谢祥云,唐慧慧,王立锋
关于偏序关于偏序Γ-半群的(m,n)拟理想
谢祥云,唐慧慧,王立锋
(五邑大学 数学与计算科学学院,广东 江门 529020)
引入序半群的拟理想、左理想、右理想的概念,给出它们的生成的表示;证明了序半群上任何拟理想可以分解为一个左理想和一个右理想的交,且任何一个极小的拟理想可以分解为一个极小左理想和一个极小右理想的交;给出了拟单偏序半群的刻画和偏序半群拟理想、左理想和右理想的刻画.
拟理想;左理想;右理想;拟单偏序半群
1 引言与预备知识
受泛代数研究的启发,1986年,印度数学家M.K.Sen首先给出了半群的概念[3],随后,越来越多的数学家从事半群的研究,并取得了一些成果[4-18].半群是一般半群的真推广并且有着很多与半群平行的概念,如正则半群、单半群、纯正半群、逆半群,也有正则元、逆元的概念[3,4,9],半群中的重要工具Green关系也在半群中找到了类似物[5,6,8]. 例如,M.K.Sen和N.K.Saha[3]进一步研究了群和正则半群,建立了它们之间的相互关系,Ansari等[7]研究了半群的理想,进一步地,笔者研究了序半群的理想[19].
作为环和半群理论中单边理想的推广,Steifeld分别于1953年和1956年在环和半群中提出拟理想的概念[20,21],后来对拟理想的研究拓展到了不同的代数结构中,主要成果收集在Steifeld的专著中[22]. 近几十年这些代数结构上的拟理想的研究不断深入,例如研究半群上的拟理想[13,14,23]、序半群上的拟理想[17]、超半群上的拟理想[23,24]、模糊序半群上的拟理想[25]等. 本文研究序半群上拟理想的推广拟理想,当时,拟理想就是拟理想.
定义1[2]180设2个非空集合和. 集合称为半群,如果满足下列条件:
定义2[19]2设是一个序半群,对于任意的. 如果是的一个子半群,则称是的一个子序半群,即.
本文中使用但没有提及的概念参见文献[1-3].
推广定义3得到:
引理1[19]3对于任意的,设为序半群的一个子序半群. 如果,则为的一个子序半群.
.
所以
另一方面,
类似于定理2的证明得到定理4.
且
同理可证ii)和iii).
同理可证ii)和iii).
ii)和iii)同理可证.
[1] HOWIE J M. An introduction to semigroup theory [M]. London: Acad Press, 1976.
[2] 谢祥云. 序半群引论[M]. 北京:科学出版社,2001.
[4] SEN M K, SETH A. The maximum idempotent-separating congruence in a regularsemigroup [J]. Bull Cal Math Soc, 1990, 82: 131-137.
[5] SEN M K, SAHA N K. Orthodoxsemigroup [J]. Internat J Math Sci, 1990, 13: 527-534.
[6] SEN M K, SAHA N K. The maximum idempotent-separating congruence on an orthodoxsemigroup [J]. Jour of Pure Math, 1990, 7: 39-48.
[7] ANSARI M A, KHAN M R. Notes onbi-ideals inSemigroups [J]. Rend Circ Mast Palermo, 2011, 60: 31-42.
[11] SETH A. Rees’s Theorem forsemigroup [J]. Bull Cal Math Soc, 1989, 81: 217-226.
[12] SARDAR S K, DAVVAZ B, MAJUMDAER S K, et al. Characteristic ideals and fuzzy characteristic ideals ofsemigroups [J]. Mathematica Aeterna, 2012, 2: 189-201.
[13] MAJUMDAER S K. On some properties of vague ideals inSemigroups [J]. International Journal of Computational Cognition, 2011, 9: 105-110.
[14] CHATTOPADHYAY S, KAR S. On structure space ofsemigroups [J]. Acta Univ Palacki Olomuc, Fac Rer Nat, 2008, 47: 37-46.
[15]YANG Guowei, ZHU Ping. Congruences and the lattice of congruences on a completely 0-simplesemigroup [J]. Soochow J Math, 1994, 20: 335-350.
[17] CAO Yonglin. Characterizations of regular ordered semigroups by quasi-ideals [J]. Vietnam J Math, 2002, 30(3): 239-250.
[20] STEINFELD O. On the ideals quotients and prime ideals [J]. Acta Math Acad Sci Hung, 1953, 4: 289-298.
[21] STEINFELD O. Uber die quasiideale von halbgruppen [J]. Publ Math Debrecen, 1956, 4: 262-275.
[22] STEINFELD O. Quasi-ideals in rings and semigroups [M]. Akademial Kiado, Budapest: Publishing House of the Hungarian Academy of Sciences, 1978.
[23] HILA K, DAVVAZ B, DINI J. Study on the structure ofsemihypergroups [J]. Communications in Algebra, 2012, 40: 2932-2948.
[24] HILA K, DAVVAZ B, NAKA K. On quasi-hyperideals in Semihypergroups [J]. Communications in Algebra, 2011, 39: 4183-4194.
[25] SHABIR M, KHAN A. Fuzzy quasi-ideals of ordered semigroups [J]. Bull of Malays Math Sci Soc, 2011, 34(1): 87-102.
[责任编辑:熊玉涛]
XIEXiang-yun, TANGHui-hui, WANGLi-feng
(School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, China)
In this paper, the concepts ofquasi-ideals,left ideals andright ideals of po-semigroups are introduced. The generation theorems ofquasi-ideals,left ideals andright ideals are obtained by every non-emptyset ofpo-semigroups. That anyquasi-idealof po-semigroups can be expressed as the intersection of aleft ideal and aright ideal of po-semigroups is proved. Moreover any minimalquasi-idealof po-semigroups can be expressed as the intersection of a minimalleft ideal and a minimalright ideal of po-semigroups. Finally characterizations ofquasi-simple po-semigroups are given byquasi-ideals. As an application of results of this paper, some results of quasi-ideals, left ideals and right ideals of po-semigroups are obtained.
quasi-ideal;left ideal;right ideal;qusai-simple po-semigroup
1006-7302(2015)01-0001-07
O152.7
A
2014-08-12
国家自然科学基金资助项目(11361027,11271040);广东省自然科学基金资助项目(S201101000368);安徽省高校优秀青年人才基金重点项目(2012SQRL115ZD);安徽省高校自然科学研究项目(KJ2012B133).
谢祥云(1964—),男,安徽舒城人,教授,博士,硕士生导师,研究方向为序半群的代数理论、模糊代数、粗糙集理论.