连续泵浦掺铥双包层光纤激光器的自脉冲现象
杜戈果1,2,宋玉立1,2,徐意1,2,王金章1,郭春雨1,曹文华2
1)深圳市激光工程重点实验室,先进光学精密制造技术广东普通高校重点实验室,深圳518060;
2)深圳大学电子科学与技术学院,深圳518060
摘要:在2 μm波段运转的掺铥双包层光纤激光器中观察到了自脉冲(类锁模)现象.对单端和双端泵浦方式以及不同腔长度下的输出进行比较研究,认为这种现象的主要产生机制可能为掺铥光纤中的自相位调制和离子簇导致的可饱和吸收效应.
关键词:光电子与激光技术;掺铥光纤;自脉冲;可饱和吸收;自相位调制;脉冲
Received: 2014-11-13; Revised: 2015-05-16; Accepted: 2015-05-20
Foundation: National Natural Science Foundation of China(61308049) ; Special Fund Project for Shenzhen Strategic New Industry(JCYJ20130329103035715 ) ; Shenzhen Fundamental Research Plan of Technology and Science Plan(JC201105170655A)
Corresponding author: Professor Du Geguo.E-mail: dugeguo@szu.edu.cn
光纤激光器以其转换效率高、光束质量好、可调谐范围大及结构紧凑等优点,在光通信、激光医疗、工业加工及航空航天等诸多领域得到广泛应用.实现脉冲光纤激光器的方法有多种,如调Q技术、增益开关和锁模技术等[1-4].一般认为,没有任何调制器件的连续泵浦光纤激光器的输出都是连续的,但研究发现,即使在连续抽运情况下,掺稀土元素的光纤激光器也会出现自锁模导致的脉冲输出现象,文献报道较多的主要有掺铒和掺镱光纤激光器等.
有关掺铒光纤激光器,Boudec等[5]在不同腔装置下,利用不同泵浦波长进行了实验.当泵浦功率超过激光阈值后,高损耗腔的输出随泵浦功率的增加从平稳阶段到脉冲序列连续变化.文献[6-10]中,对掺铒光纤激光器中的自脉冲现象提出了几种假设,认为离子对效应为导致此现象的主要机制.离子对浓度对掺铒光纤激光器的动态行为有影响,高掺杂光纤有更明显的自脉冲现象.而且如果使用接近激光波长的激光来泵浦,输出平稳度也可得到明显改善.
关于掺镱光纤激光器,Hideu等[11]研究了腔损耗对脉冲动态行为的影响.结果表明,高损耗腔更容易出现非线性效应,如布里渊散射和拉曼散射,导致在很大泵浦功率范围内的不规律自脉冲现象.然而,低损耗腔在泵浦达到阈值时出现自脉冲输出,当泵浦功率继续增大时,输出逐步变成准连续.而且,在布里渊后向散射被抑制的单向环形腔里,输出明显平稳.文献[12-13]进一步证实了布里渊后向散射的存在以及对自脉冲现象的影响.另外,单端和双端泵浦的不同输出也表明,增益光纤远端的弱吸收导致的可饱和吸收效应也会导致自脉冲现象[14-15].还有其他掺杂光纤中关于自脉冲现象的报道,如掺钕光纤激光器[16-17]和掺钐光纤激光器[18]等.
掺铥光纤激光器以其发射的2 μm波段激光处于水分子吸收峰,且对人眼安全的独特性能成为全球研究的热点.关于掺铥光纤激光器的自脉冲现象,Jackson等[19-21]指出离子簇效应导致了自脉冲.与单向泵浦相比,双向泵浦有更平稳的激光输出.Sherif等[22]展示了在1 319 nm泵浦的双向泵浦线型腔中,不同泵浦功率下的自脉冲现象,他们认为是离子簇效应导致了这一现象.根据文献[14,23],当脉冲周期与腔回程有特定对应关系时,称这种脉冲为锁模脉冲.本研究报道了单端和双端泵浦掺铥光纤激光器中的自脉冲(类锁模)现象,并探讨其物理机制.迄今为止,有关双包层掺铥光纤激光器中的调Q包络中的自脉冲自锁模现象还鲜有报道.
实验装置如图1.其中,图1(a)为单端泵浦实验装置.泵浦源为半导体激光器,最大输出功率为20 W,工作中心波长为790 nm.泵浦光经由一个双透镜耦合系统聚焦至掺铥光纤.激光谐振腔则为两面二色镜形成的法布里—珀罗(Fabry-Pérot,F-P)腔,其中,M1对790 nm附近的光高透,对2 μm附近的光高反; M2对790 nm附近的光高反,对2 μm附近的光透过率为50%.所用光纤为进口D型双包层掺铥光纤,纤芯直径为20 μm,数值孔径(numerical aperture,NA)为0.17;内包层直径为300 μm,NA为0.4;外包层和涂覆层直径分别为353 μm和459 μm;对790 nm泵浦光的吸收系数为2.2 dB/m.
图1 实验装置Fig.1 Experimental setups
除单端泵浦,还进行了双端泵浦的实验.图1(b)为双端泵浦实验装置,两个泵浦源和增益光纤与单端泵浦情况一致,M3和M1一致,M4为45°入射工作,对790 nm光高透、2 μm光高反,此端利用光纤端面本身的菲涅尔反射构成一个谐振腔镜(另一个腔镜为M3).对双端泵浦,在探测输出功率时,为了滤去未吸收的泵浦光,在功率计前加了一个对790 nm高反的平面镜.
实验所用的测量仪器有:功率计、示波器(Tektronix,型号为DPO 7104C)、InGaAs探测器(Electronic-optics technology,型号为ET-5000)和光谱仪(Yokogawa,型号为AQ-6375).
2.1不同长度光纤中的自脉冲现象
分别对长度为1.0、2.6、3.1、5.0和10.0 m的掺铥光纤进行实验,在单端泵浦和双端泵浦的两种实验条件下,均观察到具有一定锁模特征的自脉冲现象,脉冲规律呈现一致性,如图2.脉冲周期T由腔长(本实验中即为光纤长度)决定,可表示为其中,L为腔长; n为增益介质的折射率; c为真空中的光速.
图2 不同长度光纤下的自脉冲(类锁模)输出Fig.2(Color online) Self-pulses(self-mode-locking-like pulses) with different fiber lengths
图3 脉冲的典型演化Fig.3(Color online) Typical evolution of pulses
图3和图4分别为L =3.1 m,泵浦功率依次为1.7、5.1及7.5 W时的时域图和频域图.实验发现,更高的泵浦(以实验室可得最高功率来看)功率不会给锁模脉冲带来本质上的改变,只会在主脉冲之间引入更多竞争性的小脉冲,见图3(均在10 ns/div下).此外,由图2可见,更长的光纤长度也会给脉冲带来这种改变.同时,泵浦功率增加时光谱向长波方向移动.纤芯中形成的热聚集使基态各子能级上的玻尔兹曼粒子增加,受激辐射向基态的更高子能级跃迁,从而改变了发射波长,造成光谱红移,并出现更多相互竞争的纵模,如图4.
图4 不同泵浦功率下的光谱(L = 3.1 m)Fig.4(Color online) Spectra evolution with different pump power(L = 3.1 m)
实验中,当改变泵浦功率或光纤长度时,脉宽始终维持在2 ns左右.当然,由于实验设备所限(示波器带宽为1 GHz),测量只能精确到ns量级,真实值可能更窄或在不同状况下有所改变.单脉冲能量E和峰值功率P的关系为其中,Pav为平均功率; f为重复频率;τ为脉冲宽度.对光纤长度为3.1 m的单端泵浦,实验可得最大输出功率为2.5 W,对应单脉冲能量约为80 nJ,峰值功率约为50 W.
2.2调Q脉冲包络
通过调节示波器的时域范围,发现输出并不是稳定的连续锁模,而是调Q锁模,如图5所示.图5为光纤长度为10.0 m时,激光器刚过阈值的典型时域图.当泵浦功率逐渐增大时,调Q脉冲频率越来越大,脉宽越来越窄,出现了调Q脉冲的典型特征.图5(d)中的小图为相同时域下泵浦功率增加1 W时的调Q脉冲图.然而,进一步增大泵浦功率时,脉冲变得不稳定,这种结果表明了腔内可能存在较弱的可饱和吸收效应.这种输出特征与典型的锁模激光不同,典型锁模脉冲在所有时域下所有单脉冲的幅值一致[24],而这里则是以调Q包络脉冲形式存在.
图5 不同时域下的脉冲演化(L = 10.0 m)Fig.5(Color online) Typical evolution of pulses with different time spans(L = 10.0 m)
迄今为止,对稀土掺杂光纤激光器中的自脉冲自锁模现象已经有较多的实验和理论研究,但是对此现象的解释尚未达到共识.一个可能的解释是由于光纤未泵浦端基态重吸收导致的可饱和吸收效应.在本实验中,当采用更高泵浦功率、更短光纤长度以及双端泵浦这些措施来更充分地泵浦整根光纤时,并未发现脉冲的消失,因此,可以否定未泵浦端可能导致的可饱和吸收效应所产生自脉冲现象的解释.文献[5]中关于掺铒光纤激光器也有相似讨论,同样认为这种假设对掺铒光纤激光器不合适.
其次,锁模光纤激光器中的两种特殊状态——类噪声脉冲群(noise-like pulse)和耗散孤子(dissipative soliton resonance,DSR),与研究中提到的现象也有差异.这两种现象的实验装置中都加入了明显的锁模调制器件,已达到稳定的连续锁模状态.此外,其输出也有典型特征:类噪声脉冲群的输出光谱是有较宽3 dB谱宽的平滑曲线[25-26],而DSR则输出比较典型的方波脉冲和孤子光谱[27-28].本研究中采用的是未加入任何调制器件的简单线型腔,输出的是呈现调Q包络的锁模脉冲和存在众多小峰的不平滑光谱.
有研究表明,重掺杂掺铥光纤中,铥离子的上转换和重吸收过程会导致可饱和吸收[29-31].文献[7]提到饱和吸收体(离子簇)只存在于重掺杂光纤中.本实验使用的光纤吸收系数较低,而吸收系数与掺杂浓度存在一定程度的正比关系.由此可推断,实验所用光纤并非重掺杂,但这种可饱和吸收在其中应该还是起到了一定作用.
实验中,由于铥离子的发射谱和增益带宽比较宽,谐振腔腔镜是无特定波长选择的宽带腔镜,且增益光纤也比较长.因此,在谐振腔内振荡的纵模很多,不同纵模之间存在激烈的竞争和耦合,形成脉冲演化初期的短脉冲.在光强度较高时,自相位调制发生作用[32-33],使各个纵模之间的相位差接近或等于腔内的纵模间隔,于是具有相对优势的一个或几个模式便从众多模式中脱颖而出,形成具有一定锁模特征的脉冲输出.
在未使用任何特殊锁模器件情况下,观察到线型腔中掺铥光纤激光器的自脉冲(类锁模)现象,脉冲以调Q包络形式存在.分析认为主要机制为自相位调制和掺铥光纤中的离子簇导致的可饱和吸收效应.机理明晰尚需进一步的分析与验证.
引文:杜戈果,宋玉立,徐意,等.连续泵浦掺铥双包层光纤激光器的自脉冲现象[J].深圳大学学报理工版,2015,32(4) : 422-427.
参考文献/References:
[1]Harun S W,Saidin N,Zen D I M,et al.Self-starting harmonic mode-locked thulium-doped fiber laser with carbon nanotubes saturable absorber[J].Chinese Physics Letters,2013,30(9) : 094204-1-094204-3.
[2]Jackson S D.Passively Q-switched Tm3+-doped silica fiber lasers[J].Applied Optics,2007,46(16) : 3311-3317.
[3]Liu Jiang,Wu Sida,Xu Jia,et al.Mode-locked 2 μm thulium-doped fiber laser with graphene oxide saturable absorber[C]//International Conference on Lasers and Electron-Optics.San Jose(USA) : OSA,2012: JW2A.76-1-JW2A.76-2.
[4]Wang Q,Geng J,Luo T,et al.Mode-locked 2 μm laser with highly thulium-doped silicate fiber[J].Optics Letters,2009,34(23) : 3616-3618.
[5]Boudec P L,Flohic M L,Francois P L,et al.Self-pulsing in Er3+-doped fiber laser[J].Optical and Quantum Electronics,1993,25(5) : 359-367.
[6]Boudec P L,Francois P L,Delevaque E,et al.Influence of ion pairs on the dynamical behavior of Er3+-doped fiber laser[J].Optical and Quantum Electronics,1993,25(8) : 501-507.
[7]Colin S,Contesse E,Boudec P L,et al.Evidence of a saturable-absorption effect in heavily erbium-doped fibers [J].Optics Letters,1996,21(24) : 1987-1989.
[8]Loh W H,Sandro J P.Suppression of self-pulsing behavior in erbium-doped fiber lasers with resonant pumping: experimental results[J].Optics Letters,1996,21(18) : 1475-1477.
[9]Sanchez F,Stephan G.General analysis of instabilities in erbium-doped fiber lasers[J].Physical Review E,1996,53(3) : 2110-2122.
[10]Rojo R R,Mohebi M.Study of the onset of self-pulsing behavior in an Er-doped fiber laser[J].Optics Communications,1997,137(1/2/3) : 98-102.
[11]Hideur A,Chartier T,Ozkul C,et al.Dynamics andstabilization of a high power side-pumped Yb-doped double-clad fiber laser[J].Optics Communications,2000,186(4/5/6) : 311-317.
[12]Salhi M,Hideur A,Chartier T,et al.Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser[J].Optics Letters,2002,27(15) : 1294-1296.
[13]Ortac B,Hideur A,Chartier T,et al.Influence of cavity losses on stimulated Brillouin scattering in a self-pulsing side-pumped ytterbium-doped double-clad fiber laser[J].Optics Communications,2003,215(4/5/6) : 389-395.
[14]Upadhyaya B N,Chakravarty U,Kuruvilla A,et al.Selfpulsing characteristics of a high-power single transverse mode Yb-doped CW fiber laser[J].Optics Communications,2010,283(10) : 2206-2213.
[15]Chakravarty U,Kuruvilla A,Harikrishnan H,et al.Study on self-pulsing dynamics in Yb-doped photonic crystal fiber laser[J].Optics and Laser Technology,2013,51: 82-89.
[16]Chen Z J,Grudinin A B,Porta J,et al.Enhanced Q switching in double-clad fiber lasers[J].Optics Letters,1998,23(6) : 454-456.
[17]Glas P,Naumann M,Schirrmacher A,et al.Self pulsing versus self locking in a CW pumped neodymium doped double clad fiber laser[J].Optics Communications,1999,161(4/5/6) : 345-358.
[18]Farries M C,Morkel P R,Townsend J E.Spectroscopic and lasing characteristics of samarium doped glass fiber [J].IEE Proceedings J(Optoelectronics),1990,137(5) : 318-322.
[19]Jackson S D,King T A.Dynamics of the output of heavily Tm-doped double-clad silica fiber lasers[J].Journal of Optical Society of America B,1999,16(12) : 2178-2188.
[20]Jackson S D,King T A.High-power diode-claddingpumped Tm-doped silica fiber laser[J].Optics Letters,1998,23(18) : 1462-1464.
[21]Jackson S D.Direct evidence for laser reabsorption as initial cause for self-pulsing in three-level fiber lasers [J].Electronics Letters,2002,38(25) : 1640-1642.
[22]Sherif A F,King T A.Dynamics and self-pulsing effects in Tm3+-doped silica fiber lasers[J].Optics Communications,2002,208(4/5/6) : 381-389.
[23]Tsao H X,Chang C H,Lin S T,et al.Passively gainswitched and self mode-locked thulium fiber laser at 1950 nm[J].Optics and Laser Technology,2014,56: 354-357.
[24]Zhou W,Shen D Y,Wang Y S,et al.Mode-locked thulium-doped fiber laser with a narrow bandwidth and high pulse energy[J].Laser Physics Letters,2012,9(8) : 587-590.
[25]Tang D Y,Zhao L M,Zhao B.Soliton collapse and bunched noise-like pulse generation in a passive modelocked fiber ring laser[J].Optics Express,2005,13(7) : 2289-2294.
[26]Li Jianfeng,Yan Zhijun,Sun Zhongyuan,et al.Thuliumdoped all-fiber mode-locked laser based on NPR and 45-tilted fiber grating[J].Optics Express,2014,22(25) : 31020-31028.
[27]Gumenyuk R,Vartiainen I,Tuovinen H,et al.Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser[J].Optics Letters,2011,36(5) : 609-611.
[28]Haxsen F,Wandt D,Morgner U,et al.Monotonically chirped pulse evolution in an ultrashort pulse thuliumdoped fiber laser[J].Optics Letters,2012,37(6) : 1014-1016.
[29]Tang Yulong,Xu Jianqiu.Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings[C]//Photonics and Optoelectronics Meetings.Wuhan(China) : SPIE,2009,72760L-1-72760L-10.
[30]Qamar F Z,King T A.Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers [J].Journal of Modern Optics,2005,52(8) : 1053-1063.
[31]Liu Chun,Luo Zhengqiang,Huang Yizhong,et al.Selfmode-lock 2 μm Tm-doped double-clad fiber laser with a simple linear cavity[J].Applied Optics,2014,53(5) : 892-897.
[32]Myslinski P,Chrostowski J,Koningstein J A K,et al.Self-mode locking in a Q-switched erbium-doped fiber laser [J].Applied Optics,1993,32(3) : 286-290.
[33]Han Xu,Feng Guoying,Wu Chuanlong,et al.Investigation of self-pulsing and self-mode-locking in ytterbiumdoped fiber laser[J].Acta Physica Sinica,2012,61(11) : 114204-1-114204-7.(in Chinese)韩旭,冯国英,武传龙,等.掺镱光纤激光器自脉冲与自脉冲内的自锁模研究[J].物理学报,2012,61(11) : 114204-1-114204-7.
【中文责编:方圆;英文责编:木南】
【电子与信息科学/Electronics and Information Science】
Citation: Du Geguo,Song Yuli,Xu Yi,et al.Self-pulsing in a continuous wave pumped Tm-doped double-clad fiber laser[J].Journal of Shenzhen University Science and Engineering,2015,32(4) : 422-427.(in Chinese)
Self-pulsing in a continuous wave pumped Tm-doped double-clad fiber laserDu Geguo1,2,Song Yuli1,2,Xu Yi1,2,Wang Jinzhang1,
Guo Chunyu1,and Cao Wenhua2
1) Shenzhen Key Laboratory of Laser Engineering,Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institution,Shenzhen University,Shenzhen 518060,P.R.China
2) College of Electronic Science and Technology,Shenzhen University,Shenzhen 518060,P.R.China
Abstract:We observe the self-pulsing(self-mode-locking like) in a Tm-doped silica fiber laser operating at a wavelength around 2 μm.To get further insight into the variation and evolution of the self-mode-locking,we investigate both single-end and double-end pumping configurations with different cavity-lengths.We find that the main mechanism of self-mode-locking can be attributed to the combination of self-phase modulation effect and the saturable absorption effect caused by ion pairs in Tm-doped fiber.
Key words:optoelectronic and laser technology; Tm-doped fiber; self-pulsing; saturable absorption; self-phase modulation; pulse
作者简介:杜戈果(1971—),女(汉族),陕西省米脂县人,深圳大学教授.E-mail: dugeguo@ szu.edu.cn
基金项目:国家自然科学基金资助项目(61308049) ;深圳市战略新兴产业发展专项资金资助项目(JCYJ2013032910303 5715) ;深圳市科技计划基础研究资助项目(JC201105 170655A)
doi:10.3724/SP.J.1249.2015.04422
文献标志码:A
中图分类号:TN 248