肖 典,廖群安,王良玉,3,赵 浩,查雁鸿,赵红伟,尹庭旺,田锦明,刘鸿飞
(1.中国地质大学(武汉)地球科学学院,武汉 430074;2.四川省地质调查院,成都 610081;3.核工业二四三大队,内蒙古 赤峰 024006)
准噶尔东部早志留世两类花岗岩的岩石成因及构造意义
肖 典1,2,廖群安1,王良玉1,3,赵 浩1,查雁鸿1,赵红伟1,尹庭旺1,田锦明1,刘鸿飞1
(1.中国地质大学(武汉)地球科学学院,武汉 430074;2.四川省地质调查院,成都 610081;3.核工业二四三大队,内蒙古 赤峰 024006)
哈尔里克山西段早志留世二长花岗岩和正长花岗岩呈北西西向带状展布,侵入奥陶系塔水组(O1-2t),LA-ICP-MS锆石U-Pb年龄为438.8±2.3~435.8±3.1 Ma。岩石高硅(SiO2含量73.0%~77.8%)、富钾(K2O含量3.31%~4.26%)、低镁(MgO含量0.03%~0.59%),铝饱和指数A/CNK值1.02~1.08,属高钾钙碱性弱过铝质岩石。二长花岗岩轻重稀土分馏显著,Eu异常中等,亏损Nb、Ta、Ti、P,富集Rb、Ba、K,表现为分异的I型花岗岩特征,源区为基性下地壳;正长花岗岩强烈亏损Eu、P、Ti、Sr,不同程度富集Rb、K、Zr、Hf,表现为A型花岗岩特征,其源区为缺水的浅部长英质地壳。结合区域地层不整合资料,认为东准噶尔地区早志留世为后碰撞环境而非岛弧带,后碰撞软流圈上涌带来的热熔融准噶尔年轻地壳形成了岩性丰富的东准噶尔志留纪后碰撞岩浆岩组合。
哈尔里克;志留纪;A型花岗岩;后碰撞
中亚造山带是世界上最大的造山带,记录了古亚洲洋从新元古代持续至晚古生代的俯冲增生事件。Badarch[1]认为中亚造山带是由多个微陆块历经5次大规模俯冲拼贴而成;Windley[2]认为中亚造山带的演化类似环太平洋,是埃迪卡拉纪以来西伯利亚板块持续向南增生的产物。Xiao[3]在Windley[2]基础上提出以增生楔、陆内造山和块体拼贴相结合的复杂模式。此外Xu[4]则提出中亚造山带的演化可以用类似地中海“残余洋盆”的模型解释。目前多数学者基本认同碰撞增生是中亚造山带演化的主要方式,但对于增生拼贴的具体方式及时间等问题依然存在诸多争议。
哈尔里克构造带横贯在吐哈盆地和准噶尔盆地之间,是探讨中亚造山带南缘构造演化的重要窗口。前人对哈尔里克的构造属性主要存在3种不同观点:泥盆纪岛弧、泥盆—石炭纪弧后盆地和奥陶—志留纪岛弧[3,5~9]。近年来,在哈密地区开展的一批1∶50000区域地质调查工作,从大南湖组(D1d)中肢解出奥陶纪地层,并通过锆石U-Pb定年分析,识别出少量早古生代侵入岩[10~12],并将构造环境置于岛弧。本文以哈尔里克山口门子地区的早志留世酸性侵入岩带为研究对象,首次在该区发现早古生代I型和A型花岗岩岩石组合,并详细研究其岩石学、年代学及地球化学特征,同时结合项目成果探讨构造环境,为中亚造山带古亚洲洋盆演化提供新的认识。
新疆北部为中亚造山带的重要组成部分,自北向南包括阿尔泰造山带、准噶尔造山带和天山造山带等主要构造单元[13]。哈尔里克构造带地处天山造山带北部、准噶尔微板块东缘,出露了自奥陶纪以来的地层(见图1)。
a—新疆北部主要蛇绿岩带分布图[14];b—哈尔里克山天山庙地质简图图1 哈尔里克山西段早志留世酸性侵入岩带地质简图Fig.1 Simplified geological map of the early Silurian acid intrusive rock belt in western Harlik
位于哈尔里克山北麓口门子附近的早志留世酸性侵入岩带呈北西西向带状展布,由西段红沟二长花岗岩体和东段推车子沟正长花岗岩体组成(见图1)。红沟岩体出露面积约16 km2,与塔水组(O1-2t)呈侵入接触或断层接触;口门子韧性剪切带穿岩体而过,大部分经动力变质形成二长花岗质糜棱岩,主期糜棱面理约220°(见图2a)。推车子沟岩体出露面积约9.5 km2,侵入塔水组(O1-2t)和石英闪长岩(oδS1),并被柳树沟组(C2l)角度不整合覆盖;岩体受韧性剪切带糜棱作用稍弱,基本保留正长花岗岩原貌(见图2b)。研究区出露地层有奥陶系、志留系和石炭系。塔水组(O1-2t)为一套中—细粒稳定陆缘碎屑组合,葫芦沟组(S1h)火山岩、火山碎屑岩及柳树沟组(C2l)碎屑岩夹火山岩均角度不整合覆于奥陶系之上。
Q—石英;Pl—斜长石;Kf—钾长石;Pth—条纹长石;Or—正长石图2 二长花岗质糜棱岩和正长花岗岩野外及正交镜下照片Fig.2 Field photos and micrographs of monzogranitic mylonite and syenogranite
二长花岗质糜棱岩具糜棱结构,流状构造;碎斑多为斜长石,占20%~70%,少数双晶纹弯曲或扭折(见图2c);碎基占30%~80%,主要由长英质条带和少量绢云母+绿帘石条带组成。正长花岗岩呈细中粒花岗结构,略具定向构造;主要矿物为正条纹长石(50%~60%)、石英(30%~35%)、斜长石(5%~20%),次为黑云母(2%~3%),石英多与条纹长石呈显微文象结构(见图2d);黑云母为片状,析铁退变质为白云母。
本文锆石微量元素含量和U-Pb同位素年代学在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,使用仪器为LA-ICP-MS。激光剥蚀系统为GeoLas2005,等离子体质谱仪为Agilent7500a,激光束斑直径32 μm,剥蚀采用氦气作载气。实验过程采用Nist610、GJ-1作为外标,以91500作为内标控制。分析数据的离线处理采用软件ICPMSDataCal完成,并以29Si作为内标校正锆石微量元素。锆石U-Pb谐和图及加权平均年龄图采用ISOPLOT程序(Ver4.15)绘制。
全岩主量、微量和稀土元素分析测试由广州澳实分析检测集团矿物实验室完成。主量元素采用偏硼酸锂熔融消解,X荧光光谱分析测定(ME-XRF26d),亚铁分析采用酸消解,重铬酸钾滴定测量;微量元素采用四酸消解,质谱/光谱仪综合分析测定(ME-MS61);稀土元素采用硼酸锂熔融消解,等离子质谱仪定量分析测定(ME-MS81),测试仪器为Elan 9000,分析精度优于5%。
3.1 锆石U-Pb同位素年龄
本文选取西段二长花岗岩(PM72-6-1)和东段正长花岗岩(1458-1)2件样品进行锆石定年,采样位置见图1。共测试41颗锆石点,锆石粒径50~120 μm,呈自形柱状或碎裂粒状,发育岩浆振荡生长环带(见图3)。232Th/238U介于0.54~1.46,与岩浆锆石特征[15]一致。
图3 二长花岗岩(a)、正长花岗岩(b)典型锆石阴极发光图像及其U-Pb年龄谐和图Fig.3 Representative zircon CL images and U-Pb concordia diagrams for monzogranite and syenogranite
测试数据见表1。二长花岗岩测试20颗锆石点,被测锆石谐和度大于86%,206Pb/238U年龄变化于397±3.9~444±5.6 Ma。点6-1-3受韧性剪切作用影响发生204Pb丢失,其余锆石整体位于207Pb/235U-206Pb/238U谐和曲线附近,加权平均年龄438.8±2.3 Ma(n=19,MSWD=0.70)可代表二长花岗岩结晶年龄(见图3a)。正长花岗岩测试21颗锆石点,其中16个测点位于谐和曲线附近,206Pb/238U年龄介于428±3.6~449±8.1 Ma,加权平均年龄435.8±3.1 Ma(n=16,MSWD=1.20)代表正长花岗岩结晶年龄(见图3b)。上述二者加权平均年龄在误差范围内一致,表明哈尔里克山口门子一带酸性侵入岩均形成于早志留世晚期。
表1 二长花岗岩及正长花岗岩LA-ICP-MS锆石U-Pb同位素测定结果
3.2 主量及微量元素特征
二长花岗岩和正长花岗岩均具有高SiO2(73.0%~77.8%)和富K2O(3.31%~4.26%)的特征,全碱Alk为7.30%~8.57%,属高钾钙碱性系列(见图4a)。岩石TiO2(0.08%~0.29%)、MgO(0.03%~0.59%)、Fe2O3(1.38%~2.11%)含量较低,与镜下少见暗色矿物现象相符。铝饱和指数(A/CNK)介于1.02~1.08,为弱过铝质岩石(见图4b)。此外,二长花岗岩和正长花岗岩还存在较明显的差异,表现为:①正长花岗岩发育显微文象结构,具有更高的Alk含量(平均8.38%,高于二长花岗岩的7.65%);②二长花岗岩P2O5(0.08%~0.02%)含量高于正长花岗岩(0.02%~不足0.01%);③二长花岗岩TiO2(平均0.21%)、CaO(平均1.09%)、Mg#(平均32.2)丰度明显高于正长花岗岩(依次为0.09%、0.07%、5.1)。
图4 哈尔里克山西段早志留世酸性侵入岩SiO2-K2O及A/CNK-A/NK图解[16~17]Fig.4 SiO2-K2O and A/CNK-A/NK diagrams from the early Silurian acid intrusive rock in western Harlik
稀土元素特征显示,二长花岗岩具有较低的REE,轻重稀土分馏显著((La/Yb)N=11.8~15.2),Eu异常中等(δEu=0.60~0.87),呈现出轻稀土富集((La/Sm)N=5.8~7.5)、中稀土亏损、重稀土平坦((Gd/Yb)N=1.19~1.26)的右倾型配分模式,类似高分异I型花岗岩[18];正长花岗岩轻重稀土分馏程度较弱((La/Yb)N=2.62~3.41),以强烈亏损Eu为特征(δEu=0.24~0.26),稀土配分模呈“雁列式”,类似A型花岗岩。二长花岗岩亏损Nb、Ta、Ti等高场强元素和P,富集Rb、Ba、Th、U、K等大离子亲石元素;正长花岗岩不同程度地富集Rb、Th、U、K、Zr、Hf,亏损P、Ti、Sr、Ba(见图5)。
图5 哈尔里克山西段早志留世酸性侵入岩球粒陨石标准化稀土元素配分图[19]及微量元素蛛网图[20]Fig.5 REE and trace element spider diagrams of the early Silurian acid intrusive rock in western Harlik
4.1 成因分类
花岗岩成因最常用ISMA型分类方法。M型花岗岩以与蛇绿岩共存、由地幔或俯冲上洋壳熔融而成的斜长花岗岩为代表,极为少见;I型花岗岩源区为变质火成岩,以角闪石为标志矿物,A/CNK<1.1;S型花岗岩以含堇青石为标志,源区多为泥质岩,A/CNK>1;A型花岗岩形成于造山后或非造山环境,以碱性暗色矿物为标志[21]。哈尔里克构造带未出露蛇绿混杂岩,早志留世酸性侵入岩未见原生富铝矿物,A/CNK=1.02~1.08属弱过铝质,CIPW标准矿物刚玉分子<1%,这些特征基本可以排除M型和S型花岗岩的成因。
表2 哈尔里克山西段早志留世酸性侵入岩主量元素(%)、微量元素(10-6)分析结果
注:FeO*=0.8998×Fe2O3;镁值Mg#=molar 100×Mg/(Mg+FeO*);DI=标准矿物(Q+Af+Ab+Ne+Kp+Lc);δEu=2×EuN/(SmN+GdN);A/CNK=Al2O3/(CaO+ Na2O+K2O)分子比;(La/Yb)N代表La和Yb球粒陨石标准化比值
红沟二长花岗岩体和推车子沟正长花岗岩体较高的SiO2和全碱含量,在Q-An-Or三角图解中落入低温槽内(见图6a),具有低共熔花岗岩性质,与较高分异指数(DI=86.7~97.2)特征一致,反映岩浆经历高分异演化。磷灰石在准铝质—弱过铝质花岗质岩浆中溶解度很低,在岩浆分异演化中优先结晶,因此P2O5含量随SiO2的增加而降低,并导致高分异I型和A型花岗岩中P2O5含量非常低[22]。二长花岗岩和正长花岗岩P2O5随SiO2增加线性减少(见图6b),最低含量不足0.01%,与高分异I型或A型花岗岩演化特征一致。
图6 花岗岩Q-Ab-Or图[23]、SiO2-P2O5图及成因分类图解(c—e据[24], f据[25])Fig.6 Q-Ab-Or, SiO2-P2O5 and genetic classification diagrams of granite
此外二长花岗岩稀土配分模式为右倾型,稀土含量较低;而正长花岗岩稀土配分模式呈“雁列式”,稀土含量高,在A/CNK-A/NK图中投影更接近过碱质区域。在一系列花岗岩成因判别图解中,二长花岗岩投影在分异的I或S型花岗岩区域,正长花岗岩均投在A型花岗岩中(见图6c—6f)。综合上述判断,二长花岗岩为高分异I型花岗岩,正长花岗岩为A型花岗岩。
高温是形成A型花岗岩的重要条件,锆石是花岗质岩浆早期结晶的副矿物,其饱和度计算可以限定岩浆早期结晶温度,进而近似代表岩浆形成时的温度[26](见表3)。
表3 哈尔里克山西段早志留世酸性侵入岩锆石饱和温度计算结果
二长花岗岩饱和温度介于743~779 ℃,可见继承锆石,类似于冷花岗岩(TZr=766 ℃),其成因与源区角闪石或黑云母脱水作用有关[27]。正长花岗岩饱和温度(842~865 ℃),明显高于二长花岗岩,TZr>800 ℃属热花岗岩,接近熔融形成A型花岗质岩浆的实验温度[28]。
4.2 岩石成因
红沟二长花岗岩为弱过铝质高钾钙碱性I型花岗岩,指示岩浆源区为中基性火成岩,不发育暗色微粒包体的特征暗示其为单一壳源成因。Sr常以类质同象替换Ca赋存在斜长石中,而Yb在石榴石中强烈富集,因此Sr、Yb含量可以识别源区残余矿物组合。二长花岗岩轻重稀土明显分馏,Yb含量较低,Sr/Y比值最高25,反映源区有石榴石和角闪石残留[29],源区对应深度为麻粒岩相或榴辉岩相基性下地壳。
推车子沟正长花岗岩为弱过铝质A型花岗岩,硅含量极高且化学成分均一,较低的Al2O3含量、强烈的Sr、Eu负异常及“雁列式”的稀土配分模式特征反映源区为斜长石稳定而不含石榴石的浅部地壳[30]。在水不饱和条件下,花岗质熔体中的长石将朝富集Or分子的方向演化[31],岩石A/NK=1.03~1.05、A/CNK=1.02~1.04,接近碱性A型花岗岩,因此正长花岗岩是由缺水的浅部长英质地壳熔融而成。
二长花岗岩Yb、FeO*、MgO含量较低可能与镁铁质矿物、富HREE(重稀土)副矿物的分离结晶有关,这也与低共熔、高分异I型花岗岩特征相符。Ba含量减少暗示存在钾长石分离,Sr亏损与斜长石分离结晶有关,Eu的负异常则受钾长石和斜长石分异共同控制。正长花岗岩CaO、Sr含量较低,说明岩浆演化过程中存在斜长石的分离结晶,极低的P2O5与磷灰石分离结晶有关。
4.3 构造环境
正长花岗岩富集Rb、Th、U、K,强烈亏损Ba、Sr、P、Ti、U,较弱的Nb负异常特征与后碰撞钾质花岗岩类似[32]。Y/Nb比值为3.4~4.5,属A2型花岗岩,形成于与俯冲有关的后碰撞、后造山环境[33]。在R1-R2图解(见图7a)中,二长花岗岩投影在同碰撞花岗岩与造山期后花岗岩范围内,正长花岗岩均落入造山期后花岗岩区域;Pearce判别图(见图7b)中,早志留世酸性侵入岩由老至新逐渐从火山弧环境过渡到板内环境,且均位于三联点附近,代表它们形成于后碰撞环境,二长花岗岩的火山弧特征可能是变质基性源岩岛弧印迹的体现。
①—地幔斜长花岗岩;②—板块碰撞前消减带花岗岩;③—碰撞后隆起区花岗岩;④—造山晚期花岗岩;⑤—非造山花岗岩;⑥—同碰撞花岗岩;⑦—造山期后花岗岩图7 哈尔里克山西段早志留世酸性侵入岩构造判别图[33~34]Fig.7 Tectonic discriminating diagrams of the early Silurian acid intrusive rock in western Harlik
后碰撞花岗岩以发育高钾钙碱性I型花岗岩和双峰式岩浆岩为特征[35]。哈尔里克山早志留世不仅存在高钾钙碱性I型花岗岩,邻区莫钦乌拉山还发现一套钾玄岩—粗安岩(434.4±2.2 Ma)。其SiO2介于46.4%~54.4%,为碱性—过碱性中基性火山岩(据赵浩,待刊),该碱性玄武岩与正长花岗岩组成典型的后碰撞双峰式岩浆组合。
阿尔曼太蛇绿岩带是东准噶尔地区重要的早古生代蛇绿岩,其代表的洋盆主体形成年龄为晚寒武世—早奥陶世,后碰撞作用峰值年龄为中志留世—早泥盆世[36~38]。东准噶尔卡拉麦里断裂以南出露的红柳沟组(S3D1h)为一套薄—中厚层细碎屑岩、凝灰岩夹灰岩,底部发育紫色间杂绿色底砾岩和厚约1 m的古风化壳,角度不整合于庙儿沟组(O2-3m)之上[39~40]。下部O2-3m强烈变形达到绿片岩相,而S3D1h变形变质极其轻微,这些差异表明东准噶尔早古生代发生过造山作用,该造山作用的时间上限为中志留世[41]。
研究区哈尔里克山奥陶系(O1-2t、O2-3q)为一套含浊积岩的浅海—斜坡相陆缘碎屑组合,为相对稳定的被动陆缘浅海沉积环境;其上部呈角度不整合的葫芦沟组(S1h)火山岩为本次研究的新发现,表明哈尔里克山早志留世与晚奥陶世早期存在沉积间断,对应一次碰撞抬升事件。在这次构造事件的后碰撞松弛阶段,碱性玄武岩代表的软流圈上涌依次熔融基性下地壳和缺水的长英质上地壳,分别形成了红沟I型二长花岗岩和推车子沟A型正长花岗岩,二者共同组成了哈尔里克山早志留世酸性侵入岩带,其锆石饱和温度由743~779 ℃进一步升高至842~865 ℃是后碰撞软流圈上涌的响应。
哈尔里克山口门子地区酸性侵入岩呈北西西向带状展布,由二长花岗岩和正长花岗岩组成,二者锆石U-Pb年龄分别为438.8±2.3 Ma、435.8±3.1 Ma,均形成于早志留世晚期。
二长花岗岩为高钾钙碱性、高分异I型花岗岩,轻重稀土分馏显著,其源区为基性下地壳;正长花岗岩为高钾钙碱性、A型花岗岩,稀土配分模式呈“雁列式”,其源区为浅部长英质地壳。
哈尔里克山早志留世酸性侵入岩带形成于软流圈上涌的后碰撞环境,其成因与阿尔曼太洋盆关闭有关。
致谢 本文撰写过程中得到成都理工大学熊富浩副教授的指导,在此表示感谢!
[1] Badarch G, Dickson Cunningham W, Windley B F. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002,21(1):87~110.
[2] Windley B F, Alexeiev D, Xiao W, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007,164(1):31~47.
[3] Xiao W J, Han C, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008,32(2/4):102~117.
[4] Xu Q, Ji J, Zhao L, et al. Tectonic evolution and continental crust growth of Northern Xinjiang in northwestern China: Remnant ocean model[J]. Earth-Science Reviews, 2013,126:178~205.
[5] 顾连兴, 胡受奚, 于春水, 等. 论博格达俯冲撕裂型裂谷的形成与演化[J]. 岩石学报, 2001(04):585~597.
GU Lian-xing, HU Shou-xi, YU Chun-shui, et al. Initation and evolution of the Bogda subduction-torn-type rift[J]. Acia Petrologica Sinica, 2001(4):585~597.
[6] 冯益民, 朱宝清, 杨军录, 等. 东天山大地构造及演化——1∶50万东天山大地构造图简要说明[J]. 新疆地质, 2002, (4): 309~314.
FENG Yi-min, ZHU Bao-qing, YANG Jun-lu, et al. Tectonics and evolution of the eastern Tianshan Mountains: A brief introduction to tectonic map (1∶500 000) of the eastern Tianshan Mountains of Xinjiang[J]. Xinjiang Geology, 2002, (4): 309~314.
[7] 李锦轶. 新疆东部新元古代晚期和古生代构造格局及其演变[J]. 地质论评, 2004, 50(3):304~322.
LI Jin-yi. Late Neoproterozoic and Paleozoic tectonic framework and evolution of eastern Xinjiang, NW China[J]. Geological Review, 2004, 50(3):304~322.
[8] Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of Central Asia[J]. American Journal of Science, 2004,304(4):370~395.
[9] 李锦轶, 王克卓, 孙桂华, 等. 东天山吐哈盆地南缘古生代活动陆缘残片:中亚地区古亚洲洋板块俯冲的地质记录[J]. 岩石学报, 2006, 22(5):1087~1102.
LI Jin-yi, WANG Ke-zhuo, SUN Gui-hua, et al. Paleozoic active margin slices in the southern Turfan-Hami basin: Geological records of subduction of the Paleo-Asian Ocean plate in central Asian regions[J]. Acta Petrologica Sinica, 2006, 22(5):1087~1102.
[10] 曹福根, 涂其军, 张晓梅, 等. 哈尔里克山早古生代岩浆弧的初步确定——来自塔水河一带花岗质岩体锆石SHRIMP U-Pb测年的证据[J]. 地质通报, 2006, 25(8):923~927.
CAO Fu-gen, TU Qi-jun, ZHANG Xiao-mei, et al. Preliminary determination of the Early Paleozoic magmatic arc in the Karlik Mountains, East Tianshan, Xinjiang, China: Evidence from zircon SHRIMP U-Pb dating of granite bodies in the Tashuihe area[J]. Geological Bulletin of China, 2006, 25(8):923~927.
[11] 郭华春, 钟莉, 李丽群. 哈尔里克山口门子地区石英闪长岩锆石SHRIMP U-Pb测年及其地质意义[J]. 地质通报, 2006, 25(8): 928~931.
GUO Hua-chun, ZHONG Li, LI Li-Qun. Ziron SHRIMP U-Pb dating of quartz diorite in the Koumenzi area, Karlik Mountains, East Tianshan, Xinjiang, China, and its geological significance[J]. Geological Bulletin of China, 2006, 25(8):928~931.
[12] 马星华, 陈斌, 王超, 等. 早古生代古亚洲洋俯冲作用:来自新疆哈尔里克侵入岩的锆石U-Pb年代学、岩石地球化学和Sr-Nd同位素证据[J]. 岩石学报, 2015,31(1):89~104.
MA Xing-hua, CHEN Bin, WANG Chao, et al. East Paleozoic subduction of the Paleo-Asian Ocan: Zircon U-Pb geochronological, geochemical and Sr-Nd isotopic evidence from the Harlik pluton, Xinjiang[J]. Acta Petrologica Sinica, 2015, 31(1):89~104.
[13] 徐学义, 李荣社, 陈隽璐, 等. 新疆北部古生代构造演化的几点认识[J]. 岩石学报, 2014, 30(6):1521~1534.
XU Xue-yi, LI Rong-she, CHEN Jun-lu, et al. New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area[J]. Acta Petrologica Sinica, 2014, 30(6):1521~1534.
[14] 董连慧, 朱志新, 屈迅, 等. 新疆蛇绿岩带的分布、特征及研究新进展[J]. 岩石学报, 2010, 26(10):2894~2904.
DONG Lian-hui, Zhu Zhi-xin, QU Xun, et al. Spatial distribution geological features and latest progress of the main ophiolite zones in Xinjiang NW-China[J]. Acta Petrologica Sinica, 2010, 26(10):2894~2904.
[15] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16):1589~1604.
WU Yuan-bao, ZHENG Yong-fei. Gensis of zircon and its constraints on the interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16): 1589~1604.
[16] Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63~81.
[17] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989,101(5):635~643.
[18] 邱检生, 肖娥, 胡建, 等. 福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J]. 岩石学报, 2008, 24(11):2468~2484.
QIU Jian-sheng, XIAO E, HU Jian, et al. Petrogenesis of fractionated I-type granites in the coastal area of northeastern Fujian Province: Constraints from zircon U-Pb geochronology, geochemistry, and Nd-Hf isotopes[J]. Acta Petrologica Sinica, 2008, 24(11): 2468~2484.
[19] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. London: Blackwell Scientific, 1986.
[20] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes[M]. London: Geological Society, 1989.
[21] 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6):1217~1238.
WU Fu-yuan, LI Xian-hua, YANG Jin-hui, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6): 1217~1238.
[22] 李献华, 李武显, 李正祥. 再论南岭燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 2007,52(9):981~991.
LI Xian-hua, LI Wu-xian, LI Zheng-xiang.[J]. Re-discussion on genesis type and tectonic significance of Early Yanshanian granite in Nanling[J]. Chinese Science Bulletin, 2007, 52(9):981~991.
[23] Holtz F, Pichavant M, Barbey P, et al. Effects of H2O on liquidus phase relations in the haplogranite system at 2 and 5 kbar[J]. American Mineralogist, 1992, 77(11/12): 1223~1241.
[24] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407~419.
[25] 邱检生, 胡建, 王孝磊, 等. 广东河源白石冈岩体:一个高分异的I型花岗岩[J]. 地质学报, 2005, 79(4):503~514.
QIU Jian-sheng, HU Jian, WANG Xiao-lei, et al. The Baishigang Pluton in Heyuan, Guangdong Province: A highly fractionated I-type granite[J]. Acta Geologica Sinica, 2005, 79(4):503~514.
[26] Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983,64(2):295~304.
[27] Miller C F, McDowell S M, Mapes R W. Hot and cold granites Implications of zircon saturation temperatures and preservation of inheritance[J]. Geology, 2003,31(6):529~532.
[29] Castillo Paterno R. 埃达克岩成因回顾[J]. 科学通报, 2006, 51(6):617~627.
Castillo Paterno R. Review of the genesis of adakites[J]. Chinese Science Bulletin, 2006, 51(6):617~627.
[30] Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8~32 kbar: Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995,36(4):891~931.
[31] Conrad W K, NichollsI I A, Wall V J. Water-Saturated and -Undersaturated Melting of Metaluminous and Peraluminous Crustal Compositions at 10 kb: Evidence for the Origin of Silicic Magmas in the Taupo Volcanic Zone, New Zealand, and Other Occurrences[J]. Journal of Petrology, 1988,29(4):765~803.
[32] Küster D, Harms U. Post-collisional potassic granitoids from the southern and northwestern parts of the Late Neoproterozoic East African Orogen: a review[J]. Lithos, 1998,45(1/4):177~195.
[33] Eby G N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992,20(7):641.
[34] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984,25(4):956~983.
[35] 韩宝福. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J]. 地学前缘, 2007, 14(3):64~72.
HAN Bao-fu. Diverse post-collisional granitoids and their tectonic setting discrimination[J]. Earth Science Frontiers, 2007, 14(3): 64~72.
[36] Xiao W J, Windley B F, Yuan C, et al. Paleozoic multiple subduction-accretion processes of the southern Altaids[J]. American Journal of Science, 2009, 309(3):221~270.
[37] 董连慧, 屈迅, 赵同阳, 等. 新疆北阿尔泰造山带早古生代花岗岩类侵入序列及其构造意义[J]. 岩石学报, 2012,28(8):2307~2316.
DONG Lian-hui, QU Xun, ZHAO Tong-yang, et al. Magmatic sequence of Early Palaeozoic granitic intrusions and its tectonic implications in north Altay orogeny, Xinjiang[J]. 2012, 28(8):2307~2316.
[38] 简平, 刘敦一, 张旗, 等. 蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年[J]. 地学前缘, 2003, 10(4):439~456.
JIAN Ping, LIU Dun-yi, ZHANG Qi, et al. SHRIMP dating of ophiolite and leucocratic rocks within ophiolite[J]. Earth Science Frontiers, 2003, 10(4):439~456.
[39] 程裕淇. 中国地层典: 志留系[M]. 北京: 地质出版社, 1998.
CHENG Yu-qi. Stratigraphic lexicon of China: Silurian[M]. Beijing: Geological Publishing House, 1998.
[40] 李亚萍, 李锦轶, 孙桂华, 等. 新疆东准噶尔早泥盆世早期花岗岩的确定及其地质意义[J]. 地质通报, 2009, 28(12): 1885~1893.
LI Ya-ping, LI Jin-yi, SUN Gui-hua, et al. Determination of the Early Devonian granite in East Junggar, Xinjiang, China and its geological implications[J]. Geological Bulletin of China, 2009, 28(12):1885~1893.
[41] 徐芹芹, 赵磊, 牛宝贵. 新疆东准噶尔纸房地区早古生代花岗岩的确定及其地质意义[J]. 地质力学学报, 2015, 21(4):502~516.
XU Qin-qin, ZHAO Lei, NIU Bao-gui. Determination of the early Paleozoic granite in Zhifang area, east Junggar, Xingjiang and its geological implications[J]. Journal of Geomechanics, 2015, 21(4):502~516.
PETROGENESIS AND TECTONIC IMPLICATIONS OF TWO TYPES EARLY SILURIAN GRANITES IN EAST JUNGGAR
XIAO Dian1,2, LIAO Qun-an1, WANG Liang-yu1,3, ZHAO Hao1, ZHA Yan-hong1,ZHAO Hong-wei1, YIN Ting-wang1, TIAN Jin-ming1, LIU Hong-fei1
(1.FacultyofEarthSciences,ChinaUniversityofGeosciences,Wuhan430074,China;2.SichuanGeologicalSurvey,Chengdu610081,China;3.No.243GeologicalPartyofNuclearIndustry,CNNC,Chifeng024006,InnerMongolia,China)
The early Silurian monzogranite and syenogranite are located in the western section of Harlik Mountain with a NWW-trending, which intrude into the Ordovician Tashui Formation (O1-2t). The LA-ICP-MS zircon U-Pb dating shows their emplacement ages are 438.8±2.3 Ma~435.8±3.1 Ma. The rocks have high contents of silicon (SiO2=73.0~77.8%)and potassium (K2O=3.31~4.26%), and low contents of magnesium (MgO=0.03~0.59%), with moderate aluminum saturation index (A/CNK=1.02~1.08), which show that the rocks are high-K calc-alkaline, weakly peraluminium series. Monzogranites exhibit strongly fractionated REE patterns with moderate negative Eu anomalies, and they are depleted in Nb, Ta, Ti, P, but enriched in Rb, Ba, K, showing notable fractionated I-type granitoids with mafic lower continental crust as a potential magma source. Syenogranites show remarkably depletion of Eu, P, Ti and Sr, and enrichment of Rb, K, Zr and Hf, showing A-type granites affinity, whose magma source maybe the dehydrated felsic upper continental crust. Combined with the stratigraphic unconformity in this region, we propose that the East Junggar is in a post-collisional setting rather than arc-related setting during the early Silurian. The upwelling asthenosphere provided enhanced heat flux and triggered the partial melting of the juvenile crust, and resulted in the generation of various Silurian post-collisional granites in East Jungga.
Harlik; Silurian; A-type granite; post-collision
1006-6616(2016)04-1049-13
2016-09-16
中国地质调查局“特殊地质地貌区填图试点”项目(DD20160060;12120114042801)
肖典(1991-),男,硕士,从事1∶5万区域地质调查工作。E-mail:dianx244@gmail.com
廖群安(1959-),男,教授,从事区调工作和岩石学研究。E-mail:qanliao@cug.edu.cn
P588.1;P595
A