic migration across artificial liquid membranes:Tuning the membrane chemistry to different types of drug substances[J]. Journal of Chromatography A, 2006, 1124(1/2):29-34

[48] Astrid Gjelstad, Knut Einar Rasmussen,Stig Pedersen -Bjergaard Electromembrane extraction of basic drugs from untreated human plasma and whole blood under physiological pH conditions[J].Analytical and Bioanalytical Chemistry,2009, 393(3):921-928

[49] Inger Johanne, stegaard Kjelsen, Astrid Gjelstad, et al. Low-voltage electromembrane extraction of basic drugs from biological samples [J].Journal of Chromatography A, 2008 ,1180(1/2):1-9

[50] Torunn M. Middelthon-Bruer, Astrid Gjelstad, Knut E. Rasmussen, et al. Parameters affecting electro membrane extraction of basic drugs[J]. Journal of Separation Science,2008,31(4):753-759

[51] MarteBalchen, Astrid Gjelstad, Knut EinarRasmussen, et al. Electrokinetic migration of acidic drugs across a supported liquid membrane[J].Journal of Chromatography A,2007,1152(1/2): 220-225

[52] Sandahl M, Mathiasson L, J觟nsson J A. Determination of thiophanate-methyl and its metabolites at trace level in spiked natural water using the supported iquid membrane extraction and the microporous membrane liquid-liquid extraction techniques combined on-line with high-performance liquid chromatography[J]. Journal of Chromatography A, 2000, 893 (1) : 123-131

[53] Shahram Seidia, Yadollah Yaminia, Akbar Heydaria, et al. Determination of the baine in water samples, biological fluids, poppy capsule, and narcotic drugs, using electromembrane extraction followed by high-performance liquid chromatography analysis[J]. Analytica Chimica Acta, 2011, 701(2):181-188

[54] MarteBalchen, Léon Reubsaet, Stig Pedersen -Bjergaard, Electromembrane extraction of peptides[J]. Journal of Chromatography A, 2008, 1194(2):143-149

[55] ChanbashaBasheer, ShuHui Tan, HianKee Lee, Extraction of lead ions by electromembrane isolation[J]. Journal of Chromatography A, 2008, 1213 (1):14-18

[56] JingyiLeea, FaezehKhalilianb, HabibBagherib, et al. Optimization of some experimental parameters in the electro membrane extraction of chlorophenols from seawater[J]. Journal of Chromatography A, 2009, 1216(45):7687-7693

[57] Lars Erik EngEibaka, Astrid Gjelstada, Knut EinarRasmussena, et al. Exhaustive electromembrane extraction of some basic drugs from human plasma followed by liquid chromatography–mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2012, 57: 33-38

[58] LenkaStrieglerová, PavelKubáň, PetrBo?ek et al. Electromembrane extraction of amino acids from body fluids followed by capillary electrophoresis with capacitively coupled contactless conductivity detection[J]. Journal of Chromatography A, 2011, 1218(37):6248-6255

[59] María D. Ramos Payán, Bin Lib, et al. Nano-electromembrane extraction[J]. Analytica Chimica Acta, 2013, 785: 60-66

[60] Jing-fu Liu, Jing-bo Chao, Gui-bin Jiang, et al. Trace analysis of sulfonylurea herbicides in water by on-line continuous flow liquid membrane extraction-C18 precolumn liquid chromatography with ultraviolet absorbance detection[J]. Journal of Chromatography A, 2003, 995(1/2): 21-28

The Application of Membrane Separation Technology in Chromatographic Analysis

LIANG Jun-ni1,ZHAO Yu-ling1,LI Chun-xi2,YANG Li-jun2,*
(1. Yantai Entry-exit Inspection and Quarantine Bureau,Yantai 264000,Shandong,China;2. Weihai Entryexit Inspection and Quarantine Bureau,Weihai 264200,Shandong,China)

Abstract:The development and application of membrane separation technology in chromatographic analysis were summarized in the review,the development trend and prospects of membrane separation technology in the future was prospected.

Key words:membrane separation technology;chromatographic analysis;application

收稿日期:2014-07-21

DOI:10.3969/j.issn.1005-6521.2016.01.048

*通信作者:杨丽君,硕士,高级工程师,研究方向:食品检测。

作者简介:梁君妮(1982—),女(汉),工程师,硕士,研究方向:食品检测。

基金项目:国家科技支撑计划(2012BAK08B01);质检公益性行业科研专项(201310143);国家质检总局科技计划项目(2013IK178)

猜你喜欢
色谱分析应用
20%吡噻菌胺悬浮剂的高效液相色谱分析
多媒体技术在小学语文教学中的应用研究
分析膜技术及其在电厂水处理中的应用
GM(1,1)白化微分优化方程预测模型建模过程应用分析
煤矿井下坑道钻机人机工程学应用分析
气体分离提纯应用变压吸附技术的分析
会计与统计的比较研究
35%精广虎复配制剂高效液相色谱分析
一种实现“外标法”绝缘油色谱分析自我诊断的新方法
白茶中的有机酸高效液相色谱分析方法的建立