钙离子在急性胰腺炎发病机制中的作用

2016-03-10 09:57:24王唯一袁耀宗
国际消化病杂志 2016年1期
关键词:信号通路急性胰腺炎

王唯一 陈 平 袁耀宗

200025 上海交通大学医学院附属瑞金医院消化科



·综述·

钙离子在急性胰腺炎发病机制中的作用

王唯一陈平袁耀宗

200025上海交通大学医学院附属瑞金医院消化科

摘要:急性胰腺炎(AP)是一种尚无特殊治疗方法的炎性疾病,目前对其发病机制缺乏了解。在AP发病过程中,疾病诱导因素能够损害所有外分泌细胞,即腺泡细胞和腺管细胞,从而导致炎性反应。因此,寻找共同的、可作为药物治疗靶点的细胞内机制尤为重要。钙离子信号通路在生物机体的生理、病理过程中普遍存在,在以往AP发病机制的研究中,也发现钙离子信号的活化与AP的发生发展密切相关。该文就钙离子在AP发病机制中的作用,并对以钙离子信号通路为靶点治疗AP的研究进展作一综述。

关键词:钙离子;急性胰腺炎;信号通路

急性胰腺炎(AP)是一种炎性疾病,其确切发病机制尚未完全阐明,其主要病因为胆系结石和过度饮酒。AP的发病率正在迅速升高,其中部分原因归咎于饮酒量的增加。接近20%的患者发展为急性重症胰腺炎(SAP),可有胰腺坏死、多脏器衰竭,是病死率升高的原因。西方国家AP的病死率约为5%[1],若出现坏死则病死率上升至17%[2]。感染、坏死等并发症可进一步提高病死率。目前尚未有针对AP发病机制的治疗方法,因此对其发病机制的研究以寻找治疗的靶点显得尤为重要。

钙离子信号通路在生物机体生理、病理过程中普遍存在,在以往AP发病机制的研究中,雨蛙素过度刺激[3-4]、胆盐[5-6]、非氧化酒精代谢物乙酯脂肪酸(FAEES)和脂肪酸(FA)[7-8]均能诱导AP模型中全细胞钙离子(Ca2+)持续升高,引起钙离子依赖性的酶原颗粒提前活化、空泡形成和细胞死亡[3-4]。以上结果均提示钙离子信号在AP发生发展中的重要作用。

1细胞质中钙离子浓度持续升高的触发

胆囊收缩素(CCK)和乙酰胆碱(ACh)刺激腺泡细胞,通过反复从胞内钙储备释放钙离子可诱导细胞质中钙离子浓度升高形成峰值,这种腺泡细胞的激活过程是消化酶从胞内酶原储存分泌至胞外的正常方式[9]。然而,细胞外钙离子浓度的升高或超生理剂量的促泌素刺激引起持续细胞质钙离子浓度上升可导致空泡形成和酶原活化。加入细胞膜通透性钙离子缀合物或在无钙培养液中孵育可防止这种病理性变化,这一现象提示以上改变有赖于钙离子信号的活化[3-4,8,10]。

将细胞内钙稳态的研究扩展到对结石、乙醇和低血压诱导胰腺炎模型研究的新领域。当腺泡细胞暴露在病理性浓度的胆盐中时,表现出细胞质中钙离子浓度持续升高,最终发生细胞死亡[5,11]。与此相似的是一种促进胰腺损伤和胰腺炎的乙醇非氧化代谢产物脂肪酸乙酯(FAEE)[12],其可引起全细胞钙离子浓度持续升高[13]。此外,低血压诱导的胰腺炎引起的细胞外低pH可导致病理性细胞内钙离子增加、胰酶活化、腺泡细胞损伤[14]。

2细胞质中钙离子浓度持续升高的影响

2.1分泌耦联失效

在AP早期病理中,腺泡细胞分泌缺陷是一个普遍现象已成为共识[15-16]。高钙血症和过度刺激引起的形态学改变具有如下特征:腺泡细胞超微结构紊乱、分泌阻滞和胰酶提前活化。在过度刺激中,这一过程依赖于细胞外钙离子,并可被钙离子赘合剂阻断[3-4,17]。分泌阻滞的确切机制尚未阐明,融合孔扩张缺陷或肌动蛋白细胞骨架的结构破坏可能是其原因[13];毒性高浓度钙离子引起的ATP损耗是另一个可能的路径,因为腺泡细胞分泌需要ATP[18]。

2.2胰酶提前活化

除分泌阻滞之外,胰酶的提前活化是一个AP腺泡损伤增加过程中被普遍认同的关键步骤[2]。胆盐和乙醇非氧化代谢引起钙离子从内质网和顶端存储的释放,钙诱导钙离子释放机制的加强又对胰酶原活化起到关键作用。胰酶原提前活化发生在胞外分泌后大而空的可与溶酶体共区域化的胞内结构[3-4,18-19]。空泡形成先于胰酶原活化,空泡ATP酶是先决条件,但确切机制仍然不明[16,20]。

2.3ATP损耗

源于腺泡细胞刺激产生的重复生理性细胞内钙离子峰值引起线粒体内钙离子相似的重复增加,每一次增加都会活化ATP生成。细胞内钙离子浓度持续升高对线粒体功能具有不利的影响,其生产ATP的每一个步骤均被扰乱[7,21-22]。有研究显示将钙转移至细胞内储存或跨包膜的ATP依赖性清除是钙超载的代偿机制[13]。如细胞质和线粒体内钙离子浓度持续升高,线粒体内的活性氧将通过能量依赖性天冬氨酸特异性半胱氨酸蛋白酶(caspase)活化导致细胞凋亡[23],这被认为是第二道防御机制[24-25]。然而,ATP的损耗则完全破坏了钙稳态的维持,使钙超载持续存在,阻碍细胞进入凋亡路径,因而导致腺泡细胞坏死。坏死细胞分解释放毒性代谢物到邻近细胞,然后进一步引起这些细胞的胞质中钙离子浓度持续升高[24-25]。

2.4诱导核因子-κB信号通路活化

核因子-κB(NF-κB)是一种核转录因子,负责调控转录多种与免疫和炎性反应相关的基因,这些基因在AP的发生发展过程中均起到了关键作用[26]。基因敲除和细胞转染技术在小鼠和腺泡细胞上的应用均证实NF-κB活化发生在AP早期并且不依赖胰酶的活化[27-28]。而且,在诸多转基因模型中,NF-κB在腺泡细胞的活化也显示出引起重症急性胰腺炎(SAP)局部损伤和全身性炎性反应的作用[29-31]。此外,多种抑制NF-κB活性的手段也显示出与抑制程度相对应的减轻胰腺炎性反应的疗效[26,30,32-33]。这些研究都提示腺泡细胞中NF-κB通路活化在AP中的重要作用。而NF-κB的活化又与钙离子密切相关,细胞质钙离子浓度升高能诱导NF-κB通路活化[34],使用细胞内钙离子螯合剂能抑制NF-κB通路活化[35],可见钙离子对腺泡细胞内NF-κB活化具有重要作用。

3细胞内钙离子浓度持续升高的预防与治疗

根据已知细胞内毒性钙离子浓度升高引起AP的机制,现有多个可靠的预防及治疗措施。抑制钙内流和防止ATP损耗是焦点,近年的研究已提出一些有效的方法。

3.1抑制钙离子依赖性酶

利用FK506(他克莫司,一种免疫抑制剂)抑制磷酸酶(一种钙/钙调蛋白依赖性丝氨酸/苏氨酸磷酸酶)的活性可减少过度刺激引起的AP的胰腺细胞内蛋白酶活性[36]。中性蛋白酶是一种位于细胞质内的木瓜蛋白酶家族中性半胱氨酸蛋白酶,钙离子可以剂量依赖性地激活该蛋白酶。抑制钙离子激活中性蛋白酶可防止细胞骨架蛋白的分解及减轻CCK诱导的AP的严重程度[37]。类似的效果见于抑制磷脂酰肌醇3激酶(PI3K)活性,其作用可能是通过调控钙离子内流达成的[38-40]。此外,蛋白酶活化受体-2(PAR-2)活化可以逆转分泌阻滞,改善AP严重程度[41]。

3.2调控钙离子的细胞内转移和防止钙超载

咖啡因对钙储存2型、3型IP3R有轻微的抑制作用,如这些受体被抗体封闭或是在基因敲除动物中缺失,胰酶原的提前活化将大幅度被抑制[10,42]。抑制细胞内钙离子通道RYR活性可减少蛋白酶活性以减轻AP的严重程度[43-44]。吡唑(Pyrazole)选择性抑制细胞膜的钙内流通道可以达到类似的效果[45-46]。

钙离子天然拮抗剂镁离子或钙离子螯合剂的体内研究中可以观察到胰酶原活化和胰腺炎性反应程度的减轻[47-48]。也有证据表明钙离子通道阻滞剂可减轻AP的严重程度[49],钙离子通道阻滞剂二硫代氨基甲酸酯和粉防己碱对降低细胞内钙离子浓度和治疗实验性AP均有疗效[50]。在体外实验中,维拉帕米和N-单甲基-L-精氨酸单乙酸酯(L-NMMA)抑制了胰酶提前活化[51]。因此,胰腺腺泡细胞钙池调控钙离子通道选择性抑制剂的研发可能为AP的治疗提供另一个有前途的方向[52]。

在高三酰甘油血症诱导SAP的发生模型中,三酰甘油通过促进淀粉酶分泌和升高胞内环磷酸鸟苷(cGMP)水平来促进病情发展,脂肪酶具有将持续的细胞质钙离子浓度升高转变为生理水平的钙振动的功能[53-54]。此外,活化细胞内钙离子结合蛋白——钙调蛋白,也可使细胞内钙离子浓度稳定、减少酶原提前活化[55]。

3.3防止ATP损耗和坏死

在过度刺激引起的AP中,能够稳定线粒体作用的Bcl-xL和Bcl-2具有防止腺泡细胞坏死和失去线粒体膜电位的功能[56]。胰岛素能减少ATP损耗从而使腺泡细胞免于钙超载的损伤[57]。受体相互作用蛋白caspase和X染色体连锁凋亡抑制蛋白(XIAP)能够防止坏死性胰腺炎[58]。钙池调控钙离子通道,如钙释放激活钙离子通道在钙储存的再补充、ATP生产、细胞外分泌、甚至于细胞增殖过程中均起到重要作用。生理性钙释放激活钙离子通道的开放可被产能线粒体及其代谢物质诱导,而这些代谢物对凋亡的诱导有利而不是坏死[38]。

4总结

目前细胞内钙离子浓度的变化在AP早期病理中的重要作用已被越来越多的证据支持[19]。细胞内钙离子浓度持续升高被认为是妨碍细胞防御机制的关键。线粒体钙超载和随后的ATP产量减少引起第一道防御体系的功能紊乱,即钙离子排除障碍。持续的钙超载和随之而来的ATP完全损耗阻碍腺泡细胞进入第二道防御体系——凋亡。这一过程将细胞引向坏死和随之而来的细胞破坏。活化的蛋白酶溢出到细胞间隙,影响周围其他腺泡细胞并进一步产生恶性循环,引发更大范围的AP炎性反应和系统性炎症反应综合征(SIRS)。胰腺内胰酶原活化是被广泛认可的引起腺泡细胞损伤和导致AP的机制[2]。虽然确切机制尚未明确,但细胞内毒性钙离子浓度升高与胰酶原提前活化密切相关。因此,目前许多研究胰腺腺泡细胞的细胞质中钙离子病理生理的实验结果都是为了解析在AP早期病理中的确切分子机制。阻断钙内流、针对细胞质中钙离子毒性作用的治疗、防止细胞内ATP损耗以及加强细胞内防御机制,如胰酶自降解和抑制胰酶原自活化等方面的研究将为靶向性治疗AP药物的研发带来曙光。

参考文献

1 Banks PA, Freeman ML, Practice Parameters Committee of the American College of Gastroenterology. Practice guidelines in acute pancreatitis[J]. Am J Gastroenterol, 2006, 101: 2379-2400.

2 Pandol SJ, Saluja AK, Imrie CW, et al. Acute pancreatitis: bench to the bedside[J]. Gastroenterol, 2007, 132: 1127-1151.

3 Kruger B, Albrecht E, Lerch MM. The role of intracellular calcium signaling in premature protease activation and the onset of pancreatitis[J]. American J Pathol, 2000, 157: 43-50.

4 Raraty M, Ward J, Erdemli G, et al. Calcium-dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells[J]. Proc Natl Acad Sci U S A, 2000, 97: 13126-13131.

5 Kim JY, Kim KH, Lee JA, et al. Transporter-mediated bile acid uptake causes Ca2+-dependent cell death in rat pancreatic acinar cells[J]. Gastroenterol, 2002, 122: 1941-1953.

6 Voronina S, Longbottom R, Sutton R, et al. Bile acids induce calcium signals in mouse pancreatic acinar cells: implications for bile-induced pancreatic pathology[J]. J Physiol, 2002, 540(Pt 1): 49-55.

7 Criddle DN, Murphy J, Fistetto G, et al. Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptors and loss of ATP synthesis[J]. Gastroenterology, 2006, 130: 781-93.

8 Criddle DN, Raraty MG, Neoptolemos JP, et al. Ethanol toxicity in pancreatic acinar cells: mediation by nonoxidative fatty acid metabolites[J]. Proc Natl Acad Sci U S A, 2004, 101: 10738-10743.

9 Petersen OH, Tepikin AV. Polarized calcium signaling in exocrine gland cells[J]. Annu Rev Physiol, 2008, 70: 273-299.

10 Gerasimenko JV, Lur G, Sherwood MW, et al. Pancreatic protease activation by alcohol metabolite depends on Ca2+release via acid store IP3 receptors[J]. Proc Natl Acad Sci U S A, 2009, 106: 10758-10763.

11 Petersen OH, Sutton R. Ca2+signalling and pancreatitis: effects of alcohol, bile and coffee[J]. Trends Pharmacol Sci, 2006, 27: 113-120.

12 Werner J, Laposata M, Fernández-del Castillo C, et al. Pancreatic injury in rats induced by fatty acid ethyl ester, a nonoxidative metabolite of alcohol[J]. Gastroenterology, 1997, 113: 286-294.

13 Petersen OH, Tepikin AV, Gerasimenko JV, et al. Fatty acids, alcohol and fatty acid ethyl esters: toxic Ca2+signal generation and pancreatitis[J]. Cell Calcium, 2009, 45: 634-642.

14 Reed AM, Husain SZ, Thrower E, et al. Low extracellular pH induces damage in the pancreatic acinar cell by enhancing calcium signaling[J]. J Biol Chem, 2011, 286: 1919-1926.

15 Saluja AK, Lerch MM, Phillips PA, et al. Why does pancreatic overstimulation cause pancreatitis? [J]. Annu Rev Physiol, 2007, 69: 249-269.

16 Gorelick FS, Thrower E. The acinar cell and early pancreatitis responses[J]. Clin Gastroenterol Hepatol, 2009, 7(11 Suppl): S10-S4.

17 Saluja AK, Bhagat L, Lee HS, et al. Secretagogue-induced digestive enzyme activation and cell injury in rat pancreatic acini[J]. Am J Physiol, 1999, 276(4 Pt 1): G835-G842.

18 Petersen OH, Gerasimenko OV, Gerasimenko JV. Pathobiology of acute pancreatitis: focus on intracellular calcium and calmodulin[J]. F1000 Med Rep, 2011, 3: 15.

19 Petersen OH, Gerasimenko OV, Tepikin AV, et al. Aberrant Ca2+signalling through acidic calcium stores in pancreatic acinar cells[J]. Cell Calcium, 2011, 50: 193-199.

20 Sherwood MW, Prior IA, Voronina SG, et al. Activation of trypsinogen in large endocytic vacuoles of pancreatic acinar cells[J]. Proc Natl Acad Sci U S A, 2007, 104: 5674-5679.

21 Mukherjee R, Criddle DN, Gukovskaya A, et al. Mitochondrial injury in pancreatitis[J]. Cell Calcium, 2008, 44: 14-23.

22 Voronina SG, Barrow SL, Simpson AW, et al. Dynamic changes in cytosolic and mitochondrial ATP levels in pancreatic acinar cells[J]. Gastroenterology, 2010, 138: 1976-1987.

23 Leist M, Single B, Naumann H, et al. Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis[J]. Exp Cell Res, 1999, 249: 396-403.

24 Booth DM, Murphy JA, Mukherjee R, et al. Reactive oxygen species induced by bile acid induce apoptosis and protect against necrosis in pancreatic acinar cells[J]. Gastroenterology, 2011, 140: 2116-2125.

25 Gukovskaya AS, Gukovsky I. Which way to die: the regulation of acinar cell death in pancreatitis by mitochondria, calcium, and reactive oxygen species[J]. Gastroenterology, 2011, 140: 1876-1880.

26 Rakonczay Z Jr, Duda E, Kaszaki J, et al. The anti-inflammatory effect of methylprednisolone occurs down-stream of nuclear factor-kappaB DNA binding in acute pancreatitis[J]. Eur J Pharmacol, 2003, 464: 217-227.

27 Dawra R, Sah RP, Dudeja V, et al. Intra-acinar trypsinogen activation mediates early stages of pancreatic injury but not inflammation in mice with acute pancreatitis[J]. Gastroenterology, 2011, 141: 2210-2217.

28 Ji B, Gaiser S, Chen X, et al. Intracellular trypsin induces pancreatic acinar cell death but not NF-kappaB activation[J]. J Biol Chem, 2009, 284: 17488-17498.

29 Chen X, Ji B, Han B, et al. NF-kappaB activation in pancreas induces pancreatic and systemic inflammatory response[J]. Gastroenterology, 2002, 122: 448-457.

30 Baumann B, Wagner M, Aleksic T, et al. Constitutive IKK2 activation in acinar cells is sufficient to induce pancreatitis in vivo[J]. J Clin Invest, 2007, 117: 1502-1513.

31 Huang H, Liu Y, Daniluk J, et al. Activation of nuclear factor-kappaB in acinar cells increases the severity of pancreatitis in mice[J]. Gastroenterology, 2013, 144: 202-210.

32 Altavilla D, Famulari C, Passaniti M, et al. Attenuated cerulein-induced pancreatitis in nuclear factor-kappaB-deficient mice[J]. Lab Invest, 2003, 83: 1723-1732.

33 Rakonczay Z Jr, Hegyi P, Takacs T, et al. The role of NF-kappaB activation in the pathogenesis of acute pancreatitis[J]. Gut, 2008, 57: 259-267.

34 Pahl HL, Baeuerle PA. Activation of NF-kappa B by ER stress requires both Ca2+and reactive oxygen intermediates as messengers[J]. FEBS Lett, 1996, 392: 129-136.

35 Kuang E, Wan Q, Li X, et al. ER Ca2+depletion triggers apoptotic signals for endoplasmic reticulum (ER) overload response induced by overexpressed reticulon 3 (RTN3/HAP) [J]. J Cell Physiol, 2005, 204: 549-559.

36 Shah AU, Sarwar A, Orabi AI, et al. Protease activation during in vivo pancreatitis is dependent on calcineurin activation[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 297: G967-G973.

37 Weber H, Hühns S, Lüthen F, et al. Calpain-mediated breakdown of cytoskeletal proteins contributes to cholecystokinin-induced damage of rat pancreatic acini[J]. Int J Exp Pathol, 2009, 90: 387-399.

38 Sutton R, Petersen OH, Pandol SJ. Pancreatitis and calcium signalling: report of an international workshop[J]. Pancreas, 2008, 36: e1-e14.

39 Singh VP, Saluja AK, Bhagat L, et al. Phosphatidylinositol 3-kinase-dependent activation of trypsinogen modulates the severity of acute pancreatitis[J]. J Clin Invest, 2001, 108: 1387-1395.

40 Gukovsky I, Cheng JH, Nam KJ, et al. Phosphatidylinositide 3-kinase gamma regulates key pathologic responses to cholecystokinin in pancreatic acinar cells[J]. Gastroenterology, 2004, 126: 554-566.

41 Singh VP, Bhagat L, Navina S, et al. Protease-activated receptor-2 protects against pancreatitis by stimulating exocrine secretion[J]. Gut, 2007, 56: 958-964.

42 Murphy JA, Criddle DN, Sherwood M, et al. Direct activation of cytosolic Ca2+signaling and enzyme secretion by cholecystokinin in human pancreatic acinar cells[J]. Gastroenterology, 2008, 135: 632-641.

43 Orabi AI, Shah AU, Muili K, et al. Ethanol enhances carbachol-induced protease activation and accelerates Ca2+waves in isolated rat pancreatic acini[J]. J Biol Chem, 2011, 286: 14090-14097.

44 Husain SZ, Prasad P, Grant WM, et al. The ryanodine receptor mediates early zymogen activation in pancreatitis[J]. Proc Natl Acad Sci U S A, 2005, 102: 14386-14391.

45 Ward JB, Sutton R, Jenkins SA, et al. Progressive disruption of acinar cell calcium signaling is an early feature of cerulein-induced pancreatitis in mice[J]. Gastroenterology, 1996, 111: 481-491.

46 Kim MS, Lee KP, Yang D, et al. Genetic and pharmacologic inhibition of the Ca2+influx channel TRPC3 protects secretory epithelia from Ca2+-dependent toxicity[J]. Gastroenterology, 2011, 140: 2107-2115.

47 Mooren F, Hlouschek V, Finkes T, et al. Early changes in pancreatic acinar cell calcium signaling after pancreatic duct obstruction[J]. J Biol Chem, 2003, 278: 9361-9369.

48 Mooren FC, Turi S, Gunzel D, et al. Calcium-magnesium interactions in pancreatic acinar cells[J]. FASEB J, 2001, 15: 659-672.

49 Hughes CB, el-Din AB, Kotb M, et al. Calcium channel blockade inhibits release of TNF-alpha and improves survival in a rat model of acute pancreatitis[J]. Pancreas, 1996, 13: 22-28.

50 Li YY, Lu XY, Li XJ, et al. Intervention of pyrrolidinedithiocarbamate and tetrandrine on cellular calcium overload of pancreatic acinar cells induced by serum and ascitic fluid from rats with acute pancreatitis[J]. J Gastroenterol Hepatol, 2009, 24: 155-165.

51 Frick TW, Fernández-del Castillo C, Bimmler D, et al. Elevated calcium and activation of trypsinogen in rat pancreatic acini[J]. Gut, 1997, 41: 339-343.

52 Booth DM, Mukherjee R, Sutton R, et al. Calcium and reactive oxygen species in acute pancreatitis: friend or foe [J]. Antioxid Redox Signal, 2011, 15: 2683-2698.

53 Yang F, Wang Y, Sternfeld L, et al. The role of free fatty acids, pancreatic lipase and Ca2+signalling in injury of isolated acinar cells and pancreatitis model in lipoprotein lipase-deficient mice[J]. Acta Physiol (Oxf), 2009, 195: 13-28.

54 Wang Y, Sternfeld L, Yang F, et al. Enhanced susceptibility to pancreatitis in severe hypertriglyceridaemic lipoprotein lipase-deficient mice and agonist-like function of pancreatic lipase in pancreatic cells[J]. Gut, 2009, 58: 422-430.

55 Gerasimenko JV, Lur G, Ferdek P, et al. Calmodulin protects against alcohol-induced pancreatic trypsinogen activation elicited via Ca2+release through IP3 receptors[J]. Proc Natl Acad Sci U S A, 2011, 108: 5873-5878.

56 Sung KF, Odinokova IV, Mareninova OA, et al. Prosurvival Bcl-2 proteins stabilize pancreatic mitochondria and protect against necrosis in experimental pancreatitis[J]. Exp Cell Res, 2009, 315: 1975-1989.

57 Mankad P, James A, Siriwardena AK, et al. Insulin protects pancreatic acinar cells from cytosolic calcium overload and inhibition of plasma membrane calcium pump[J]. J Biol Chem, 2012, 287: 1823-1836.

58 Mareninova OA, Sung KF, Hong P, et al. Cell death in pancreatitis: caspases protect from necrotizing pancreatitis[J]. J Biol Chem, 2006, 281: 3370-3381.

(本文编辑:林磊)

(收稿日期:2015-02-25)

通信作者:袁耀宗,Email: yyz28@hotmail.com.cn

DOI:10.3969/j.issn.1673-534X.2016.01.011

猜你喜欢
信号通路急性胰腺炎
下丘脑室旁核在自主神经功能障碍调节中的靶点作用
心肌缺血再灌注损伤的发生机制及其防治策略
循证护理在急性胰腺炎护理中的应用观察
急性胰腺炎患者应用细节护理的可行性研究
C反应蛋白、D—二聚体及降钙素原评估急性胰腺炎严重程度的临床价值
生长抑素与奥曲肽治疗急性胰腺炎的对比研究
医学信息(2016年29期)2016-11-28 09:50:52
急性胰腺炎非手术治疗的护理体会
乌骨鸡黑色素的研究进展
湖南饲料(2016年2期)2016-05-12 08:24:06
从信号通路角度分析中药治疗儿童白血病的研究进展
腹部超声诊断急性胰腺炎的临床探析