王鹏,奚敏,余永胜,臧国庆,汤正好
上海交通大学附属第六人民医院感染病科,上海 200233
·综述·
鲍曼不动杆菌中外排泵介导耐药机制的研究进展
王鹏,奚敏,余永胜,臧国庆,汤正好
上海交通大学附属第六人民医院感染病科,上海 200233
外排泵的过表达是目前导致鲍曼不动杆菌多重耐药的最重要机制之一,详细了解这一复杂机制有助于尽快找到有效的防治策略。目前,鲍曼不动杆菌中已被报道的外排泵家族包括耐药结节细胞分化(resistance-nodulation-cell division,RND)家族、主要协同转运蛋白超家族(major facilitator superfamily,MFS)、多药及毒性化合物外排(multidrug and toxic compound extrusion,MATE)家族、小多重耐药(small multidrug resistance,SMR)家族。它们之中既有通过染色体介导的外排泵,也有通过质粒等遗传元件介导的外排泵。外排底物可呈现多样性,也可呈现专一性。本文就上述外排泵的种类、功能和调控机制进行综述。
外排泵;过表达;鲍曼不动杆菌;多重耐药
随着抗生素使用频率和强度不断增加,医院内多重耐药和泛耐药鲍曼不动杆菌的发现率在全球范围内呈逐年上升趋势[1-2]。即使在抗生素严格限制使用的欧洲和美国,也无法避免细菌耐药性不断上升的困扰。2013年美国疾病预防控制中心(Centers for Disease Control and Prevention,CDC)已将包括鲍曼不动杆菌在内的18种致病菌对健康的威胁等级设定为“急迫”或“严重”[3]。鲍曼不动杆菌耐药机制复杂,其中外排泵介导的耐药是近年来研究最多也是导致多重耐药的最重要原因之一[4-5]。本文对鲍曼不动杆菌中与耐药相关的外排泵种类、功能及其调控机制进行综述。
目前公认的外排泵分类是基于蛋白质组成,使用系统发育群建立。可在线检索相关泵蛋白(http://www.tcdb.org)和基因序列 (http://www.membranetransport.org)信息[6-7]。其中,对细菌多重耐药起重要作用的外排泵家族主要有5类,分别是耐药结节细胞分化(resistance-nodulation-cell division,RND) 家族、主要协同转运蛋白超家族(major facilitator superfamily,MFS)、多药及毒性化合物外排(multidrug and toxic compound extrusion,MATE)家族、小多重耐药(small multidrug resistance,SMR)家族和ATP-结合盒(ATP-binding cassette,ABC)转运蛋白家族。除ABC泵的活动依靠ATP供能外,其余泵活动的能量均来源于质子动力势。如果外排泵的亚细胞结构由三联复合物构成(如RND家族在鲍曼不动杆菌中的AdeABC),包括内膜蛋白、膜融合蛋白和外膜蛋白,则可将抗生素直接排出细菌外膜,引起细菌耐药表型的显著变化;如果亚细胞结构仅仅是单个位于内膜的泵(如MFS在鲍曼不动杆菌中的TetB),则只能将抗生素排出内膜,遇到亲脂性抗生素仍可通过扩散方式再次进入内膜,细菌耐药表型不一定出现明显变化[5]。除ABC家族外,其余家族外排泵均在鲍曼不动杆菌中被报道过。鲍曼不动杆菌的外排泵可由染色体介导,也可由一些获得性遗传元件介导。目前,已知染色体编码的外排系统包括7个RND家族泵,30个MFS泵和多个MATE、SMR或ABC家族泵。获得性遗传元件如质粒、转座子或整合子等也可编码外排泵,在不同菌株或菌种之间水平传播,包括部分MFS、MATE家族和SMR家族外排泵[5,8]。
RND家族外排泵主要由染色体编码,三联复合物构成,可外排多种不同类型的抗生素,包括新型甘氨酰环素类的替加环素。除在鲍曼不动杆菌等革兰阴性菌中表达外,其在革兰阳性菌如金黄色葡萄球菌中也有表达。鲍曼不动杆菌中最常见的RND家族外排泵包括AdeABC、AdeIJK和AdeFGH共3种[8]。
2.1AdeABC
AdeABC是鲍曼不动杆菌中第1个被证实的RND家族外排泵。其操纵子可编码膜融合蛋白AdeA、多药转运蛋白AdeB和外膜蛋白AdeC(或AdeK) 三联复合物,由位于其上游的adeRS操纵子调控双组分系统AdeR-AdeS的表达[9]。该系统过表达可外排氨基糖苷类、β内酰胺类、氟喹诺酮类、大环内酯类、氯霉素、四环素类、替加环素和甲氧苄氨嘧啶而导致耐药[10]。许多证据表明,adeRS突变导致AdeABC泵过表达,如AdeR的116位脯氨酸突变为亮氨酸、AdeS的153位苏氨酸突变为蛋氨酸、AdeS中ISAba1转座子插入并携带强启动子[9,11-12]。也有研究在1株替加环素敏感鲍曼不动杆菌中发现同时有2个adeR和4个adeS突变位点,表明adeR和adeS突变后的结构特异性才能引起表达水平的变化[13]。AdeABC对碳青霉烯类的作用还存在争议。虽然有证据表明临床菌株中adeB过表达与碳青霉烯类的耐药水平相关,但在泵抑制剂间-氯苯腙羰基氰化物(carbonyl cyanidem-chlorophenyl hydrazone,CCCP)有效的临床菌株中发现adeB表达水平并未出现明显升高,这可能与同时合并多种耐药机制相关,如产D类碳青霉烯酶等[14]。
2.2AdeIJK
AdeIJK是临床株BM4454中被证实的第2个鲍曼不动杆菌RND家族外排泵。泵系统包括膜融合蛋白AdeI、多药转运蛋白AdeJ和外膜蛋白AdeK。其中AdeJ属于AcrB蛋白家族,与大肠埃希菌的AcrB有57%的同源性[15]。AdeIJK泵由位于adeIJK上游的tetR型调控子adeN调控。adeN失活可导致adeJ表达水平提高5倍,同时细菌对抗生素的敏感性降低[16]。该系统过表达可外排β内酰胺类、大环内酯类、氟喹诺酮类、氯霉素、利福平、夫西地酸、四环素类、新生霉素、林可霉素、甲氧苄啶而导致耐药,但对氨基糖苷类没有影响[15]。AdeIJK泵和AdeABC泵在外排某些抗生素时存在协同作用。有研究表明,AdeIJK泵或AdeABC泵失活可导致替加环素的最低抑菌浓度(minimum inhibitory concentration,MIC)分别降低3倍和8倍,而同时失活2个泵可使MIC降低85倍。以前有研究报道,过表达adeIJK可能对宿主细胞如大肠埃希菌和鲍曼不动杆菌产生细胞毒性,但最近有报道证实毒性的发生需表达水平到达一定阶段才可能出现[12,15]。
2.3AdeFGH
AdeFGH是鲍曼不动杆菌中第3个被发现的RND家族外排泵。泵系统包括膜融合蛋白AdeF、多药转运蛋白AdeG和外膜蛋白AdeH。由于不在野生株内持续表达,所以该蛋白并不参与天然耐药机制。LysR型转录调控子(LysR-type transcription regulator,LTTR)adeL位于adeFGH操作子基因上游。在adeL与adeF基因间区有一个调节adeL和adeFGH表达的重叠启动子,其中包括LTTR盒中与DNA绑定的典型结构TTA-N7-TAA[17-18]。有研究发现,在3株自发性耐药的adeFGH高表达株中,1株在adeL的C端出现氨基酸突变(119位苏氨酸突变为赖氨酸),另有1株在adeL的C端出现部分缺失(最后11个氨基酸残基缺如),提示这些区域突变会影响其多聚化及对RNA聚合酶的调控,从而导致过表达[19]。AdeFGH泵对抗菌药物的外排存在特异性。adeFGH过表达株对氟喹诺酮类、氯霉素、克林霉素和甲氧苄啶高水平耐药,对四环素类和磺胺甲唑敏感性降低,对β内酰胺类和氨基糖苷类没有影响。此外,其还可介导对临床常用杀菌剂的耐药,包括氯己定(洗必泰)、三氯生等,且与AdeABC协同外排氯霉素、氟喹诺酮类和四环素类抗生素[17,20]。
2.4其他类型的RND家族外排泵
AdeA-AdeA2-AdeB(包括1对AdeA)是最近被证实与AdeAB同类型的外排泵,过表达表现为对替加环素耐药。另外一个被猜测的RND家族外排泵——AdeT 可能与氨基糖苷类耐药相关。AbeD也是一个RND家族泵,其基因突变可降低鲍曼不动杆菌适应外界生存环境的能力,且AbeD失活可增加对头孢曲松、庆大霉素、利福平和妥布霉素的敏感性。该基因由SoxR调控[21-23]。
MFS外排泵由单个转运蛋白构成。根据结构,主要分为两类:DHA1(12个跨膜结构域)和DHA2(14个跨膜结构域)。可由染色体介导,也可由质粒等遗传元件介导[2],转运抗生素具有特异性。在鲍曼不动杆菌中,最重要的MFS是对四环素类耐药的Tet。
3.1Tet
tet是一类介导对四环素类耐药的基因,包括3种耐药机制,分别是外排泵、核糖体保护和四环素修饰。鲍曼不动杆菌中的Tet外排泵包括TetA、TetB、Tet39和TetG等[24-26]。它们可存在于转座子上,插入不同类型的质粒而水平传播。没有四环素时,阻遏蛋白阻止Tet蛋白的翻译;而出现四环素-Mg2+复合物时,可绑定阻遏蛋白,改变阻遏蛋白的构象,允许Tet蛋白的翻译。tetA在鲍曼不动杆菌中的发生率为14%~46%,仅外排四环素;而tetB的发生率约为50%,除四环素外还外排米诺环素。它们均对替加环素没有影响[27-28]。tetA和tetB由位于其上游的tetR基因调控,可在类似Tn1721的转座子上传播。还有研究表明,tetB在质粒中的传播与ISCR2密切相关[24,29-30]。tet39表达表现为对四环素耐药,但对米诺环素没有影响。从美国军队医院分离的多重耐药鲍曼不动杆菌-醋酸钙不动杆菌复合体中发现,37.1%(33/89) 菌株携带tet39基因[31]。Fournier等在多重耐药鲍曼不动杆菌AYE中发现,处于abaR1耐药岛上类似Tn1721的转座子除包含tetR和tetA外,还有tetG基因,目前尚在进一步研究[25]。
3.2CraA
CraA于2009年由Roca等报道,是在鲍曼不动杆菌中发现由orf3基因编码、仅外排氯霉素、由染色体介导的外排泵。与大肠埃希菌外排泵MdfA同源,但后者外排底物谱相对更宽。使用泵抑制剂苯丙氨酸-精氨酸-β-萘酰胺(Phe-Arg-β-naphthylamide,PAβN)使其失活后可致鲍曼不动杆菌对氯霉素的耐药性降低128倍。目前尚不清楚该泵是否持续性表达或仅在过表达后表现耐药。除氯霉素外,遇到氯化钠也会出现过表达[32]。
3.3AmvA
AmvA是一个染色体介导的具有12个跨膜结构的系统。与其他MFS泵的基因序列有超过50%的相似性。主要外排染料、消毒剂和洗涤剂。红霉素是其唯一影响的抗生素,若使用泵抑制剂CCCP使AmvA失活,可致红霉素MIC降低4倍[33]。
3.4CmlA/FlorA
CmlA/FlorA是目前为止唯一报道过的鲍曼不动杆菌中与氯霉素耐药相关的获得性外排泵。使用比较基因组学方法,Fournier等在多重耐药鲍曼不动杆菌AYE中一个86 kb的abaR1耐药岛上发现cmlA和florA基因,主要表现对酰胺醇类耐药[25]。
AbeM是由氢离子耦合产生质子动力势供能的染色体介导的MATE家族外排泵,于2004年在不动杆菌ADP1全基因组测序中首次发现。其与副溶血弧菌的NorM有75%的相似性,与大肠埃希菌的YdhE有76%的相似性,与铜绿假单胞菌的PmpM有77%的相似性。Su等将鲍曼不动杆菌的abeM基因克隆到大肠埃希菌KAM32中,过表达可使卡那霉素、红霉素、氯霉素和甲氧苄啶MIC增加2倍,使喹诺酮类和庆大霉素MIC增加4倍[34]。
SMR泵是一类位于细菌内膜的转运蛋白。AbeS是鲍曼不动杆菌中染色体编码的SMR家族外排泵,与大肠埃希菌的EmrE同源。应用泵抑制剂CCCP使其失活,可致氯霉素、氟喹诺酮类、红霉素和新生霉素MIC降低3~8倍[35]。
面对持续的抗生素压力,外排泵过表达和获得耐药基因已成为细菌多重耐药、持续存活和快速适应环境的成功策略。由于外排泵调控机制复杂,外排底物多样,可共存且有协同作用,给临床治疗和新药研发带来了极大困难。虽然现有的外排泵抑制剂由于剂量和毒性的原因无法应用于临床,但随着各种新型泵抑制剂的发现,特别是对天然植物中含有的泵抑制剂的挖掘[36-38],期待在不久的将来可制备出能用于临床的泵抑制剂,从而解决细菌外排泵所致多重耐药的难题。
[1]Mahamat A,Bertrand X,Moreau B,Hommel D,Couppie P,Simonnet C,Kallel H,Demar M,Djossou F,Nacher M.Clinical epidemiology and resistance mechanisms of carbapenem-resistant Acinetobacter baumannii,French Guiana,2008-2014 [J].Int J Antimicrob Agents,2016,48(1): 51-55.
[2]Fernández L,Hancock RE.Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance [J].Clin Microbiol Rev,2012,25(4): 661-681.
[3]Goff DA,Kaye KS.Minocycline: an old drug for a new bug: multidrug-resistant Acinetobacter baumannii [J].Clin Infect Dis,2014,59 (Suppl 6): S365-S366.
[4]Rumbo C,Gato E,López M,Ruiz de Alegría C,Fernández-Cuenca F,Martínez-Martínez L,Vila J,Pachón J,Cisneros JM,Rodríguez-Bao J,Pascual A,Bou G,Tomás M; Spanish Group of Nosocomial Infections and Mechanisms of Action and Resistance to Antimicrobials (GEIH-GEMARA); Spanish Society of Clinical Microbiology and Infectious Diseases (SEIMC); Spanish Network for Research in Infectious Diseases(REIPI).Contribution of efflux pumps,porins,and β-lactamases to multidrug resistance in clinical isolates of Acinetobacter baumannii [J].Antimicrob Agents Chemother,2013,57(11): 5247-5257.
[5]Coyne S,Courvalin P,Périchon B.Efflux-mediated antibiotic resistance in Acinetobacter spp [J].Antimicrob Agents Chemother,2011,55(3): 947-953.
[6]Saier MH Jr,Reddy VS,Tamang DG,Västermark A.The transporter classification database [J].Nucleic Acids Res,2014,42(Database issue): D251-D258.
[7]Ren Q,Kang KH,Paulsen IT.TransportDB: a relational database of cellular membrane transport systems [J].Nucleic Acids Res,2004,32(Database issue): D284-D288.
[8]Li X,Plésiat P,Nikaido H.The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria [J].Clin Microbiol Rev,2015,28(2): 337-418.
[9]Marchand I,Damier-Piolle L,Courvalin P,Lambert T.Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system [J].Antimicrob Agents Chemother,2004,48(9): 3298-3304.
[10]Magnet S,Courvalin P,Lambert T.Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454 [J].Antimicrob Agents Chemother,2001,45(12): 3375-3380.
[11]Sun JR,Perng CL,Chan MC,Morita Y,Lin JC,Su CM,Wang WY,Chang TY,Chiueh TS.A truncated AdeS kinase protein generated by ISAba1 insertion correlates with tigecycline resistance in Acinetobacter baumannii [J].PLoS One,2012,7(11): e49534.
[12]Coyne S,Guigon G,Courvalin P,Périchon B.Screening and quantification of the expression of antibiotic resistance genes in Acinetobacter baumannii with a microarray [J].Antimicrob Agents Chemother,2010,54(1): 333-340.
[13]Peleg AY,Adams J,Paterson DL.Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii [J].Antimicrob Agents Chemother,2007,51(6): 2065-2069.
[14]Héritier C,Poirel L,Fournier PE,Claverie JM,Raoult D,Nordmann P.Characterization of the naturally occurring oxacillinase of Acinetobacter baumannii [J].Antimicrob Agents Chemother,2005,49(10): 4174-4179.
[15]Damier-Piolle L,Magnet S,Brémont S,Lambert T,Courvalin P.AdeIJK,a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii [J].Antimicrob Agents Chemother,2008,52(2): 557-562.
[16]Rosenfeld N,Bouchier C,Courvalin P,Périchon B.Expression of the resistance-nodulation-cell division pump AdeIJK in Acinetobacter baumannii is regulated by AdeN,a TetR-type regulator [J].Antimicrob Agents Chemother,2012,56(5): 2504-2510.
[17]Coyne S,Rosenfeld N,Lambert T,Courvalin P,Périchon B.Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii [J].Antimicrob Agents Chemother,2010,54(10): 4389-4393.
[18]Maddocks SE,Oyston PC.Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins [J].Microbiology,2008,154(Pt 12): 3609-3623.
[19]Deghmane AE,Taha MK.The Neisseria meningitidis adhesion regulatory protein CrgA acts through oligomerization and interaction with RNA polymerase [J].Mol Microbiol,2003,47(1): 135-143.
[20]Yoon EJ,Courvalin P,Grillot-Courvalin C.RND-type efflux pumps in multidrug-resistant clinical isolates of Acinetobacter baumannii: major role for AdeABC overexpression and AdeRS mutations [J].Antimicrob Agents Chemother,2013,57(7): 2989-2995.
[21]Lin MF,Lin YY,Yeh HW,Lan CY.Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility [J/OL].BMC Microbiol,2014.http://bmcmicrobiol.biomedcentral.com/articles/10.1186/1471-2180-14-119.
[22]Srinivasan VB,Venkataramaiah M,Mondal A,Rajamohan G.Functional characterization of AbeD,an RND-type membrane transporter in antimicrobial resistance in Acinetobacter baumannii [J].PLoS One,2015,10(10): e0141314.
[23]Li XZ,Nikaido H.Efflux-mediated drug resistance in bacteria:an update [J].Drugs,2009,69(12): 1555-1623.
[24]Vilacoba E,Almuzara M,Gulone L,Traglia GM,Figueroa SA,Sly G,Fernández A,Centrón D,Ramírez MS.Emergence and spread of plasmid-borne tet(B)∷ISCR2 in minocycline-resistant Acinetobacter baumannii isolates [J].Antimicrob Agents Chemother,2013,57(1): 651-654.
[25]Fournier PE,Vallenet D,Barbe V,Audic S,Ogata H,Poirel L,Richet H,Robert C,Mangenot S,Abergel C,Nordmann P,Weissenbach J,Raoult D,Claverie JM.Comparative genomics of multidrug resistance in Acinetobacter baumannii [J].PLoS Genet,2006,2(1): e7.
[26]Agersø Y,Guardabassi L.Identification of Tet 39,a novel class of tetracycline resistance determinant in Acinetobacter spp.of environmental and clinical origin [J].J Antimicrob Chemother,2005,55(4): 566-569.
[27]Mak JK,Kim MJ,Pham J,Tapsall J,White PA.Antibiotic resistance determinants in nosocomial strains of multidrug-resistant Acinetobacter baumannii [J].J Antimicrob Chemother,2009,63(1): 47-54.
[28]Liu L,Cui YJ,Zheng B,Jiang S,Yu W,Shen P,Ji J,Li L,Qin N,Xiao Y.Analysis of tigecycline resistance development in clinical Acinetobacter baumannii isolates through a combined genomic and transcriptomic approach [J/OL].Sci Rep,2016.http://www.nature.com/articles/srep26930.
[29]Nigro SJ,Hall RM.Antibiotic resistance islands in A320 (RUH134),the reference strain for Acinetobacter baumannii global clone 2 [J].J Antimicrob Chemother,2012,67(2):335-338.
[30]Seputiene V,Povilonis J,Suziedeliene E.Novel variants of AbaR resistance islands with a common backbone in Acinetobacter baumannii isolates of European clone II [J].Antimicrob Agents Chemother,2012,56(4): 1969-1973.
[31]Akers KS,Mende K,Yun HC,Hospenthal DR,Beckius ML,Yu X,Murray CK.Tetracycline susceptibility testing and resistance genes in isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex from a US military hospital [J].Antimicrob Agents Chemother,2009,53(6): 2693-2695.
[32]Roca I,Marti S,Espinal P,Martínez P,Gibert I,Vila J.CraA,a major facilitator superfamily efflux pump associated with chloramphenicol resistance in Acinetobacter baumannii [J].Antimicrob Agents Chemother,2009,53(9): 4013-4014.
[33]Rajamohan G,Srinivasan VB,Gebreyes WA.Molecular and functional characterization of a novel efflux pump,AmvA,mediating antimicrobial and disinfectant resistance in Acinetobacter baumannii [J].J Antimicrob Chemother,2010,65(9): 1919-1925.
[34]Su XZ,Chen J,Mizushima T,Kuroda T,Tsuchiya T.AbeM,an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters [J].Antimicrob Agents Chemother,2005,49(10): 4362-4364.
[35]Srinivasan VB,Rajamohan G,Gebreyes WA.Role of AbeS,a novel efflux pump of the SMR family of transporters,in resistance to antimicrobial agents in Acinetobacter baumannii [J].Antimicrob Agents Chemother,2009,53(12): 5312-5316.
[36]Li B,Yao Q,Pan XC,Wang N,Zhang R,Li J,Ding G,Liu X,Wu C,Ran D,Zheng J,Zhou H.Artesunate enhances the antibacterial effect of β-lactam antibiotics against Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump system AcrAB-TolC [J].J Antimicrob Chemother,2011,66(4): 769-777.
[37]Rana T,Singh S,Kaur N,Pathania K,Farooq U.A review on efflux pump inhibitors of medically important bacteria from plant sources [J].Int J Pharm Sci Rev Res,2014,26(2): 101-111.
[38]Kumar R,Jandaik S.A review on efflux pump inhibitors of Gram-positive and Gram-negative bacteria from plant sources [J].Int J Curr Microbiol App Sci,2016,5(6): 837-855.
.TANG Zhenghao,E-mail:tzhhao@163.com
Research advance in efflux-mediated antibiotic resistance ofAcinetobacterbaumannii
WANG Peng,XI Min,YU Yongsheng,ZANG Guoqing,TANG Zhenghao
Department of Infectious Diseases,Shanghai Sixth People’s Hospital,Shanghai Jiao Tong University,Shanghai 200233,China
The overexpression of efflux pump is one of the most important multidrug-resistant mechanisms inAcinetobacterbaumannii(A.baumannii).The understanding of their complicated mechanisms will help to find out efficient coping strategy.So far four prominent families of efflux transporters inA.baumanniihave been reported,including resistance-nodulation-cell division (RND) superfamily,major facilitator superfamily (MFS),multidrug and toxic compound extrusion (MATE) superfamily,and small multidrug resistance (SMR) superfamily.They can be divided into chromosomally encoded efflux system and acquired efflux system.The substrates are also distinguished among different efflux transporters.In this review,the classification,function and regulation of efflux pumps inA.baumanniiare described.
Efflux pump; Overexpression;Acinetobacterbaumannii; Multidrug resistance
国家自然科学基金(81302810)
汤正好
2016-06-07)