Commutator of Marcinkiewicz Integrals Associated with Schrødinger Operators on Variable Exponent Spaces

2016-02-15 11:28SHUYu
关键词:积分算子安徽师范大学算子

SHU Yu

(Department of Economic and Trade, Anhui Business College Vocational Technology, Wuhu 241002, China)

Commutator of Marcinkiewicz Integrals Associated with Schrødinger Operators on Variable Exponent Spaces

SHU Yu

(Department of Economic and Trade, Anhui Business College Vocational Technology, Wuhu 241002, China)

In this paper, we prove the boundedness of commutator of Marcinkiewicz integrals associated with Schrødinger operators on variable exponent spaces.

Marcinkiewicz integrals; commutator; Schrødinger operator; variable exponent; Morrey spaces

Classification code:O174.3 Document code: A Paper No:1001-2443(2016)06-0535-07

0 Introduction

In this paper, we consider the Schrødinger differential operator onRn(n≥3).

L=-△+V(x)

AnonnegativelocallyLqintegrablefunctionV(x)onRnis said to belong toBq(q>1)ifthereexistsaconstantC>0suchthatthereverseHølderinequality

holdsforeveryballinRn, see [1].

The commutator of Marcinkiewicz integral operatorμbisdefinedby

Stein[2]firstintroducedtheoperatorμandprovedthatμisoftype(p,p)(1

It is well known that function spaces with variable exponents were intensively studied during the past 20 years, due to their applications to PDE with non-standard growth conditions and so on, we mention e.g. ([8, 9]). A great deal of work has been done to extend the theory of maximal, potential, singular and Marcinkiewicz integrals operators on the classical spaces to the variable exponent case, see([10]-[15]). It will be an interesting problem whether we can establish the boundedness of commutator of Marcinkiewicz integrals associated with Schrødinger operators on variable exponent spaces. The main purpose of this paper is to answer the above problem.

To meet the requirements in the following sections, here, the basic elements of the theory of the Lebesgue spaces with variable exponent are briefly presented.

Letp(·):Rn→[1,∞) be a measurable function. The variable exponent Lebesgue spaceLp(·)(Rn) is defined by

Lp(·)(Rn)isaBanachspacewiththenormdefinedby

Wedenote

LetP(Rn)bethesetofmeasurablefunctionp(·)onRnwith value in [1,∞) such that 1

andonedefines

B(Rn)isthesetofp(·)∈P(Rn)satisfyingtheconditionthatMisboundedonLp(·)(Rn).

Forx∈Rn,thefunctionmV(x)isdefinedby

Forbrevity,inthispaper,Calwaysmeansapositiveconstantindependentofthemainparametersandmaychangefromoneoccurrencetoanother.B(x,r)={y∈Rn:|x-y|

1 Results and Some Lemmas

Definition 1.1[12]For anyp(·)∈B(Rn),letkp(·)denotethesupremumofthoseq>1suchthatp(·)/q∈B(Rn).Letep(·)betheconjugateofkp′(·).

Definition 1.2[12]Letp(·)∈L∞(Rn)and10suchthatforanyx∈Rnandr>0,ufulfills

(1)

WedenotetheclassofMorreyweightfunctionsbyWp(·).

NextwedefinetheMorreyspaceswithvariableexponentrelatedtothenonnegativepotentialV.

Nowitisinthispositiontostateourresults.

Theorem 1.1 SupposeV∈Bqwithq>1andp(x)∈B(Rn),then

Theorem 1.2 SupposeV∈Bqwithq>1,b∈BMO,-∞<α<∞andp(x)∈B(Rn).If

(2)

then

Remark 1 We can easily show thatufulfills(2)impliesu∈Wp(·),see[16].

Inordertoproveourresult,weneedsomeconclusionsasfollows.

Lemma 1.1[18]Letp(·)∈P(Rn):Thenthefollowingconditionsareequivalent:

(1)p(·)∈B(Rn).

(2)p′(·)∈B(Rn).

(3) (p(·)/q∈B(Rn)forsome1

(4) (p(·)/q)′∈B(Rn)forsome1

Lemma1.1ensuresthatkp(·)iswell-definedandsatisfies1

Lemma 1.2[19]Ifp(·)∈P(Rn),thenforallf∈Lp(·)(Rn)andallg∈Lp′(·)(Rn)wehave

∫Rn|f(x)g(x)|dx≤rp‖f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn),

whererp:=1+1/p--1/p+.

Lemma 1.3[10]Ifp(·)∈B(Rn),thenthereexistsC>0suchthatforallballsBinRn,

C-1|B|≤‖χB‖Lp(·)(Rn)‖χB‖Lp′(·)(Rn)≤C|B|.

Lemma 1.4[12]Letp(x)∈B(Rn).Forany10suchthatforanyx0∈Rnandr>0,wehave

Lemma 1.6[21]LetΩ∈Lipγ(Sn-1),b(x)∈BMOandp(·)∈B(Rn),wehave

‖μbf‖Lp(·)(Rn)≤C‖f‖Lp(·)(Rn).

Lemma 1.7[1]For everyN>0thereexistsaconstantCsuchthat

and

Lemma 1.8[1]SupposeV∈Bqwithq≥n/2.ThenthereexistpositiveconstantsCandk0suchthat

Lemma 1.9[22]Letkbeapositiveinteger.Thenwehavethatforallb∈BMO(Rn) and alli,j∈Zwithi>j,

2 Proof of Theorems

Proof of Theorem 1.1 Fixx∈Rnand letr=ρ(x).Usingthesameideain[5]and[4],wehave

ForA1,byLemma1.7,wehave

Obviously,

ForA3,byLemma1.7,wehave

ItremainstoestimateA4.FromLemma1.7,takeN=1,weobtain

Thus,usingLemma1.5andLemma1.6,wearrivethefollowinginequality

andhencetheproofofTheorem1.1iscomplete.

wheref0=fχB(z,2r),fi=fχB(z,2i+1r)B(z,2ir)fori≥1.Hence,wehave

ByTheorem1.1,weobtain

Becauseinequality(1)andLemma1.4implythatu(x,r)≥Cu(x,2r).Therefore,weobtain

Furthermore,foranyi≥1,x∈B(z,r)andy∈B(z,2i+1r)B(z,2ir),wenotethat|x-y|≥|y-z|-|x-z|>C2ir.ByLemma1.7andMinkowski'sinequality,wehave

UsingLemma1.8,wederivetheestimate

(3)

ApplyingLemma1.2andinequality(3),wegetthat

Subsequently,takingthenorm‖·‖Lp(·)(Rn)andusingLemma1.9,wehave

×‖b‖BMO‖fχB(z,2i+1r)‖Lp(·)(Rn)‖χB(z,r)‖Lp(·)(Rn)‖χB(z,2i+1r)‖Lp′(·)(Rn).

ApplyingLemma1.3withB=B(z,2i+1),wehave

TakingN=(-[α]+1)(k0+1),weobtain

Asufulfills(2)andα<0,weobtain

andhencetheproofofTheorem1.2iscomplete.

[1] SHEN Z. Lp estimates for Schrødinger operators with certain potentials[J]. Ann Inst Fourier(Grenoble), 1995,45(2):513-546.

[2] STEIN E M. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz[J]. Transactions of the American Mathematical Society, 1958,88:430-466.

[4] GAO W, TANG L. Boundedness for marcinkiewicz integrals associated with Schrødinger operators[J]. Proceedings-Mathematical Sciences Indian Acad Sci, 2014,124(2):193-203.

[5] CHEN D, ZOU D. The boundedness of Marcinkiewicz integral associated with Schrødinger operator and its commutator[J]. Journal of Function Spaces, Article ID402713, 10pages, 2014.

[6] TANG L, DONG J. Boundedness for some Schrødinger type operators on Morrey spaces related to certain nonnegative potentials[J]. J Math Anal Appl, 2009,355(1):101-109.

[7] CHEN D, JIN F. The Boundedness of Marcinkiewicz integrals associated with Schrødinger operator on Mmorrey spaces[J]. J Fun Spaces, Article ID901267, 11pages, 2014.

[8] CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM J Appl Math, 2006,66(4):1383-1406.

[10] CRUZ-URIBE D, FIORENZA A, MARTELL J M, et al. The boundedness of classical operatorson variableLpspaces[J]. Annales Academiae Scientiarum Fennicae Math., 2006,31(1):239-264.

[11] NEKVINDA A. Hardy-Littlewood maximal operator onLp(x)(Rn) [J]. Math Inequal Appl, 2004,7:255-265.

[12] HO K-P. The fractional integral operators on Morrey spaces with variable exponent on unbounded domains[J]. Math Inequal Appl, 2013,16:363-373.

[13] XUAN Z, SHU L. Boundedness for commutators of Calderón-Zygmund operator on Morrey spaces with variable exponent[J]. Anal Theory Appl, 2013,29(2):128-134.

[14] ALMEIDA A, HASANOV J, SAMKO S. Maximal and potential operators in variable exponent Morrey spaces[J]. Georgian Math J, 2008,15:195-208.

[15] KOKILASHVILI V, MESKHI A. Boundedness of maxmial and singular operators in Morrey spaces with variable exponent[J]. Armenian Math J, 2008,1:18-28.

[16] BONGIOANNI B, HARBOURE E, SALINAS O. Class of weights related to Schrødinger operators[J]. J Math Anal Appl, 2011,373:563-579.

[17] TANG L. Weighted norm inequalities for commutators of Littlewood-Paley functionsrelated to Schrødinger operators[J]. Archive der Mathematik, 2014,102:215-236.

[18] DIENING L. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces[J]. Bulletin des Sciences Mathématiques, 2005,129(8):657-700.

[20] ZHANG P, WU J. Commutators of the fractional maximal function on variable exponent Lebesgue spaces[J]. Czechoslovak Mathematical Journal, 2014,64(139):183C197.

[21] WANG H, FU Z, LIU Z. Higher order commutators of Marcinkiewicz integrals on variable Lebesgue spaces[J]. Acta Math Scientia(Ser A), 2012,32(6):1092-1101.

[22] IZUKI M. Boundedness of commutators on Herz spaces with variable exponent[J]. Rend Circ Mat Palermo, 2010,59(2):199-213.

2016-03-10

SupportedbyNSFC(11201003)andEducationCommitteeofAnhuiProvince(KJ2016A253;SKSM201602).

SHU Yu(1985-), male, born in Wuhu, Anhui Province, Lecture, M.S.D.

束宇.变指数空间上与Schrødinger算子相关的Marcinkiewica积分算子交换子[J].安徽师范大学学报:自然科学版,2016,39(6):535-541.

变指数空间上与Schrødinger算子相关的Marcinkiewicz积分算子交换子

束 宇

(安徽商贸职业技术学院 经济贸易系,安徽 芜湖 241002)

在本文中,我们主要证明了变指数空间上与Schrødinger算子相关的Marcinkiewicz积分算子交换子的有界性.

Marcinkiewicz积分;交换子;Schrødinger算子;变指数;Morrey空间

10.14182/J.cnki.1001-2443.2016.06.006

猜你喜欢
积分算子安徽师范大学算子
某类振荡积分算子在Lebesgue空间及Wiener共合空间上的映射性质
与由分数阶Laplace算子生成的热半群相关的微分变换算子的有界性
齐次核诱导的p进制积分算子及其应用
Dirichlet空间上一类积分算子的约化子空间
拟微分算子在Hp(ω)上的有界性
Heisenberg群上与Schrödinger算子相关的Riesz变换在Hardy空间上的有界性
带变量核奇异积分算子的ρ-变差
各向异性次Laplace算子和拟p-次Laplace算子的Picone恒等式及其应用
《安徽师范大学学报》(人文社会科学版)第47卷总目次
《安徽师范大学学报( 人文社会科学版) 》征稿启事