朱文鑫
摘 要:文章通过分析发电机定子结构及定子接地故障产生的原因,结合具体案例简析了定子接地的查找方法和处理对策。
关键词:发电机定子;接地故障;分析处理;对策
中图分类号:TM311 文献标识码:A 文章编号:1006-8937(2016)03-0100-02
近几年来,大部分发电厂汽轮发电机组出力都能达到额定值,各项性能与参数也足以满足正常运行方式的要求。但是,由于技术因素的限制,汽轮发电机定子在制造、使用中过程中为单一整体,维修非常困难。因此,本文对大型汽轮发电机定子接地故障原因进行了较为全面、系统的阐述,同时结合具体实例剖析了这些故障对机组安全运行带来的危害及相应的处理措施。
1 发电机定子接地故障的危害性
发电机定子绕组对地(铁芯)绝缘的损坏就可能会发生单相接地故障,这是定子绕组最常见的电气故障。定子绕组单相接地故障对发电机的危害主要表现在定子铁芯的烧伤和接地故障扩大为相间或匝间短路。
铁芯烧伤由故障点电流If和故障持续时间t决定,If2越大,铁芯损伤越严重。对于没有伤及铁芯的定子绕组绝缘损坏,修复工作较简单,停机时间也较短;一旦烧及铁芯,由于大型发电机组定子铁芯结构复杂,修复困难,停机时间就较长,如果说定子绕组绝缘损坏和单相接地故障是难免的,但由此而殃及定子铁芯则是完全应该避免的,为此应设法减小定子绕组单相接地电流If ,同时缩短故障的持续时间。
定子绕组绝缘一点损坏(单相接地)时故障电流仅数安或数十安,故障处电弧时断时续,将产生间歇性弧光过电压,由此而引发多点绝缘损坏,轻微的单相接地故障扩展为灾难性的相间或匝间短路,这也是必须避免发生的。
2 发电机定子绕组接地原因分析
发电机绝缘有较高的耐电压强度,并能承受一定过电压的性能,在工作电压和工作温度下,绝缘介质损耗因数tanδ小且稳定,具有一定的去游离电压、绝缘寿命应保证在25~30 a。造成发电机定子接地的原因主要有发电机内部因素的原因及外部因素的原因。以下统计了常见的几点发电机定子绕组可能造成接地故障的原因。
2.1 定子绕组发生接地故障的内部原因
①定子绕组的绝缘材料、铜导体和定子铁芯由于膨胀系数不同,在绕组加热和冷却过程中,不可避免地产生较大的机械应力。长时间作用使得绝缘失去弹性而产生裂纹,甚至在运行电压下绝缘击穿。另外,发电机绝缘在工作温度下、浸渍漆和粘合剂不应融化流出,否则将导致绝缘迅速老化。②发电机绝缘在制造过程中和运行时受到各种机械力的作用,尤其在高速运转时受到的机械应力更大,受到的机械应力及危害分析如下:其一,端部线圈在运行时和突然短路时,产生电动力使端部线圈固定松动,长时间作用磨坏绝缘。其二, 幅向交变电动力,是定子绕组的横向磁通使导体受到的力。另外,在额定电流下,汽轮发电机单根线棒上也会受到几百公斤力的作用,并以每秒100次的频率打击着绝缘,在短路时,该力达到数百吨。上述交变电动力作用结果,将使绝缘断裂或磨损,在运行中可能使绝缘击穿。③发电机运行产生电晕放电时,又有臭氧和各种氧化氮产生,前者是强烈的氧化剂,侵蚀有机绝缘材料;后者和水形成硝酸或亚硝酸,腐蚀金属材料,使纤维材料变脆。所以,发电机绝缘应防止产生电晕放电并采用防电晕材料。④发电机内定子绕组绝缘被异物磨损或老化等造成绝缘水平下降时,可能造成定子接地故障。
2.2 定子绕组发生接地故障的外部原因:
运行中的发电机定子接地时,发变组保护装置会发出“定子接地”报警信号,发电机出线采用封闭母线后,由外界因素引起接地的几率大大减少了,但是其他一些因素也会造成发电机定子接地,例如:①发电机漏水及冷却水导电率严重超标时会引起接地报警。②与发电机定子绕组相连的一次部分设备上发生单相接地时引起接地故障。如发电机出线主封母支持绝缘子受潮绝缘下降、主变低压侧升高座内因橡胶密封升缩套破裂渗水导致升高座内积水瓷瓶绝缘下降。③发电机电压互感器开口三角形绕组的高压侧熔断器熔断,开口三角电压线松动、接触不良,电压互感器开口三角侧一次插头或二次插头接触不良等,也会造成发电机定子接地报警,这种不是由于真正接地而引起保护报警的现象通常称为“假接地”。④发电机风道及绕组上的污垢和尘土造成散热条件脏污,引起风道堵塞、绕组过热,导致发电机温升过高、过快,使绕组绝缘迅速恶化。⑤发电机冷却器进水管堵塞,造成冷却水供应不足,绕组过热、绝缘受损。⑥发电机长期过负荷运行。⑦在发电机烘干驱潮时,温度过高。
3 故障现场排查、分析判断及事故处理
当发电机定子绕组及其一次回路发生一相接地时,接地点将流过对地电容电流。该电容电流可能产生电弧,如果电弧是持续性的,同时又发生在发电机内部,就可能损坏发电机定子铁芯,铁芯的损坏程度与此时对地电容电流的大小有关。发电机运行中保护装置发出“定子接地”报警信号后,运行人员应立即测量发电机相关二次电压并通知检修人员立即到发变组保护屏、PT二次端子箱等地分别测量发电机二次电压,进行分析,以判断发电机定子是否真正发生接地故障。
当定子绕组回路发生一相金属性接地时,接地相对地电压为零,非接地相电压升高至线电压,各线电压不变且平衡。如果接地点在定子绕组中的某一部分或者是发电机出口一相非金属性接地以及主变低压绕组内部接地时,接地相对地电压不会降至零,不接地相对地电压虽然升高,但也低于线电压,出口PT开口三角侧电压也小于100 V,接地电阻越大或越靠近中性点,其值越小。
当出口PT高压保险熔断一相或两相时,其开口三角绕组的电压也要上升,可能发出接地报警信号。例如:A相高压保险熔断,定子电压的UCA、UAB降低,UBC不变,仍为线电压,UB0、UC0仍接近相电压,UA0则明显降低,开口三角侧电压电压接近100/3 V,此种情况即为假接地。
判断真假接地的关键在于:真接地时,接地相对地电压降低,而非接地相对地电压升高,且线电压彼此平衡。假接地时,不会有相对地电压升高的现象,线电压也不平衡。
定子接地故障的现场检查项目及步骤参考如下:①检查发变组保护装置是否正确动作、保护定值是否合理,加入模拟量校验装置是否正常,是否出现误报、误动作。②测发电机绝缘(带封母及主变、厂高变等其他一次设备)。③检查保护装置及PT二次端子箱的二次电压线是否有松动,接线端子是否足够紧固。④保护装置到PT端子箱及及到PT柜本体的二次线绝缘是否良好。⑤电流、电压二次回路各接地点是否可靠、正确。⑥在PT就地端子箱或中性点变压器的二次电压端子施加模拟量,带外部线模拟检查保护装置是否正确可靠动作。⑦检查电压互感器一次绕组尾端接地是否可靠。⑧检查PT柜内一次插头、二次插头及二次插头内的电压线是否接触牢固、可靠。⑨检查发电机出线套管处的软连接是否正常,有无水、油污及其他异物。⑩检查发电机主封母内各处是否干燥、是否绝缘良好,应无积水、无异物。11 检查主变低压侧套餐及厂高变的高压侧升高座内是否干燥无积水、无异物、绝缘良好。12 断开发电机出口软连接,分别测发电机本体及本体以外一次设备绝缘。13 发电机出线PT进行高压试验。14 对发电机中性点干式变、电缆进行高压试验。15 发电机出口避雷器高压试验。16 对主封母连带主变低压侧及厂高变高压侧进行高压试验,如数据不正常再将封母、主变低压侧、厂高变高压侧分别断开连接进行检查。17 发电机打开两侧端盖、抽转子,结合跳机前的各运行参数检查定子绕组。18 发电机定子加高压试验进行排查。
4 案例分析
4.1 故障情况
2013年7月25日,某电厂#2机(东方电机厂,型号:QFSN-21
0-2,额定有功功率210 MW)发变组保护动作,机组跳机。继保人员在发变组保护A、B屏发现定子基波零序电压高值有动作出口跳闸记录(即发电机定子接地保护动作出口跳闸)。分别检查发变组保护装置、外部接线,现场相关的CT、PT端子接线箱等均无发现异常现象,查看了机组故障录波器、网控室故障录波器、保护装置的动作报告及动作波形,并打印了相关的动作报告进行分析。同时,运行人员检查氢气湿度、内冷水的水质及测发电机绝缘均合格。
4.2 故障的查找及处理
机组跳机后,电厂相关技术人员根据保护动作的类型、波形及动作值进行初步分析后,判断可能为发电机内部故障,决定进一步进行检查。
检修人员随后检查了主变及厂高变的升高座内的积水及绝缘受潮的情况,并将发电机封闭母线多个支撑绝缘子及人孔处拆开检查封母内部,均无发现异常。检修人员还检查了机端电压互感器及中性点变压器到就地二次电压端子箱的所有接线,对发变组保护装置的定值和接线、二次电缆的绝缘、电流(电压)二次回路接地点及接线端子进行检查,并对电压互感器一次绕组尾端接地可靠性进行检查,均无异常;继保人员在发电机就地电压端子箱的中性点变压器二次回路加入电压量,模拟故障情况,发变组A、B屏保护装置的定子零序电压高值保护能正确动作、保护装置的动作信号指示也都正常。
后检修人员直接对发电机本体、机端PT、避雷器、中性点电缆、中性点变压器、封母、主变、厂高变、励磁变等一次设备做绝缘电阻、直流电阻、空载试验、倍频耐压试验,交、直流耐压等相关高压试验,试验数据均正常。进一步分析后,重点检查发电机PT的相关一次、二次回路,最后,打开PT本体二次插头,发现PT开口三角形二次插头内有一根二次线存在松动现象,重新焊接处理后,机组重新点火开机,在发电机升压过程及并网后通过发变组保护对机端电压及自产零序电压、外接零序电压、中性点零序电压等各项数据进行检查均正常,机组顺利并网。
5 结 语
如上述分析,汽轮发电机定子的结构、接地故障的几个主要形成原因及故障的现场判断、查找以及相应的处理对策都有了一个较为清晰的思路。但是,遇到实际定子接地故障时,还需要结合具体情况做具体的分析和处理。
参考文献:
[1] 王维俭.发电机变压器继电保护应用(第2版)[M].北京:中国电力出版
社,2001.
[2] 李平.水轮发电机定子一点接地故障查找[J].广西电力,2014,(1).
[3] 陈天翔,王寅仲,海世杰.电气试验(第2版)[M].北京:中国电力出版社,
2008.
[4] 钱祥鹏.发电厂事故分析42例[M].北京:中国电力出版社,2008.