直流配电网拓扑结构及控制策略

2015-09-19 08:56:12江道灼王玉芬
电力自动化设备 2015年1期
关键词:断路器控制策略短路

杜 翼,江道灼,尹 瑞,郑 欢,王玉芬

(浙江大学 电气工程学院,浙江 杭州 310027)

0 引言

随着现代化城市建设的日趋成熟,城市用电负荷不断增长,用户对电能质量的要求也不断提高,现有的交流供电系统越来越难以满足发展的需求。近年来,随着大功率电力电子器件、高压换流技术的高速发展,高压直流输电技术也得到了不断的完善,中国、美国、瑞典等国家已经在建造多端直流输电工程[1-3]。

直流配电网是一个具有先进的能源管理系统的智能、稳定的交直流混合广域网络[4]。与交流配电网相比,直流配电网有着一些明显的优点:在绝缘水平相同的情况下,直流配电网的传输功率约为交流配电网的1.5倍;直流配电网能够方便各种分布式电源和电动汽车充电站的接入;不同于交流配电网,直流配电网并不存在涡流损耗以及线路的无功损耗,直流配电网的损耗仅为交流网络的15%~50%;理论上直流系统没有频率偏差、三相电压不平衡和无功补偿等问题,因此能够有效避免电压波动与闪变、频率偏移、谐波污染等问题,能够有效地改善电能质量,提高电网可靠性[5-10]。

目前,国内外对直流配电网的研究尚处于初级阶段,未来的直流配电网技术仍存在许多挑战。本文首先提出了直流配电网的基本概念,对直流配电网链式结构典型支路的功率方程等进行了推导与求解,并对环状拓扑结构及两端拓扑结构的可行性进行了探讨;然后对分布式电源和储能装置接入直流配电网进行了研究,同时采用混合式直流断路器并且提出了一种直流配电网的控制方式;最后通过直流配电网的建模仿真,获得了一些有益的结论,对直流配电网的进一步研究具有一定的参考价值。

1 直流配电网拓扑结构

多端直流系统是从交流系统引出多个换流站,通过多组点对点直流连接不同的交流系统,没有网格、冗余,当拓扑中任何一个换流站或线路上发生故障时,整条线路及其相连的换流站要退出运行,可靠性较低。直流配电网中,各条直流线路可以自由连接,可以互相作为冗余使用,而不是仅仅作为异步交流电网的连接设备[4]。直流配电网的拓扑结构可以根据用途来决定,常见的直流配电网拓扑结构可以分为:链式拓扑结构、两端拓扑结构和环状拓扑结构。

1.1 链式拓扑结构

常见的直流配电网的链式结构如图1所示。在直流配电网的链式结构中,随着负荷的增加,直流电压将会随着潮流流动的方向下降。

图1 链式直流配电网结构Fig.1 Structure of chained DC distribution network

图2为直流配电网的典型支路。其中,Ui、Uj为始、末两端的端直流母线电压;Ib为支路电流;Rij为线路阻抗;Pj为末端负荷的有功功率。

由图2可得:

图2 直流配电网典型支路示意图Fig.2 Typical branch of DC distribution system

由式(1)、式(2),得:

求解式(3),可得:

若式(4)有实数解,则:

考虑式(5)等于0的临界情况,则:

在实际的直流配电网中,由于线路上的阻抗相对较小,正常情况下线路两端的电压相差不大,不会出现如式(6)所示的末端电压只有始端电压一半的情况,即式(3)始终有解。可见直流配电网不存在类似交流配电网的静态电压稳定性问题。

1.2 环状拓扑结构的可行性

环状直流配电网的拓扑结构如图3所示。交流配电网的环状结构,通常采用环状设计、解环运行,从而避免了双电源时电压幅值差、相角差引起的无功环流。由于直流配电网中并不需要考虑无功功率,因此也不需要考虑无功环流问题。在研究直流配电网环状拓扑结构时主要考虑出现短路情况的保护问题。

图3 环状直流配电网结构Fig.3 Ring structure of DC distribution network

由于直流配电网系统中线路阻抗较小,当线路上发生短路故障时,短路电流上升速度快、幅值高。如果缺乏实用的直流断路器,通常只能将直流变压器或换流器闭锁,以隔离故障。当采用链式系统时,若末端线路发生故障,将上级直流变压器或换流器闭锁,余下线路仍可以正常运行;当采用环状结构时,只能将全部线路停运,极大地降低了系统的可靠性。因此,制约环状直流配电网可行性的关键技术即为直流断路器的研发。

1.3 两端直流配电网拓扑结构的可行性

为了保障直流配电网的可靠性,在两端直流配电网中通常会有一端的交流接口采用定电压控制,其余交流接口采用定功率控制。直流配电网正常运行时,由于不需考虑无功功率因素,并且整个直流配电系统的电压完全由定电压控制端和负荷决定,从而避免了直流电压差引起的功率环流,常见的两端直流配电网拓扑结构如图4所示。

图4 两端直流配电网结构Fig.4 Dual-terminal structure of DC distribution network

2 分布式电源与储能接入直流配电网

近年来,分布式电源越来越受到学术界的关注,研究表明:分布式电源具有负荷变动灵活、供电可靠、输电损失小的特点。常见的分布式电源主要有光伏电池、燃料电池、风力发电机等,而这些电源产生的电能均为直流电。因此相较于并入现有的交流电网,直接将其并入直流配电网能够有效减少换流站的投资,同时能够减小换流过程的损耗,均有很大的经济效益[11-12]。

2.1 光伏电池

2.1.1 光伏电池模型

光伏发电存在的主要问题是光伏电池受外界环境影响大,温度和光照辐射强度的变化都可以导致输出特性发生较大的变化。因此,为了使光伏电池在不同的光照强度下都能够获得最大的输出功率,通常采用最大功率点跟踪的控制策略[13]。

本文建立光伏发电的模型等效电路如图5所示。图中,IPH为给定光强下的短路电流;I0为二极管饱和电流;RS和RSH为等效电阻;I为电池组件输出电流;U为电池组件终端电压。

图5 光伏发电的等效电路Fig.5 Equivalent circuit of photovoltaic generation

考虑到光照强度S和光伏电池温度T的变化,光伏电池输出如下:

其中,K1、K2为常数;ΔT、ΔI、ΔU 分别为光伏电池温度、电流、电压的增量;P为输出功率;UM和IM分别为最大电压、电流;UOC为开路电压;ISC为短路电流;Sref和Tref分别为参考光照强度和参考光伏电池温度,通常分别取1 kW/m2和25℃;参数 α和β分别为参考光照强度下的电流和电压温度系数。

2.1.2 光伏电池并入直流配电网

光伏电池发出的是电压随机波动的直流电,且光伏电池的出口电压相对较低,若想并入交流配电网中首先需要经过DC/DC变压器,再经过DC/AC换流器,同时还需要增设滤波装置,才能有效地并入电网,光伏电池并入交流配电网如图6所示。

图6 光伏接入交流配电网Fig.6 Grid-connection of photovoltaic generation to AC distribution network

若是将光伏电池直接并入直流配电网中,则不需要DC/AC换流器和滤波装置,能够有效地节省设备投入,具有较大的经济意义,光伏电池并入直流配电网如图7所示。

图7 光伏接入直流配电网Fig.7 Grid-connection of photovoltaic generation to DC distribution network

2.2 储能装置

2.2.1 储能装置模型

超级电容是一种新型储能元件,是具有超强储电能力、可提供强大脉动功率的物理二次电源。相比于常规的电容,它的容量可达近万法。由于超级电容的充放电过程属于纯物理过程,因此它具有循环次数高、充电过程快、适用于接入直流电网的特点。超级电容具有良好的充放电性能,在额定电压范围内,可以以极快的速度充电至任一电压值,放电时则可以放出所储存的全部电能,而且不存在蓄电池快速充电和放电的损坏问题,并且在瞬间高压和短路大电流情况下有缓冲功能,能量系统较为稳定[14]。

本文所采用的储能模型为超级电容与双向DC/DC变换器相连接,如图8所示。

图8 储能模型Fig.8 Model of energy storage

2.2.2 储能装置并入直流配电网

如上文所述,含有超级电容的储能装置输出的是直流电,若要并入交流配电网,需要经过DC/AC换流器,同时还需要增设滤波装置,才能有效地并入电网,储能装置并入交流配电网如图9所示。

图9 储能装置接入交流配电网Fig.9 Grid-connection of energy storage device to AC distribution network

若是将储能装置直接并入直流配电网中,则不需要DC/AC换流器和滤波装置,能够有效地节省设备投入,具有较大的经济意义,储能装置并入直流配电网如图10所示。

图10 储能装置接入直流配电网Fig.10 Grid-connection of energy storage device to DC distribution network

3 直流断路器模型与直流配电网控制策略

3.1 混合式高压直流断路器

与传统的交流输电相比,直流输电由于没有电流过零点,因此相较于交流电弧,直流电弧更难以熄灭。现有的高压直流断路器能够在几十毫秒内断开电路,但对于高压直流输电系统,远远不能达到要求。基于半导体的高压直流断路器能够克服动作速度上的问题,但是需要大量电力电子开关器件串并联[15-18]。本文采用了新型的混合式直流断路器,其拓扑结构如图11所示,能够有效地克服上述缺点。

机械开关S采用高速斥力开关,该装置动作时间短,可以显著缩短直流断路器的开断时间;电力电子复合开关由IGBT阀组T1与晶闸管阀组T2串联构成,由于晶闸管的容量较大,静态电阻也较大,其均压(均流)技术亦较为成熟,因此该复合开关可以有效降低电力电子器件的串(并)联数量及均压(均流)难度;限流电路由限流电感 L、晶闸管 VDL、V′DL及能量释放电阻RL构成,故障发生时,L用于限制短路电流上升率,故障切除后,L中储存的能量经VDL、V′DL及RL释放,并限制L的感应过电压;续流二极管VD用于释放电源出口与短路点间的线路阻抗中储存的能量,故障切除后,线路阻抗经续流二极管与短路点续流,其感应过电压不会对其他设备产生影响。

图11 混合式直流断路器拓扑结构图Fig.11 Topological structure of hybrid DC circuit breaker

3.2 直流配电网的控制策略

直流配电网的控制策略可以分为2层:第一层为配电网上层控制,即系统控制,主要对换流站进行控制,控制直流配电网与交流配电网的功率传输和整个直流配电网的电压;第二层为配电网下层控制,即单元控制,主要对分布式电源的发电、储能元件、直流负荷进行协调控制。

当系统级发生故障时,即交流系统和直流系统连接处或换流站发生故障时,如果与发生故障的线路连接的换流站为一般换流站,只需切除故障线路,将故障的线路与整个直流系统隔离即可;如果与发生故障的线路相连接的换流站为控制直流配电网电压等级的换流站,则应迅速切除故障线路,同时将备用换流站由定功率控制转为定电压控制,来维持直流配电系统电压稳定。

当直流配电网下层发生故障时,如分布式电源发生故障,首先将故障线路切除,为了避免整个直流配电网系统出现短时功率跌落,控制储能单元向直流系统传输功率,维持系统的功率平衡,减小直流系统的电压波动,增加系统的稳定性。

4 建模仿真

4.1 光伏电池与直流断路器模型

4.1.1 光伏电池建模

按照2.1.1节所述的光伏电池模型,采用最大功率点跟踪控制,利用PSCAD/EMTDC对光伏模型进行建模仿真,仿真时间为13s,仿真步长为50μs,仿真系统的环境参数变化和光伏电池向系统输出的功率如图12所示,从图中可以看到随着环境因素的不断变化,光伏电池的输出功率也在不断变化。

图1 2环境因素和光伏电池输出功率的变化Fig.12 Variation of environmental factors andphotovoltaic power output

4.1.2 断路器建模

利用PSCAD仿真软件对提出的限流式直流断路器进行建模仿真。仿真参数如下:直流电源40 kV;机械开关S为高速开关,电弧模型采用Cassie电弧模型;固态开关开通时间10μs,关断时间400μs(即晶闸管阀组T2的导通时间和零电流下正向阻断能力恢复时间);限流电路 L=20mH、RL=2 Ω;负载电阻R=20Ω,忽略线路阻抗。假设在t=0.5s时发生短路故障,仿真结果如图13所示。

图13 直流断路器仿真波形图Fig.13 Simulative waveforms of hybrid DC circuit breaker

如上所述,0.5s时线路负载发生接地短路故障,由于采用故障预处理控制策略,提前对固态开关阀组施加触发脉冲,故障判断时间几乎可以忽略;机械开关S经过0.3 ms基本完成换流,即电力电子复合开关于0.5003s导通;0.503s时,机械开关S完成零电压下的分闸过程,此时向电力电子复合开关发出关断信号;IGBT阀组迅速断开,约400μs后晶闸管阀组T2亦恢复正向阻断能力,电力电子复合开关完全关断,短路故障被切除。

4.2 系统建模仿真

如1.3节所述,制约环状直流配电网拓扑结构发展的主要技术瓶颈是传统的直流断路器不能够满足开断的要求,如果加入了实用的高压直流断路器,环状直流配电网拓扑结构就能够提供较为稳定的系统。本文在环状直流配电网的拓扑结构中加入上文的混合式高压直流断路器,构建的仿真模型见图14。

图14 直流配电网仿真模型示意图Fig.14 Simulation system of DC distribution network

图中,交流系统1、2、3的电压等级均为10 kV;直流配电网的电压等级为15 kV;低压直流配电网的电压等级为1 kV;换流站1采用定电压控制,控制整个直流配电系统的电压;换流站2、3采用定电流控制;DCT表示直流变压器。

4.2.1 系统正常情况下仿真

设置中压配电网负荷需求功率为1.2MW,低压直流配电网需求功率为100kW,系统环境因素和光伏电池的输出功率的变化如4.1.1节所述,整个直流配电网的电气变化量如图15所示。仿真结果表明:正常情况下,中压直流配电网和低压直流配电网的电压和功率传输都能够稳定在设定的值,不会随着外界环境的不同而产生较大波动。

4.2.2 系统故障情况下仿真

为了验证直流断路器、控制策略的有效性和直流配电系统的可行性,考虑系统发生两相短路故障的情况,设置故障发生在10.5s,直流断路器检测到故障后自动动作。以光伏系统为例,当光伏系统发生故障时,如果不采用3.2节的控制策略,仅仅是将故障线路切除,则整个直流配电网的电气变化量如图16所示。

当光伏系统发生故障时,如果采用3.2节的控制策略,将故障线路切除,同时储能系统向直流配电系统输出功率,则整个直流配电网的电气变化量如图17所示。

图15 直流配电网中电气量的变化Fig.15 Variation of electrical variables in DC distribution network under normal condition

图16 直流配电网中电气量的变化(未采用本文控制策略)Fig.16 Variation of electrical variables in DC distribution network without proposed control strategy

对比图16、17可知,采用3.2节所述的控制策略时,能够在系统发生故障时有效地限制整个直流配电系统的电压和功率的波动幅度,同时能极大地缩短波动时间。图18为15kV配电系统电压波动的过渡过程对比图。

对比图16、17、18可知,光伏电池在10.5s时发生短路故障,断路器检测到故障后切断故障线路。以15 kV电压为例,如果不采用3.2节所述的控制策略,在发生故障后的过渡过程中系统电压会降至11.5kV,且需要0.3 s系统才能恢复到正常的电压;当采用3.2节所述的控制策略时,在发生故障后的过渡过程中系统的电压仅下降至14 kV,而且仅需要0.01s系统便能恢复到正常的电压。上述仿真结果证明:当系统发生短路故障时,直流断路器能够快速断开故障线路,保障非故障线路正常运行;同时采用本文提出的直流配电网的控制策略,能够有效限制短路故障对系统造成危害,缩短短路时间,使整个直流配电网更加有效稳定地运行。

图17 直流配电网中电气量的变化(采用本文控制策略)Fig.17 Variation of electrical variables in DC distribution network with proposed control strategy

图18 过渡过程波形对比图Fig.18 Comparison of transient process

5 结语

本文对直流配电网链式拓扑结构的典型支路的功率方程等进行了推导与求解,并对环状拓扑结构及两端拓扑结构的可行性进行了探讨,接着对分布式能源和储能装置接入直流配电网进行了研究,最后采用了混合式直流断路器模型同时提出了一种新的直流配电网控制策略。仿真结果证明:在正常工况下,中压直流配电系统和低压直流配电系统的电压和功率都可以保持稳定;在故障情况下,直流断路器能够迅速地切断故障线路,同时采用本文提出的控制策略,能够更好地维持系统电压和功率传输的稳定,缩短故障时间,使整个直流配电系统能够更加有效稳定地运行。

猜你喜欢
断路器控制策略短路
短路西游
考虑虚拟惯性的VSC-MTDC改进下垂控制策略
能源工程(2020年6期)2021-01-26 00:55:22
工程造价控制策略
山东冶金(2019年3期)2019-07-10 00:54:04
六氟化硫断路器运行与异常处理
电子制作(2018年14期)2018-08-21 01:38:34
现代企业会计的内部控制策略探讨
消费导刊(2018年10期)2018-08-20 02:57:02
断路器控制回路异常分析及处理
电子制作(2018年10期)2018-08-04 03:25:02
一例断路器内部发热的诊断分析
电子制作(2017年8期)2017-06-05 09:36:15
SF6断路器拒动的原因分析及处理
电子制作(2017年20期)2017-04-26 06:57:59
短路学校
短路学校