赵晶 钱秋桐 卢娜
【摘要】 对比分析处于不同城镇化发展阶段区域的碳排放量变化的影响因素具有现实的指导意义。本文以处于城镇化发展不同阶段的苏南、苏中和苏北三个地区为例,利用STIRPAT模型对比分析城镇化发展进程和经济发展水平不同对碳排放量的影响。研究结果表明:城镇化发展是碳排放的主要影响因素之一,且现阶段城镇化发展并不利于实现碳减排;工业发展对碳排放量的影响较大,工业能源消费量占能源消费总量的70%以上;无论城镇化发展处于哪个阶段,改善能源消费模式,均有利于减少碳排放量。
【关键词】 城镇化 碳排放 STIRPAT模型 地区差异
一、引言
如今,自然资源日趋紧张,生态环境日趋恶劣,发展低碳经济已成为全世界人民关注的焦点。加速城镇化和促进低碳发展是我国目前经济发展的重点。城镇化不同阶段经济发展水平不同,不同经济发展水平下的能源消费对碳排放量的影响也不同。江苏省不同区域经济发展水平差异显著,苏南、苏中、苏北目前正处于不同的城镇化阶段,因此对比研究具有代表性的三个区域的能源消费碳排放量对我国在城镇化进程中发展低碳经济具有现实的指导意义。
已有学者对城镇化和碳排放之间的关系做了相关研究。卢祖丹基于1995—2008年省域面板数据,通过建立STIRPAT模型对城镇化和碳排放之间的关系进行了相关研究,得出城镇化发展有利于实现碳减排,但未探讨不同的城镇化水平对碳排放的影响因素。林伯强、刘希颖用协整法探讨城市化对碳排放的影响程度,但只针对中国这一主体进行研究,并未对不同区域进行对比分析。宋德勇、徐安采用STIRPAT模型分析了区域差异对碳排放的影响,并未对经济发展水平和碳排放的内在联系进行探讨。
二、研究方法
经济发展是碳排放增长的首要因素,本文结合York等提出的STIRPAT随机回归模型,来分析研究产业结构对碳排放的影响。该模型主要分析P(人口)、A(富裕度)、T(技术)、I(环境影响)之间的关系,公式为:
I■=?琢P■■A■■T■■e■ (1)
其中:?琢是常数项,b、c、d是人口、富裕度、技术的指数,e是误差项。
在实际分析时,将模型先进性对数化处理:
lnIi=ln?琢+blnPi+clnAi+dlnTi+lnei (2)
式(2)中,P代表城镇化水平,用城镇人口占总人口的比重表示(%),用来反映人口向城镇聚集的程度;A代表人均工业生产总值,用工业生产总值与常住人口的比值表示(元/人);T代表工业能耗强度,选取工业能源消费量与工业生产总值的比重即工业能耗强度来表示(吨标准煤/万元);I表示工业碳排放量(吨)。相关经济数据均以2000年为基期做了不变价处理。
根据国家统计局编制的《能源统计报表制度》,本文的能源消费指能源的终端消费量。在计算碳排放量时,首先将能源消费量折算成标准煤,然后根据国家发改委能源研究所给出的标准煤的碳排放系数为2.4567吨CO2/吨标准煤进行计算。
文中的能源数据来自江苏省13市各自历年的《统计年鉴》;经济社会数据来自历年《江苏省统计年鉴》。
三、结果与分析
1、研究区域
江苏省位于我国大陆东部沿海中心,地处长江三角洲,经济发展位于全国前列,地区生产总值占全国10%以上。江苏省经济发展区域差异大,苏南、苏中、苏北的城镇化发展处于不同的发展阶段,因此选择江苏省为研究样本,研究其城镇化发展对碳排放的影响,探究城镇化进程中碳排放的影响因素具有很好的代表性。
苏南地区(南京、苏州、无锡、镇江、常州)与上海相邻,经济发展较快,是江苏省经济发展的主力,城镇化发展水平较高,2013年城镇化率已达到73.5%;苏中地区(扬州、泰州、南通)与苏南地区隔江相望,位于长江中下游,经济发展速度适中,城镇化发展水平较落后,2013年城镇化率为59.7%;苏北地区(徐州、宿迁、淮安、连云港、淮安)相对苏南和苏中虽然自然资源丰富,但是接近内陆,经济发展落后,城镇化水平与苏中地区较接近,城镇化率在2013年已达到56.1%。
2、模型回归结果
由于苏中和苏北地区2006年以前能源消费量数据缺失,故本文将主要研究2006—2013年间各区域的碳排放量。对式(2)利用SPSS进行线性回归分析时,首先将数据进行Zscore一致性处理,避免各变量数量级不同对数据分析的影响,然后将处理后的数据带入模型进行分析。结果显示,模型整体通过了一致性检验,但是在95%的置信区间,所有变量的t值都不显著。进一步计算各变量的方差膨胀因子(VIF),三个变量的VIF均远大于10,证明模型中的城镇化水平、人均工业生产总值和工业能耗强度三个变量之间存在严重的多重共线性,因此不适合运用最小二乘法进行无偏估计。
为克服自变量之间的多重共线性问题,本文采用SPSS软件中的有偏估计岭回归函数对模型进行拟合。岭回归是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度為代价获得回归系数更为符合实际、更可靠的回归方法。其中k=0时,即为普通最小二乘估计。将式(2)进行岭回归分析,当k=0.1时,苏南模型中各自变量回归系数变化趋于稳定,当k=0.2时,苏中和苏北的模型中各自变量回归系数变化趋于稳定,从而拟合方程分别为:
苏南:lnI=0.2813lnP+0.4407lnA-0.2424lnT (3)
苏中:lnI=0.4607lnP+0.2379lnA-0.2074lnT (4)
苏北:lnI=0.1846lnP+0.3516lnA+0.4007lnT (5)
对岭回归拟合结果进行检验(见表1),结果显示拟合结果能够通过显著性检验。
根据模拟结果可以看出,苏南、苏中和苏北的模型在5%的置信区间都能通过显著性检验,所有变量的t值都大于1.96,R2值和调整的R2值都大于86%,说明P(人口)、A(富裕度)、T(技术)三个变量解释了86%以上的碳排放量变动。
3、结果分析
(1)工业能耗对碳排放的影响。根据回归方程可以看出,城镇化水平和工业生产总值与碳排放量都呈正相关,与实际相符合。工业发展越快,能源消耗越多,碳排放量越大。而城镇化水平的提高并没有导致碳排放的减少,很大程度上是因为城镇化发展仍然离不开工业产业的发展。
苏南是江苏省经济最发达地区,是江苏地区经济发展的主力。结合表2和图1可以看出,2006年以来,苏南地区的城镇化水平较高,至2013年城镇化水平已达到73.50%,且一直持续稳步增长。苏南城镇化水平对碳排放影响的弹性系数为0.28,说明该地区较高水平的城镇化并没有使碳排放量得到减少。相比苏中和苏北地区,苏南地区的工业生产对碳排放的影响更大,弹性系数达0.44,说明该地区在发展工业的同时应提高生产技术水平,提高能源利用效率。
苏中地区的经济发展速度较慢,城镇化水平由2006年的47.3%增长为2013年的59.7%,变动幅度是三个区域中最小的。回归结果显示,苏中地区工业发展对碳排放量的影响较小,弹性系数为0.24,说明该地区工业发展并未造成碳排放量的大幅度增加。但是城镇化对碳排放量影响较大,弹性系数达到0.46,说明该地区在大力发展城镇化的同时必须注重减少碳排放量。
苏北地区城镇化发展较快,至2013年,苏北地区的城镇化水平已达到56.1%,超过苏中地区。相对而言,苏北地区的生产力水平较低,经济发展潜力较大。对苏北地区碳排放量影响较显著的因素是工业能耗强度,弹性系数为0.40,说明该地区节能减排的关键是降低工业能耗强度。城镇化水平弹性系数为0.18,对碳排放影响较弱,说明该地区大力提高城镇化水平不会造成碳排放量的大量增加。
对比三个回归方程,苏南和苏中的能耗强度与碳排放呈负相关,而苏北地区能耗强度与碳排放呈正相关,且能耗强度每增加1%,碳排放量将增加0.4007%,比人均工业生产总值对碳排放量的影响更大,原因在于,苏南和苏中地区的工业技术先进,能源利用效率高,而苏北地区经济落后,对传统化石能源的依赖性较强,能源利用效率较低。
(2)能源消费模式。2010年之前江苏省的家庭能源消费主要是煤气和液化石油气,从2010年开始其家庭能源消费主要是天然气。到2013年,除苏州地区,全省其他12个市都已经不使用煤气。根据IPCC《国家温室气体排放清单指南》提供的碳排放系数可知,天然气的碳排放系数为0.4483×104,煤气的碳排放系数为0.3548×104,液化石油气的碳排放系数为0.5042×104。
由图2可知,随着经济的发展,苏南、苏中、苏北城镇居民家庭消费的碳排放强度都在逐步减弱,且变动趋势接近一致。这主要是由于煤气和液化石油气消费量的减少和天然气消费量的增加,使得能源消耗导致的碳排放增长速度小于经济发展的增长速度。2006—2013年,仅家庭能源消费,苏南地区的碳排放强度下降38.27%,苏中地区的碳排放强度下降38.04%,苏北地区的碳排放强度下降50.46%。
至2007年,天然气还尚未投入使用,而江苏省13市中除苏北的连云港和宿迁两地外,其它各市气化率均达到90%以上。到2013年,江苏省13市的燃气普及率已经达到95%以上,天然气的使用使三大地区家庭能源消费模式趋于一致。不同的城镇化发展水平对于家庭能源消费模式的影响并不显著,从2007年开始,三大地区的能源消费强度就逐渐接近,因此改善能源消费模式也可以大大减少碳排放量。
(3)能源政策。应综合考虑三个地区不同城镇化发展水平下的能源政策对碳排放的影响。从三个地区的经济发展状况和资源禀赋可以看出,苏南地区的能源主要依靠进口,但苏南地区经济发展速度较快,苏中、苏北地区较多人口流入苏南地区,推动苏南地区的城镇化发展。在“十二五”期间,苏南地区基本已经实现能源消耗增长速度低于经济发展速度。苏南地区对于新能源产品和技术的研究和开发,使得苏南地区的碳排放量基本得到了控制。相对于苏南地区,苏中地区城镇化發展速度较慢,且正处于工业化中期向后期过渡阶段,高耗能产业发展较快,在推动新能源发展的同时,重点发展石油化工产业的衍生产品,能源消耗高出全省平均水平,碳排放量持续增长。苏北地区虽然城镇化水平超过苏中地区,但却是江苏省经济发展最落后的地区,能源消耗高,对煤炭等传统能源的依赖性高。但是苏北地区利用自身的地理优势,致力于新能源开发,主要研发太阳能和风能,在大力发展经济的同时注重减少碳排放量。独特的地理优势和能源优势,使苏北地区的城镇化建设发展较快,但同时也抑制了苏北地区的经济发展,促使苏北地区仍停留在重工业为主导的经济发展阶段。
四、结论和建议
1、结论
本文以处于城镇化发展不同阶段的苏南、苏中和苏北三个地区为例,利用STIRPAT模型探讨城镇化发展进程和经济发展水平对碳排放量的影响因素,研究结果表明,不同的城镇化发展进程和经济发展水平对碳排放量的影响不同。城镇化发展和经济发展速度均较快的苏南地区,碳排放量的增长速度(25.8%)已经低于工业经济增长速度(156%),碳排放量基本得到了控制;城镇化发展和经济发展速度适中平稳的苏中地区,城镇化发展是现阶段的发展重点,碳排放量增长速度与经济增长速度一致,持续稳步增长;城镇化发展速度较快但经济发展落后的苏北地区,对传统能源依赖性大,碳排放量增长速度超过经济发展速度。
苏南地区,城镇化水平由2006年的67.1%增长为2013年的73.5%,工业生产对碳排放的影响最大,弹性系数达0.44;城镇化水平对碳排放影响的弹性系数仅为0.28,城镇化建设的推动对碳排放量影响较小。苏中地区,城镇化水平由2006年的47.3%增长为2013年的59.7%,与苏南地区相反,工业发展对碳排放量的影响较小,弹性系数为0.24,工业发展并未造成碳排放量的大幅度增加。但是城镇化对碳排放量影响较大,弹性系数达到0.46,推动城镇化发展的基础设施建设对苏中地区的碳排放影响较大。苏北地区,虽然经济增长速度是三个地区中最快的,2013年苏北地区工业生产总值是2006年的6.31倍,但是苏北地区的城镇化水平和工业生产的弹性系数分别只有0.18和0.35,而能耗强度对碳排放的影响最大,弹性系数为0.40,提高能源利用效率、降低能耗强度才是苏北地区节能减排的关键。
2、政策建议
(1)优化产业结构,促进产业优化升级。虽然苏南地区正在逐步实现产业转型,但是苏中和苏北地区的经济发展仍旧以重工业为主,而且江苏新能源资源匮乏,对传统能源依赖程度大,仅盐城地区风能资源较为丰富。因此加快产业结构优化升级,是减少碳排放量最直接的方法。
(2)提高能源利用效率,优化能源消费模式。提高能源利用效率、降低能耗强度有助于节能减排。家庭能源消费对碳排放的影响体现在衣食住行各方面,应改变能源结构,使用碳排放量较少的新能源替代传统能源。例如,大力发展太阳能、风能发电,减少火力发电;早日实现江苏省13市100%的燃氣普及率,减少煤气和液化石油气的使用。
(3)大力实施节能减排政策。政策与实践相结合,在接下来的“十三五”期间,进一步降低碳排放强度,努力实现经济与碳减排的同步发展。结合苏南、苏中和苏北地区不同的地理优势和资源禀赋,制定不同的发展政策,因地制宜,使地区在经济稳步发展的同时减少碳排放。
(注:基金项目:江苏省实践创新指导项目“城镇化不同阶段对区域碳排放影响研究——以江苏省为例”201410299088X。)
【参考文献】
[1] 卢祖丹:我国城镇化对碳排放的影响研究[J].中国科技论坛,2011(7).
[2] 林伯强、刘希颖:中国城市化阶段的碳排放:影响因素和减排策略[J].经济研究,2010(8).
[3] 宋德勇、徐安:中国城镇碳排放的区域差异和影响因素[J].中国人口·资源与环境,2011(11).
[4] York R,Rosa E A,Dietz T.STIRPAT,IPAT and ImPACT;Analytic tools for unpacking the driving forces of environmental impacts[J]. Ecological Economics,2003(23).
[5] 卢娜、曲福田、冯淑怡、邵雪兰:基于STIRPAT模型的能源消费碳足迹变化及影响因素——以江苏省苏锡常地区为例[J].自然资源学报,2011(5).
[6] 马珩:中国城市化和工业化对能源消费的影响研究[J].中国软科学,2012(1).
(责任编辑:张琼芳)