王田娥,李 健,牛太阳,李俊杰
(吉林农业大学 信息技术学院,长春 130118)
渐近线性p-Kirchhoff型方程解的多重性
王田娥,李 健,牛太阳,李俊杰
(吉林农业大学 信息技术学院,长春 130118)
考虑有界区域上p-Kirchhoff型方程在Dirichlet边界条件下解的存在性,应用山路定理得到了当非线性项满足渐近线性增长条件时p-Kirchhoff型方程两个非平凡解的存在性.
多重性;山路定理;p-Kirchhoff型方程
Kirchhoff[1]在研究弹性弦的自由振动时,提出了如下模型:
一般称该模型为Kirchhoff型方程,它在非牛顿力学、弹性理论和生物数学等诸多领域应用广泛.文献[2-5]研究了Kirchhoff方程所对应的稳态方程:
(1)
本文考虑如下p-Kirchhoff型方程:
(2)
其中:Ω是N(N≥3)中有界光滑区域;Δpu=div(u),1
(3)
目前,对p-Laplacian方程边值问题的研究已有许多结果[6-9].
对于问题(2),当非线性项f满足各种增长条件时,应用变分法对其进行研究已得到了丰富的结果.文献[10-12]研究了问题(2)在非线性项f满足超线性次临界增长时解的存在性与多重性;文献[13-14]在临界增长情形研究了问题(2)解的存在性;文献[15]在非线性项满足渐近线性增长时得到了问题(2)解的多重性.本文进一步研究在非线性项f满足渐近线性增长时问题(2)解的多重性.
对于特征值问题
已知其存在一列特征值0<λ1<λ2≤λ3≤…≤λn→+∞,其中第一特征值λ1是简单的、孤立的特征值,具有相应的特征函数φ1>0.假设:
(H1)存在常数m2>m1>0,使得m1≤M(s)≥m2,∀s∈+;
(H2)存在s1>0,使得M(s)=m2,∀s>s1;
(H5)存在μ1,μ2∈(λ1,+∞),使得
关于x∈Ω一致成立.
定理1如果(H1)~(H5)满足,则问题(2)至少有一个正解和一个负解.
定义
定义1如果
显然若u为J的临界点,则u是问题(2)的弱解.
定理2[16]设X为实Banach空间,Φ∈C1(X,)并且满足(PS)条件.此外,存在ρ,α,β∈(0,+∞)和u0∈X,使得
定义
首先证明泛函J+具有山路几何,即:
引理1在定理1的假设下,有:
因此,应用Sobolev嵌入与Poincare不等式,并结合假设(H1)和q>p,可得常数δ1,C1>0,使得
从而存在充分小的ρ>0使得结论1)成立.
又由(H1)可得
因此,存在充分大的t1,使得u1=t1φ1满足结论2).
下面证明J+满足(PS)条件.
引理2在定理1的假设下,泛函J+满足(PS)条件.
证明:对任意的c>0,假设{un}n∈⊂满足:
(4)
(5)
由式(5)可得
取v=un,由假设(H3)~(H5)知,存在α>0,使得
因此,z0是问题
(6)
ζφ1(x)≤z0(x), ∀x∈Ω.
(7)
取φ=δφ1,β∈(λ1,λ1+ε),则有
(8)
应用上下解方法,再结合式(7),(8),可得问题
由假设(H3)~(H5)与Sobolev嵌入定理可得
(9)
记
则
此外,由|((J+)′(un),un-u0)|→0,并结合式(9)可得Qn→0.再结合弱收敛un⇀u0与不等式
下面证明定理1.应用定理2,J+存在临界点u+满足J+(u+)≥η>0;再应用最大值原理可知u+>0.因此u+为问题(2)的正解.类似地,问题(2)存在负解u-<0.
[1] Kirchhoff G.Mechanik [M].Leipzig:Teubner,1883.
[2] CHENG Bitao,WU Xian,LIU Jun.Multiple Solutions for a Class of Kirchhoff Type Problems with Concave Nonlinearity [J].Nonlinear Differ Equ Appl,2012,19(5):521-537.
[3] MAO Anmin,ZHANG Zhitao.Sign-Changing and Multiple Solutions of Kirchhoff Type Problems without the P.S.Condition [J].Nonlinear Anal,2009,70(3):1275-1287.
[4] Perera K,ZHANG Zhitao.Nontrivial Solutions of Kirchhoff-Type Problems via the Yang Index [J].J Differential Equations,2006,221(1):246-255.
[5] 万保成,李健,李士军.一类Kirchhoff型方程解的多重性 [J].吉林大学学报:理学版,2013,51(2):233-236.(WAN Baocheng,LI Jian,LI Shijun.Multiplicity of Solutions to Kirchhoff Type of Equations [J].Journal of Jilin University:Science Edition,2013,51(2):233-236.)
[6] Gasiński L,Papageorgiou N S.Multiple Solutions for Asymptotically (p-1)-Homogeneousp-Laplacian Equations [J].J Funct Anal,2012,262(5):2403-2435.
[7] ZHANG Zhitao,LI Shujie,LIU Shibo,et al.On an Asymptotically Linear Elliptic Dirichlet Problem [J].Abstr Appl Anal,2002,7(10):509-516.
[8] OU Zengqi,LI Chun.Existence of Solutions for Dirichlet Problems withp-Laplacian [J].Nonlinear Anal,2012,75(13):4914-4919.
[9] SHI Linsong,CHANG Xiaojun.Multiple Solutions top-Laplacian Problems with Concave Nonlinearities [J].J Math Anal Appl,2010,363(1):155-160.
[10] Corrêa F J S A,Figueiredo G M.On an Elliptic Equation ofp-Kirchhoff Type via Variational Methods [J].Bull Austral Math Soc,2006,74(2):263-277.
[11] Corrêa F J S A,Figueiredo G M.On ap-Kirchhoff Equation via Krasnoselskii’s Genus [J].Appl Math Lett,2009,22(6):819-822.
[12] 李健,杜泊船,赵昕,等.p-Kirchhoff型方程解的多重性 [J].吉林大学学报:理学版,2013,51(4):580-584.(LI Jian,DU Bochuan,ZHAO Xin,et al.Multiplicity of Solutions of ap-Kirchhoff Type Equation [J].Journal of Jilin University:Science Edition,2013,51(4):580-584.)
[13] Ourraoui A.On ap-Kirchhoff Problem Involving a Critical Nonlinearity [J].C R Math Acad Sci Paris,2014,352(4):295-298.
[14] Hamydy A,Massar M,Tsouli N.Existence of Solutions forp-Kirchhoff Type Problems with Critical Exponent [J].Electron J Differential Equations,2011,2011(105):1-8.
[15] Bensedik A,Bouchekif M.On an Elliptic Equation of Kirchhoff-Type with a Potential Asymptotically Linear at Infinity [J].Math Comput Modelling,2009,49(5/6):1089-1096.
[16] Rabinowitz P H.Minimax Methods in Critical Point Theory with Applications to Differential Equations [M].Washington DC:American Mathematical Society,1986.
(责任编辑:赵立芹)
MultiplicityofSolutionsofAsymptoticallyLinear
p-KirchhoffTypeEquations
WANG Tian’e,LI Jian,NIU Taiyang,LI Junjie
(CollegeofInformationTechnology,JilinAgriculturalUniversity,Changchun130118,China)
This paper deals with the existence of solutions forp-Kirchhoff type equations in bounded domains under Dirichlet boundary condition.When the nonlinearity is asymptotically linear at infinity,there exist two nontrivial solutions of thep-Kirchhoff type equation which can be proved with the aid of the mountain pass theorem.
multiplicity;mountain pass theorem;p-Kirchhoff type equation
10.13413/j.cnki.jdxblxb.2015.03.05
2014-10-13.
王田娥(1977—),女,汉族,硕士,讲师,从事微分方程和最优化的研究,E-mail:443988941@qq.com.通信作者:李 健(1981—),男,汉族,博士,讲师,从事空间推理和微分方程的研究,E-mail:liemperor@163.com.
吉林省青年科研基金(批准号:20130522110JH)、吉林省重点科技攻关项目(批准号:20140204045NY)和吉林省教育厅“十二五”科学技术研究项目(批准号:[2014]第468号).
O175.25
:A
:1671-5489(2015)03-0372-05