人工神经网络预测混凝土柱屈服性能

2016-03-11 12:06唐和生李大伟苏瑜赵金海
湖南大学学报·自然科学版 2015年11期
关键词:人工神经网络预测模型

唐和生 李大伟 苏瑜 赵金海

摘 要:建立了一种基于人工神经网络的矩形混凝土柱屈服性能预测方法.该方法采用经验模型进行柱屈服性能影响因素的分析来确定该神经网络的输入参数,并通过敏感性分析验证了所选神经网络输入参数的合理性.为验证该方法的可行性与有效性,通过对PEER 210组矩形混凝土柱的屈服性能进行预测分析并与经验预测模型的预测结果进行比较.比较分析结果表明:神经网络预测结果与实验结果吻合程度远高于其他经验预测模型;同时也证实该方法在实验数据稀少的情况下为预测结构在地震作用下的性能提供一条新途径.

关键词:矩形混凝土柱;屈服位移;人工神经网络;预测模型

中图分类号:TU375.3 文献标识码:A

文章编号:1674-2974(2015)11-0017-08

随着社会经济的发展,以及对近些年大地震的不断反思,基于性能的结构抗震设计已成为地震工程领域研究的热点问题和前沿发展方向,为众多国家的规程所提及或者采用(如FEMA273[1],FEMA356[2],ASCE41[3]和Eurocode8[4]).柱子作为实际结构中承受竖向荷载和抵抗水平荷载的关键构件,其屈服位移的合理评估对于性能化结构抗震设计中结构的动力响应、结构性能水准的评估和抗震延性设计有很大影响.综合以往对柱子屈服位移的研究,其定义不明确,经验理论模型预测结果离散度较大的特点,使柱屈服位移的合理取值成为一个亟待解决的问题.

对于柱屈服位移的定义,国内外研究者提出了不同的看法,如Park在文献\[5\]中总结了4种不同的定义方法,并推荐使用割线刚度的方法定义屈服位移.Panagiakos[6]认为判定柱屈服的条件是柱中纵向钢筋屈服或者混凝土发生严重的非线性行为,并在此基础上给出了对应的经验公式.Montes[7]基于柱中钢筋屈服,提出了对应不同强度等级钢筋的柱有效屈服曲率计算公式.Berry[8]等模拟了PEER[9]柱性能数据库中255根矩形截面混凝土柱的屈服位移.钱稼茹[10]亦对该数据库中144根剪跨比大于2的矩形柱考虑轴压比的影响进行回归分析,提出了修正的柱屈服转角表达式.蒋欢军[11]综合Berry[8]关于屈服位移以及Priestley[12]对于屈服曲率的定义,在计算屈服位移的公式中加入了考虑柱端钢筋滑移和柱子剪切变形影响的修正项.Peru[13]基于Eurocode8[14]中柱屈服位移的定义,利用CAE方法对PEER柱性能数据库的柱屈服位移进行了预测.

柱屈服过程中钢筋和混凝土都发生了复杂的非线性行为,加之影响屈服性能的因素也非常多,上述基于经验理论的非线性拟合公式预测柱屈服性能时存在预测结果离散度非常大的问题.人工神经网络作为一种在数据稀少的情况下能够有效预测数据输入和输出关系的手段而进入研究者的视野.人工神经网络是以人类神经活动为基础而发展起来的一项新颖的计算手段,适合处理复杂线性及非线性映射问题.由于其强大的非线性映射能力,神经网络在工程领域被用于预测圆柱形混凝土柱约束状态的极限压应力和对应的压应变[15],模拟金属疲劳裂纹开展速率[16].神经网络的其它工程应用还有如混凝土柱在弯曲失效模式下的极限变形预测[17],边坡稳定性分析[18],修正结构有限元模型[19]等.

本文基于经验理论模型对弯曲型混凝土柱屈服性能影响因素的研究,利用神经网络预测PEER柱性能库210组矩形混凝土柱的屈服性能,并以此来探讨神经网络对柱性能预测的可行性和有效性.通过对比神经网络的预测结果与实验结果以及经验理论模型估算结果,评价神经网络预测模型的效果.最后基于Carson敏感性分析方法验证所选神经网络输入参数的合理性并得到输入各参数对混凝土柱屈服位移的贡献程度.

1 经验模型预测实验数据库柱屈服转角

1.1 实验数据库

本文对弯曲型失效为主的柱屈服转角进行预测,在PEER[9]柱性能数据库中通过以下标准:1)柱子截面形状为矩形;2)柱子受往复荷载作用直至失效;3)柱子的实验失效模式为弯曲失效.选择210组实验数据,作为神经网络预测数据库.该预测数据库的主要属性参数范围如图1所示.

从图1中可看出本文所选数据库主要参数分布覆盖了常规设计的参数取值范围,具有广泛的代表性.

从图2和表1中可以看出,利用4种经验模型估算构件的屈服转角时,预测值与实验值的比值分布相当离散,ASCE41模型计算结果变异系数相对较小为0.443,而利用ACI318-08(b)变异系数则达到0.65.针对上述预测结果离散的问题,本文采用BP神经网络预测PEER数据库柱的屈服转角.

2 神经网络预测柱屈服转角方法

2.1 BP神经网络

BP神经网络作为前向型多层神经网络的一种,其实质是利用误差反向传播算法(Back-Propagation)对神经网络进行训练.BP神经网络结构由输入层、隐含层和输出层三个部分组成,Hornik[22]已经证明单隐层的神经网络可以实现任意精度的非线性映射关系.BP神经网络训练分为信息的正向输入和误差的反向传播两个阶段.在信息正向输入阶段,输入参数通过阀值和权值的调节,再经激活函数传递对计算结果进行输出;而在误差反向传播阶段则是通过计算输出层的结果和目标值之间的误差来反向调节各神经元的权值和阀值;在实际训练中这两个阶段交替进行,直至达到训练的性能目标为止.

但由于BP学习算法其本质是梯度下降学习算法,权值的修正是沿性能函数梯度的反向进行,使普通的BP神经网络在训练时有以下不足:1)作为一种局部搜索的方法,容易陷入局部极小值而不能得到全局最优的结果;2)由于BP算法本身反向传播的特点,使其在求解矩阵时耗费大量的计算时间,致使神经网络收敛速度很慢.针对上述不足,众多学者对其进行修正,其中L-M(Levenberg-Marquardt)[23] 算法因其能够进行快速迭代,又具有全局优化的特点而在小型神经网络中得以广泛应用.L-M算法中迭代项如式(3)所示:

猜你喜欢
人工神经网络预测模型
基于人工神经网络的故障诊断专利浅析
人工神经网络发展历史与训练算法概述
基于人工神经网络的优化配置研究
基于矩阵理论下的高校教师人员流动趋势预测
基于支持向量回归的台湾旅游短期客流量预测模型研究
ANN、ANFIS和AR模型在日径流时间序列预测中的应用比较
基于神经网络的北京市房价预测研究
中国石化J分公司油气开发投资分析与预测模型研究
基于IOWHA法的物流需求组合改善与预测模型构建
人工神经网络在旅游人数预测中的应用研究