谢玉和
中图分类号:G633.6 文献标识码:A 文章编号:1002-7661(2015)17-0053-01
“问题是数学的心脏”,是思维的起点,是学生主动探索的动力。当今,初中学数学教育中与人为本,大众数学和问题解决的现代教学思想已成为一个热点,数学教学将更着重于培养、发展学生的广泛的数学能力,抓住一切有利时机强化学生的应用意识。它不仅包括理解运用数学概念和方法;组织正确的逻辑推理,进行准确有效的计算和估算,还应包括检查、检索、阅读相应的数学书刊文献,会利用表图、计算机去组织、解释、选择、分析和处理信息;能从模糊的实际课题中形成相应的数学问题;会选择有效的解决问题的方法、工具和策略;会用数学的符号和语言进行正确的表达和交流。
一、 充分挖掘数学教材,培养问题意识
初中数学教材中,很多章节都配备了想一想、读一读、做一做、习实作业、应用问题等,在教学中遇到相关内容,要让学生积极去思考,寻找解决问题的办法。例如:在教学圆、扇形、弓形的面积后,让学生思考:一种圆管的横截面是同心圆环面。用刻度尺只测量圆管横截面的哪一条弦的大小,就可以算出截面的面积?充分挖掘数学教材,在数学课中去体现问题解决的思想精髓。
二、鼓励学生去探索、猜想、发现
要培养学生的创造能力,首先是要让学生具有积极探索的态度,猜想、发现的欲望。教学中要设法鼓励学生去探索、猜想和发现,培养学生的问题意识,经常地启发学生去思考,提出问题。学生学习的过程本身就是一个问题解决的过程。当学生学习一门崭新的课程、一章新的知识,乃至一个新的定理和公式时,对学生来说,就是面临一个新的问题。例如初中数学教材的引言,可以让学生提出以下问题:平面几何是怎样的一门学科?这门学科是怎样产生和发展起来的?代数和几何有什么关系?平面几何将要学习哪些知识,这些知识在实际中有什么用?学习平面几何应注意些什么问题?在教学中经常提一些启发性的问题,就会让学生逐步养成求知、好问的习惯和独立思考、勇于探索的精神。
三、在数学教学中适当引入一些开放性问题
解决开放性问题是一种数学活动,其主要目标不在于认识的结果,而着眼于认识主体的活动过程。创设条件提供带有启发性的情境,触动人们主动地去观察、猜想、试误和发现,这是一种建构活动。解决开放性问题,要求学生动态地分析可能的条件和结论之间的复杂关系,这不仅需要逻辑思维、形象思维、直觉思维,还需要发散思维,进行问题的建构或引申,这是一种创造性思维活动。
四、组织学生开展编题活动
让学生学会做学问,会提出问题,编拟问题给自己思考,给别人思考,学生编题过程,是活跃的创新活动过程。让学生编拟数学应用问题,让学生用数学的眼光去观察周围的一切生活现象,思考能否用数学的知识方法、观点和思想去解决自己所遇到的问题,并将这一过程用文字语言表示,编拟出一道数学应用问题。这一作业对于培养学生的提出问题、解决问题和数学建模能力起到十分重要的作用。学生在编拟数学应用题的过程中,一方面要对所学的数学知识理解并能灵活运用;另一方面要有敏锐的眼光,勤于思考的精神,并能通过现象看出问题的本质,更重要的是逐步形成“用数学”的意识,培养学生的语言表达能力,这一练习过程充分体现数学教学的真谛──将数学思想与方法内化于学生自身的素质之中,使学生真正地认识到:数学是根据人类自身的思想对世界的认识,反过来它是人类对客观世界的认识、发展、完善自身的思想。
五、重视应用意识的培养
用数学是学数学的出发点和归宿。数学教学要讲来源、讲用处,让学生感到生活中处处有数学,在他们的眼里,数学是一门看得见、摸得着、用得上的学科,不再是枯燥乏味的数学游戏。这样,学生学起来自然感到亲切、真实,这也有利于培养学生用数学眼光来观察周围事物的兴趣、态度和意识。教学中重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。可以考虑把与现实生活密切相关的银行事务、利率、投资、税务中的常识增加进来,让学生学习建立数学模型去解决实质问题。解决一个小题大致经历了如下过程:①熟悉问题的背景;②拟定解决问题的计划,策略上先考虑简单情形,使用数学术语对问题进行表述(包括形成新的数学概念);③实施计划,发现对象间的关系,进行抽象的研究,得到某种确定的关系;④推广到一般情形(如对购买次数进行推广或将结果一般化)。一方面原问题获解,进一步还可以得出若干正数的算术平均、几何平均和调和平均之间的关系。在证明相应不等式后,原问题可以作为该不等式的一种直观解释,同时认清式中等号成立的充要条件及其功能(如可用来讨论极值问题)等。
(责任编辑 曾 卉)