陈虎,王莹,吕永康
(太原理工大学煤科学与技术教育部和山西省重点实验室,山西 太原 030024)
污水微生物脱氮过程中N2O产生机理及影响因素研究进展
陈虎,王莹,吕永康
(太原理工大学煤科学与技术教育部和山西省重点实验室,山西 太原 030024)
产生于生物脱氮过程的N2O是一种强效的温室气体并会导致臭氧层破坏。本文综述了污水脱氮过程中N2O的产生机理及影响因素。羟胺氧化和AOB反硝化是硝化过程产生N2O两种主要路径,诸如溶解氧、氨氮和亚硝酸盐等因素主要通过影响微生物的活动或酶的活性而间接影响硝化过程中N2O的产生。反硝化过程是N2O的另一重要产生来源,其N2O生成量的多少与N2O酶有直接关系,而溶解氧、有机碳源和亚硝酸盐等因素会影响反硝化过程中N2O酶的活性。目前新型脱氮工艺也成为N2O的潜在来源,但其N2O产生机理还有待深入研究。尽管N2O释放与周围环境变化密切相关,但本质原因还是由于微生物的作用及酶活性受到影响所致。文章最后指出污水生物脱氮过程中N2O产量控制与减量化策略是今后研究的主要方向,并给出了几点建议。
生物脱氮;一氧化二氮;影响因素;污水处理
一氧化二氮(nitrous oxide,N2O)是一种强效且稳定的温室气体,其温室效应是CO2的298倍、CH4的4~30倍。此外,N2O可与氧原子发生反应生成NO和NO2,进而破坏臭氧层形成酸雨。大气中90%以上的N2O来源于微生物脱氮过程,其中污水处理是N2O的一个重要的潜在来源:2010年污水处理过程中释放的N2O占其排放总量的3.56%,这比20年前增加了近20%[1];DAELMAN等[2]对新西兰某城市污水处理厂中 N2O的释放量进行长达16个月的全面监控,研究发现N2O占据该厂三种温室气体排量(CO2、CH4和N2O)的主导地位,并相当于78.3%二氧化碳当量,远远高于另外两种温室气体的二氧化碳当量。由此可见,N2O的产生与排放已经不容小觑,它将环境污染问题由水环境转向大气环境,严重违背了生物脱氮的设计初衷。因此,深入了解微生物脱氮过程中N2O的产生机理和影响因素,可为今后污水处理过程中一氧化二氮控制与减排提供重要的理论参考。
1.1硝化过程N2O的产生机理
自养硝化过程中自养氨氧化细菌参与的羟胺氧化(hydroxylamine oxidation)以及AOB反硝化反应(nitrifier denitrification)是产生N2O的主要路径。前者是指氨氧化反应中间产物羟胺在HAO酶作用下的不完全氧化[3-4],N2O在这一过程中作为副产物产生:羟胺在HAO酶催化下生成NO[5],然后NO在细胞色素 c554[6-7]或者一氧化氮还原酶的同源酶NorS[4]的作用下被还原生成N2O。后者是指氨氧化反应产物亚硝酸盐在亚硝酸盐还原酶(Nir)作用下生成NO,随后NO被一氧化氮还原酶(Nor)还原生成N2O。
近年来还发现一些异养硝化细菌,它们能够利用有机碳源进行异养硝化反应[8-9]。ANDERSON等[10]研究表明异养硝化菌Alcaligenes faecalis硝化过程产生的N2O比自养菌Nitrosomonas europaea产生的多。尽管异养硝化的过程和产物与自养硝化的相同,但酶的性质不同,并且异养硝化菌还能够同时进行好氧反硝化产生N2O。
1.2硝化过程N2O产生的影响因素
生物硝化过程是一系列的酶促反应,自养氨氧化细菌体内通常缺少一氧化二氮还原酶基因(Nos)是导致其产生N2O的根本原因[11-12]。各种环境因子也主要通过影响微生物的活动或各阶段酶的活性而间接影响N2O的产生和释放。总的来说,影响硝化过程中N2O产生的主要因素有溶解氧、氨氮、亚硝氮等。
1.2.1溶解氧
溶解氧是污水处理厂关键运行参数,也是影响硝化过程N2O产生的关键影响因素。研究认为在较高溶解氧浓度下N2O主要由羟胺氧化路径产生[13],而溶解氧浓度较低时通常会因为促进 AOB反硝化反应而积累 N2O[3,14]。传统生物脱氮工艺中培养条件的瞬时转换,即由有氧条件直接转换成厌氧条件时,也会引起N2O产量的瞬时显著增加[15]。
1.2.2氨氮
硝化活性污泥有氧处理模拟氨氮废水时会产生大量的N2O,一旦硝化底物氨氮耗尽N2O排放就停滞,并且当模拟废水中氨氮被硝酸盐和亚硝酸盐替代后也没有N2O的产生[16],这说明氨氮对生物脱氮过程特别是硝化过程中 N2O的产生与积累有着重要的作用。在实际污水处理过程中,进水氨氮负荷的增加对好氧段 N2O的释放有较大影响,且 N2O的释放速率、累积释放量和转化率均随进水氨氮负荷的增加而增大[17]。但是,PIJUAN等[18]研究却发现在常规操作范围内分别改变氨氮和游离氨浓度对N2O的释放没有影响(N2O释放因子恒定在4.4%左右),可能是因为反应器中菌群适应了这些N浓度。
1.2.3 亚硝酸盐
CASTRO-BARROS等[19]研究发现硝化系统中亚硝酸盐的存在会导致N2O和NO释放的增加。PENG等[14]研究发现N2O的产生速率和释放因子随亚硝酸盐浓度的增大而增大,同时还发现亚硝酸盐浓度越高越容易刺激AOB反硝化而引起N2O积累,推测是因为高浓度亚硝酸盐会促进亚硝酸盐还原酶基因nirK和一氧化氮还原酶基因norB mRNA显著表达来刺激 AOB反硝化反应的发生[20-21],进而促进N2O的产生。相反,LAW等[22]研究却认为亚硝化系统中极高浓度的亚硝酸盐会降低 N2O的产生速率,同时还发现这种现象会随溶解氧浓度的增大而变得更加明显。高浓度亚硝酸盐下导致N2O积累显著差异的原因可能是由于不同脱氮系统内部微生物种类的不同。
1.2.4其他因素
废水生物脱氮过程中盐度是一项不容忽视的影响因素,盐度瞬时刺激会增强AOB反硝化路径产生N2O[23]。此外,无机碳源也成为影响自养氨氧化细菌释放N2O的重要因素。无机碳源不足时会降低氨的去除效率和AOB的呼吸速率而导致N2O排放增加[24]。然而无机碳源引起的碱度消耗,也会使N2O产生速率与无机碳源浓度在一定范围内呈线性正相关(R2=0.97)[25]。
2.1异养反硝化过程N2O的产生机理
传统的反硝化过程亦是反硝化细菌硝酸盐或者亚硝酸盐的厌氧呼吸过程。然而,许多异养反硝化菌能够在有氧条件下利用硝酸盐或亚硝酸盐完成反硝化反应[26-27],当然好氧反硝化亦被认为是菌株有氧呼吸的一个辅助路径[28]。反硝化需要4种不同的反硝化还原酶来依次催化完成相应反应最终生成N2,这4种酶分别是硝酸盐还原酶(Nar)、亚硝酸盐还原酶(Nir)、一氧化氮还原酶(Nor)和一氧化二氮还原酶(Nos)。无论厌氧反硝化还是有氧反硝化,N2O都会作为反硝化过程的代谢中间产物生成。
2.2反硝化过程N2O产生的影响因素
显而易见,N2O生成量的多少与一氧化二氮还原酶(Nos)及其活性有直接关系,诸如溶解氧、有机碳源和亚硝酸盐等因素会通过影响反硝化过程中Nos酶的活性而影响N2O生成量的大小[29-30]。
2.2.1溶解氧
众所周知,氧会抑制厌氧反硝化过程相关反硝化酶的合成与活性。一氧化二氮还原酶是对氧气最为敏感的反硝化酶,有微量的氧存在时就会抑制它的活性而导致N2O的积累[31]。GONG等[32]研究发现溶解氧会强烈影响反硝化过程N2O的释放,溶解氧浓度≤0.7mg/L时N2O产量随着氧浓度的增大而增大。WANG等[33]虽然证明异养反硝化是N2O释放的主要路径,但当溶解氧浓度为1.0mg/L或者更高时会通过抑制亚硝酸盐的还原反应从而使 N2O的释放量减少。
好氧反硝化菌株在适宜的溶解氧浓度下反硝化终产物为 N2而不积累 N2O,如好氧反硝化菌株Pseudomonas stutzeri PCN-1[26]在溶解氧浓度低于8.28mg/L(50% O2)时几乎没有N2O积累,但是当溶解氧浓度增大到18.39mg/L(100%纯氧)硝酸盐反硝化出现一定程度的滞后,并且N2O最大累积量为22.58mg N/L,占反硝化硝酸盐氮含量的25.90%,这一过程中大量 N2O积累的原因是高浓度的氧一方面会抑制N2O还原酶的活性[34],另一方面会引起氧呼吸速率加快而产生活性自由基,从而导致菌体DNA、RNA及蛋白质氧化损伤[35]。因此,与传统反硝化一样,好氧反硝化过程中N2O的积累与释放与溶解氧浓度密切相关,都需要控制在适宜范围内。
2.2.2碳源
有机碳源对于异养反硝化过程是至关重要的。SONG等[36]研究发现投加乙酸钠为碳源系统中N2O的产生速率(1.6±0.6μg N–N2O/min)低于投加甲醇的系统中 N2O的产生速率(3.0±0.7μg N-N2O/min),这主要是由于碳源不同导致微生物群落结构不同,使得乙酸钠系统中的菌群比甲醇系统中的菌群有着更高的N2O还原速率。HU等[37]利用厌氧/好氧生物脱氮系统分别研究葡萄糖、乙酸钠和可溶性淀粉对N2O释放的影响,研究发现乙酸钠是最适合生物营养物质去除的碳源,但同时会导致N2O大量释放,主要原因是相比其他两种碳源,乙酸钠作为碳源时反硝化微生物的种类较少。因此,不同的碳源会通过影响微生物的种类而影响反硝化过程中N2O的积累与释放。另外,有机碳源的可利用性也是反硝化过程中影响 N2O释放的重要因素,碳源的可利用性还常常反映在化学需氧量(COD)上,于是 COD/N成为影响N2O释放的重要因素之一。一般而言,低COD/N比会造成N2O的大量释放[38]。但近年来也存在许多不同的结论,如李鹏章等[39]研究认为在电子竞争环境下,N2O积累的关键因素不是COD/N,而是取决于电子在Nos酶上分布的多少。
2.2.3亚硝酸盐
亚硝酸盐是引起反硝化过程中 N2O的积累与释放的关键因素。委燕等[40]研究发现高亚硝酸盐浓度是导致反硝化过程N2O产生与积累的原因,一方面来自于游离亚硝酸(FNA)对N2O还原酶活性的抑制,另一方面来自于N2O还原酶与亚硝酸盐还原酶对电子的竞争。WANG等[41]研究发现长期生存于亚硝酸环境中的微生物群体会提高它们对亚硝酸盐的适应性,进而会减少反硝化过程中的N2O的积累与释放,这为反硝化过程中N2O减排提供了一个很好的借鉴方法。
2.2.4其他因素
污水生物氮磷去除过程中通常会出现糖原积累微生物(GAO)和聚磷微生物(PAO)大量富集生长,它们可在厌氧时采用一种特殊机制来存储有机碳源作为内源物质,如聚羟基丁酸酯(polyhydroxybutyrate,PHB)。当废水中 COD/N低时,微生物可以利用它们自身存储的碳源物质来进行反硝化,这是N2O释放的又一潜在来源[42-43]。此外,氨氮也会引起反硝化过程中 N2O释放的增加[44]。
目前普遍认为 N2O主要产生于生物硝化过程和反硝化过程。但是,随着人们对脱氮微生物认识的深入,陆续出现诸如同步硝化反硝化、短程硝化反硝化等新的污水生物脱氮工艺,它们在运行过程中也存在产生N2O的风险。
3.1同步硝化反硝化
好氧反硝化菌和异养硝化菌的发现,打破了传统脱氮的观点,它们能够同时进行硝化反硝化反应,这为同步硝化反硝化(SND)的实现提供了重要的菌种资源。SND是同一操作条件下能够在同一反应器中完成硝化和反硝化脱氮反应。当操作条件不当时会刺激同步硝化反硝化工艺中N2O的产生,如溶解氧受限时同步硝化反硝化过程会产生N2O,且远高于传统生物脱氮过程N2O的生成量[45]。
3.2短程硝化反硝化
短程硝化反硝化工艺是将硝化反应控制在亚硝酸盐阶段,直接进行反硝化反应。研究发现短程硝化反硝化过程会产生N2O[46],并且N2O主要产生于短程硝化过程中[47]。一般而言,亚硝酸盐的积累是短程硝化反硝化过程产生较多 N2O 的主要原因[48-49]。此外,短程硝化反硝化过程中,N2O的积累与释放还受到进水氨氮浓度、溶解氧、COD/N、pH等因素的影响[50-51]。
3.3厌氧氨氧化
厌氧氨氧化菌是污水处理过程中不容忽视的一类菌群,其厌氧氨氧化反应是在缺氧条件下将NO2–和NH4+同时转化为N2的过程,其中,以NO2–为电子受体、NH4+为电子供体。尽管厌氧氨氧化工艺中会产生N2O[52],但研究认为厌氧氨氧化颗粒内部的异养反硝化菌的反硝化作用可能是厌氧氨氧化反应器中N2O的真正来源[53]。也有研究认为厌氧氨氧化反应中N2O来自其中间产物NO的去毒作用[54]。有意思的是,厌氧氨氧化反应还被认为是N2O减排反应[55],因为它可以将氨氮直接转化成氮气而不积累 N2O。因此,目前对于厌氧氨氧化过程能否产生N2O存在较大争议,还需要深入研究。
在污水处理中,N2O主要产生于微生物的硝化反硝化过程,但新型脱氮工艺中N2O产生也不容小觑,还有待深入研究。微生物脱氮过程中N2O产生机理虽然与实际操作所处的周围环境有着密切的关系,但其本质原因则是系统中多种微生物的相互作用以及自身酶活性所受影响所致。
因为N2O具有超强的温室效应,所以污水生物脱氮过程中 N2O产量控制与减量化策略将成为未来研究的重点和热点。对此提出以下两点建议。
(1)生物脱氮过程中微生物种群影响并决定了N2O的产生。虽然近年来对N2O的产生机理研究较多,但是仍然存在着许多不足,毕竟自然界还有许多未知的菌种。因此需要深入研究微生物种群结构及其关键酶活性,这对于充实N2O的产生机理和控制N2O产生量是非常必要的。与此同时,研究者还需要筛选脱氮效果好、N2O产量小、对环境有较强适应能力和竞争力的优势菌,淘汰劣势菌种,实现种群优化。
(2)同步硝化反硝化、短程硝化反硝化等新工艺过程在脱氮效率上较传统工艺具有一定的优势,但其在运行过程中潜在 N2O的释放量也远远高于传统的生物脱氮过程。因此,针对污水性质选择合理的处理工艺、准确控制并优化工艺运行参数以及合理调控微生物种群结构等手段均是污水生物脱氮过程中N2O减量化的策略。
[1] EDENHOFER O,PICHS-MADRUGA R,SOKONA Y,et al. Change 2014:Mitigation of climate change. Contribution of working groupⅢ to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press,2014.
[2] DAELMAN M R J,VAN VOORTHUIZEN E M,VAN DONGEN L G J M,et al. Methane and nitrous oxide emissions from municipal wastewater treatment-results from a long-term study[J]. Water Science and Technology,2013,67(10):2350-2355.
[3] CHANDRAN K,STEIN L Y,KLOTZ M G,et al. Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implicationsforengineerednitrogen-removalsystems[J]. Biochemical Society Transactions,2011,39(6):1832-1837.
[4] STEIN L Y. Methods in Enzymology[M]. Martin G K,Editor. USA:Academic Press,2011,486:131-152.
[5] ARP D J,CHAIN P S,KLOTZ M G. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria[J]. Annual Review of Microbiology,2007,61(1):503-528.
[6] UPADHYAY A K,HOOPER A B,HENDRICH M P. NO reductase activity of the tetraheme cytochrome c554 of Nitrosomonaseuropaea[J]. Journal of the American Chemical Society,2006,128(13):4330-4337.
[7] BERGMANN D J,HOOPER A B,KLOTZ M G. Structure and sequence conservation of hao cluster genes of autotrophic ammonia-oxidizing bacteria: evidence for their evolutionary history[J]. Applied and Environmental Microbiology,2005,71(9):5371-5382.
[8] ZHAO B,AN Q,HE Y L,et al. N2O and N2production during heterotrophic nitrification by Alcaligenes faecalis strain NR[J]. Bioresource Technology,2012,116:379-385.
[9] WANG Y,CHEN H,LIU Y X,et al. Effect of temperature,salinity,heavy metals,ammonium concentration,pH and dissolved oxygen on ammonium removal by an aerobic nitrifier[J]. RSC Advances,2015,5(97):79988-79996.
[10] ANDERSON I C,POTH M,HOMSTEAD J,et al. A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis[J]. Applied and Environmental Microbiology,1993,59(11):3525-3533.
[11] LAW Y,YE L,PAN Y,et al. Nitrous oxide emissions from wastewater treatment processes[J]. Philosophical Transactions of the Royal Society B,2012,367(1593):1265-1277.
[12] KOZLOWSKI J A,KITS K D,STEIN L Y. Complete genome sequence of Nitrosomonas ureae strain Nm10,an oligotrophic group 6a nitrosomonad[J]. Genome Announcements,2016,4(2):e00094-16.
[13] PENG L,NI B-J,ERLER D,et al. The effect of dissolved oxygen on N2O production by ammonia-oxidizing bacteria in an enriched nitrifying sludge[J]. Water Research,2014,66:12-21.
[14] PENG L,NI B-J,YE L,et al. The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge[J]. Water Research,2015,73:29-36.
[15] LAW Y,NI B-J,LANT P,et al. N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate[J]. Water Research,2012,46(10):3409-3419.
[16] KIM S-W,MIYAHARA M,FUSHINOBU S,et al. Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria[J]. Bioresource Technology,2010,101(11):3958-3963.
[17] 刘国华,庞毓敏,范强,等. 进水氨氮负荷对污水生物脱氮过程中N2O释放的影响[J]. 环境污染与防治,2015,37(7):18-22.
[18] PIJUAN M,TORA J,RODR GUEZ-CABALLERO A,et al. Effect of process parameters and operational mode on nitrous oxide emissions from a nitritation reactor treating reject wastewater[J]. Water Research,2014,49:23-33.
[19] CASTRO-BARROS C M,RODR GUEZ-CABALLERO A,VOLCKE E,et al. Effect of nitrite on the N2O and NO production on the nitrification of low-strength ammonium wastewater[J]. Chemical Engineering Journal,2016,287:269-276.
[20] BEAUMONT H J,LENS S I,REIJNDERS W N,et al. Expression of nitrite reductase in Nitrosomonas europaea involves NsrR,a novel nitrite-sensitive transcription repressor[J]. Molecular microbiology,2004,54(1):148-158.
[21] YU R,CHANDRAN K. Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations[J]. BMC Microbiology,2010,10:70-80.
[22] LAW Y,LANT P,YUAN Z. The confounding effect of nitrite on N2O production by an enriched ammonia-oxidizing culture[J]. Environmental Science & Technology,2013,47(13):7186-7194.
[23] ZHAO W,WANG Y,LIN X,et al. Identification of the salinity effect on N2O production pathway during nitrification:using stepwise inhibition and15N isotope labeling methods[J]. Chemical Engineering Journal,2014,253:418-426.
[24] KHUNJAR W,JIANG D,MURTHY S,et al. Linking the nitrogen and one-carbon cycles——the impact of inorganic carbon limitation on ammonia oxidation and nitrogen oxide emission rates in ammonia oxidizing bacteria[J]. Proceedings of the Water Environment Federation,2011(13):3199-3207.
[25] PENG L,NI B-J,YE L,et al. N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge linearly depends on inorganic carbon concentration[J]. Water Research,2015,74:58-66.
[26] ZHENG M S,HE D,MA T,et al. Reducing NO and N2O emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1[J]. Bioresource Technology,2014,162:80-88.
[27] LEI Y,WANG Y,LIU H,et al. A novel heterotrophic nitrifying and aerobic denitrifying bacterium,Zobellella taiwanensis DN-7,can remove high-strength ammonium[J]. Applied Microbiology and Biotechnology,2016,100(9):4219-4229.
[28] CHEN J,STROUS M. Denitrification and aerobic respiration,hybrid electron transport chains and co-evolution[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2013,1827(2):136-144.
[29] LU H J,CHANDRAN K,STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research,2014,64:237-254.
[30] SCHREIBER F,WUNDERLIN P,UDERT K M,et al. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities:biological pathways,chemical reactions,and novel technologies[J]. Frontiers in Microbiology,2012,3:372-395.
[31] OTTE S,GROBBEN N G,ROBERTSON L A,et al. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions[J]. Applied and Environmental Microbiology,1996,62(7):2421-2426.
[32] GONG Y-K,PENG Y-Z,YANG Q,et al. Formation of nitrous oxide in a gradient of oxygenation and nitrogen loading rate during denitrification of nitrite and nitrate[J]. Journal of Hazardous Materials,2012,227-228:453-460.
[33] WANG Q,JIANG G,YE L,et al. Heterotrophic denitrification plays an important role in N2O production from nitritation reactors treating anaerobic sludge digestion liquor[J]. Water Research,2014,62:202-210.
[34] POMOWSKI A,ZUMFT W G,KRONECK P M,et al. N2O binding at a [4Cu:2S] copper-sulphur cluster in nitrous oxide reductase[J]. Nature,2011,477(7363):234-237.
[35] CABISCOL E,TAMARIT J,ROS J. Oxidative stress in bacteria and protein damage by reactive oxygen species[J]. International Microbiology,2000,3(1):3-8.
[36] SONG K,HARPER JR W F,HORI T,et al. Impact of carbon sources on nitrous oxide emission and microbial community structure in an anoxic/oxic activated sludge system[J]. Clean Technologies and Environmental Policy,2015,17(8):2375-2385.
[37] HU Z,ZHANG J,LI S,et al. Impact of carbon source on nitrous oxide emission from anoxic/oxic biological nitrogen removal process and identification of its emission sources[J]. Environmental Scienceand Pollution Research,2013,20(2):1059-1069.
[38] SUN S,CHENG X,SUN D. Emission of N2O from a full-scale sequencing batch reactor wastewater treatment plant:Characteristics and influencing factors[J]. International Biodeterioration & Biodegradation,2013,85(7):545-549.
[39] 李鹏章,王淑莹,刘越,等. 生活污水生物脱氮反硝化过程中电子竞争对N2O产生的影响[J]. 应用基础与工程科学学报,2015,23(4):645-655.
[40] 委燕,王淑莹,马斌,等. 亚硝酸盐对外碳源反硝化过程N2O还原的影响[J]. 中国环境科学,2014,34(7):1722-1727.
[41] WANG Y,ZHOU S,YE L,et al. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors[J]. Water Research,2014,67:33-45.
[42] JIA W,ZHANG J,XIE H,et al. Effect of PHB and oxygen uptake rate on nitrous oxide emission during simultaneous nitrification denitrification process[J]. Bioresource Technology,2012,113:232-238.
[43] ZHOU Y,LIM M,HARJONO S,et al. Nitrous oxide emission by denitrifying phosphorus removal culture using polyhydroxyalkanoates as carbon source[J]. Journal of Environmental Sciences,2012,24(9):1616-1623.
[44] WU G,ZHAI X,JIANG C,et al. Effect of ammonium on nitrous oxide emission during denitrification with different electron donors[J]. Journal of Environmental Sciences,2013,25(6):1131-1138.
[45] JIA W,LIANG S,ZHANG J,et al. Nitrous oxide emission in low-oxygen simultaneous nitrification and denitrification process:sources and mechanisms[J]. Bioresource Technology,2013,136:444-451.
[46] 刘越,彭轶,李鹏章,等. 短程硝化过程中NO2–对NH4+及NH2OH氧化产生N2O–的影响[J]. 化工学报,2015,66(3):1133-1141.
[47] 刘秀红,鞠然,刘立超,等. 生活污水短程生物脱氮过程中 N2O的产生与控制方法[J]. 中国环境科学,2011,31(s1):30-34.
[48] 王莎莎. 生活污水短程脱氮过程中氧化亚氮产生与控制[M]. 北京:北京工业大学,2012.
[49] DU R,PENG Y,CAO S,et al. Characteristic of nitrous oxide production in partial denitrification process with high nitrite accumulation[J]. Bioresource Technology,2016,203:341-347.
[50] 李鹏章,王淑莹,彭永臻,等. COD/N与pH值对短程硝化反硝化过程中 N2O产生的影响[J]. 中国环境科学,2014,34(8):2003-2009.
[51] 刘越,李鹏章,彭永臻. 短程硝化过程中硝化速率与N2O产生速率的关系[J]. 化工学报,2015,66(11):4652-4660.
[52] 张珏,陈辉,姬玉欣,等. 厌氧氨氧化脱氮工艺研究进展[J]. 化工进展,2014,33(6):1589-1595.
[53] OKABE S,OSHIKI M,TAKAHASHI Y,et al. N2O emission from a partial nitrification–anammox process and identification of a key biological process of N2O emission from anammox granules[J]. Water Research,2011,45(19):6461-6470.
[54] KARTAL B,MAALCKE W J,DE ALMEIDA N M,et al. Molecular mechanism of anaerobic ammonium oxidation[J]. Nature,2011,479(7371):127-130.
[55] ZHU G,WANG S,ZHOU L,et al. Ubiquitous anaerobic ammonium oxidation in inland waters of China:an overlooked nitrous oxide mitigation process[J]. Scientific Reports,2015,5(7):1256-1267.
Progress on mechanisms and influence factors of N2O production in microbial nitrogen removal process from wastewater
CHEN Hu,WANG Ying,LÜ Yongkang
(Key Laboratory of Coal Science and Technology,Ministry of Education and Shanxi Province,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China)
Nitrous oxide(N2O)emitted during biological nitrogen removal process is a potent greenhouse gas and can result in the destruction of the ozone layer. This paper summarizes the mechanisms and influencing factors of N2O production during wastewater biological nitrogen removal process. Hydroxylamine oxidation and nitrifier denitrification are two main pathways to produce N2O for nitrification,and factors such as dissolved oxygen,ammonium nitrogen and nitrite mainly affect microbial activity or enzyme activity that influences indirectly N2O emission from nitrification process. Denitrification process is another important source for the production of N2O,and the quantity of N2O emission has a direct connection with nitrous oxide reductase,whose activities can be affected by factors such as dissolved oxygen,organic carbon,and nitrite. New biological nitrogen removal technologies have become potential sources of N2O,but further research on mechanisms of N2O production is needed. Although N2O emission is closely related to the changes of surrounding environment,the main cause for N2O emission is the effect of microbial actions and enzyme activities. The future research on the wastewater biological nitrogen removal process should focus on the control and reduction strategy of N2O,and shows some suggestions.
biological nitrogen removal;nitrous oxide;influence factors;wastewater treatment
X 703.1
A
1000–6613(2016)12–4020–06
10.16085/j.issn.1000-6613.2016.12.040
2016-05-16;修改稿日期:2016-08-25。
国家重点研发计划(2016YFB0600502)及山西省国际合作计划(201603D421040)项目。
陈虎(1987-),男,博士研究生,主要研究方向是大气污染物及污水治理。联系人:吕永康,教授,长期从事煤化工、环境工程与技术领域的科学研究工作。E-mail yongkanglv@163.com。