苏鲁造山带池庄超高压榴辉岩中变质脉:大陆俯冲带超临界流体活动的证据*

2015-07-21 08:53田野黄建回迎军肖益林
岩石学报 2015年7期
关键词:苏鲁石榴石辉石

田野 黄建 回迎军 肖益林

中国科学院壳幔物质与环境重点实验室,中国科学技术大学地球和空间科学学院,合肥 230026

1 引言

在板块俯冲变质过程和地幔楔部分熔融产生岛弧岩浆(富集大离子亲石元素(LILE)和轻稀土元素(LREE)并亏损高场强元素(HFSE))过程中,流体扮演了关键性的角色(McCulloch and Gamble,1991;Tatsumi et al.,2005)。流体同样会影响高压(超高压)变质岩的形成和保存(Hermann et al.,2006),甚至造成地震(Davies,1999)。前人的研究表明,伴随着俯冲板块脱水,大量的LILE 和LREE 从变质基性岩中脱出(Kogiso et al.,1997;Becker et al.,2000;Gao et al.,2007),但是另外一些研究显示,从蓝片岩相到榴辉岩相转变过程中,释放出的富水流体,其元素溶解度相当低,无法用来解释俯冲过程中镁铁质岩石微量元素的大量丢失(Hermann et al.,2006;Miller et al.,2007;Schmidt et al.,2009)。这种脱水释放流体和微量元素活动性的解耦,主要是受到流体的类型、组成和在变质过程中开放或封闭体系下元素迁移机制和程度的影响。

实验证明,在俯冲带条件下存在三类不同类型的流体,即富水流体、含水熔体和超临界流体(Shen and Keppler,1997;Manning,2004;Kessel et al.,2005;Hack et al.,2007)。在硅酸盐-水体系中,水饱和固相线以下只有富水流体和固相硅酸盐共存,含水熔体不会出现,直到温压条件超过水饱和固相线。当温压条件继续升高至超过液相线,硅酸盐完全熔化,此时只有含水熔体存在。在一定的压力下,湿固相线达到终点,这个点称为第二临界点(second critical endpoint),也是湿固相线和临界曲线的交点(Boettcher and Wyllie,1969;Manning,2004;Hermann et al.,2006;Zheng et al.,2011)。当压力超过第二临界点条件时,富水流体和含水熔体完全混溶变成一个相,称为超临界流体。除了实验证据,自然岩石样品中也发现了硅酸盐物质和水完全混溶的直接证据(Navon et al.,1988;Hwang et al.,2011;Stöckhert et al.,2001;Ferrando et al.,2005b;Frezzotti et al.,2007)。由于含水熔体和超临界流体相比富水流体可以溶解更多的微量元素(包括传统的流体不活动元素),它们可能在控制地壳和上地幔的元素分配和迁移过程中起到至关重要的作用(Bureau and Keppler,1999;Manning,2004;Kessel et al.,2005;Hermann et al.,2006;Hack et al.,2007;Zheng et al.,2011)。

变质脉是水/岩交换的直接产物,在特定的温度压力条件下发生矿物沉淀而形成的脉,它是岩石中构造剪切的薄弱地带为变质流体活动提供的通道(Oliver and Bons,2001;Zack and John,2007;盛英明等,2011)。它是流体以隧道流形式流动的体现,能够提供俯冲带流体活动的重要信息,尤其可以用其研究俯冲板片中流体运移路径、高温高压流体中元素的溶解能力以及变质岩在流体作用下的蚀变和变形等(Miller et al.,1994;Cartwright et al.,1994;Becker et al.,1999;Spandler and Hermann,2006;Gao et al.,2007;Wu et al.,2009;Chen et al.,2012a;Guo et al.,2012;Huang et al.,2012;Lü et al.,2012;Sheng et al.,2012,2013)。

大别-苏鲁造山带内超高压榴辉岩中存在着大量的变质脉(Cong,1996;Liou and Zhang,1996;Zheng et al.,2003a;盛英明等,2011)。根据矿物共生组合,变质脉可以分为两大类,一类是富含石英的“纯”石英脉,主要矿物石英通常占脉体总体积的98% (Franz et al.,2001;Li et al.,2001,2004,2011;Zheng et al.,2007;Zhang,2008;Wu et al.,2009;Sun et al.,2010;Zong et al.,2010;Xiao et al.,2011;Huang et al.,2012;Sheng et al.,2012)。另一类是复杂矿物组合脉,它们的共生矿物组合复杂,可以简单概括为蓝晶石-黝帘石-(石榴石)-石英脉、绿辉石-蓝晶石脉、蓝晶石-黝帘石/绿帘石-多硅白云母-石英脉和褐帘石-绿辉石-蓝晶石-石英脉等(Castelli et al.,1998;Zhang et al.,2008,2011;Chen et al.,2012a;Guo et al.,2012;Huang et al.,2012;Sheng et al.,2013;盛英明等,2011)。榴辉岩中矿物组合复杂脉已经成为近年来的研究热点(Spandler and Hermann,2006;Gao et al.,2007;John et al.,2008;Zhang et al.,2008;Beinlich et al.,2010;Spandler et al.,2011;Herms et al.,2012;Lü et al.,2012;Sheng et al.,2013)。本文以苏鲁南部池庄地区复杂脉体及其寄主榴辉岩为研究对象,通过详细的岩相学观察、全岩主微量元素、脉矿物的电子探针和LA-ICPMS 分析、锆石U-Pb 年代学和微量元素以及矿物氧同位素分析,试图探讨这些脉体的演化历史和成因机制以及在脉体形成过程中的流体活动和元素迁移。

2 地质背景及样品描述

图1 苏鲁东海地质简图和CCSD (中国大陆科学钻探工程)(据Zhang et al.,2008 修改)Fig.1 Simplified geological map of Donghai area showing the locations of the Chizhuang and other eclogite bodies and CCSD(Chinese Continental Scientific Drilling)(modified after Zhang et al.,2008)

大别-苏鲁造山带是华南板块俯冲进入华北板块之下所形成的陆-陆碰撞超高压变质带,出露有以榴辉岩为代表的高压、超高压变质岩(Okay et al.,1989;Li et al.,1993,2000;Zheng et al.,2003a)。在这些变质岩石中发现了不同规模的脉体,被认为是高压、超高压变质流体流动的记录(Xu et al.,1992;Liou et al.,1995;You et al.,1996;Cong and Wang,1996;Wallis et al.,1999;Zhang et al.,2008,2011)。前人对这些变质脉及其围岩的研究发现:在脉体和围岩中都发现大量的含水矿物,如帘石、云母、角闪石、磷灰石等(Castelli et al.,1998;Franz et al.,2001;Li et al.,2001,2004;Zheng et al.,2003a,2007),暗示变质脉是从流体而非熔体中沉淀形成。很多变质脉中发现了金红石、石榴石等富集高场强和重稀土元素的矿物(Li et al.,2004;Xiao et al.,2006;Huang et al.,2012)。由于这些矿物在通常情况下,很难被富水流体溶解(Kessel et al.,2005),不少研究推测成脉流体可能为溶解能力极强的超临界流体(Zhang et al.,2008;Huang et al.,2012)。

前人将大别-苏鲁造山带超高压岩石的变质演化阶段分为三个阶段(Ernst and Liou,1999;Zheng et al.,2003a;Zhao et al.,2006):(1)峰期超高压柯石英/金刚石榴辉岩相,存在金刚石、柯石英,温度约在800~700℃,压力>2.8GPa;(2)高压石英榴辉岩相,以石英代替柯石英与石榴石和绿辉石共生为特征,不存在长石和角闪石,温压条件约在750~600℃,2.4~1.2GPa;(3)退变质角闪岩相,绿辉石退变质为角闪石+ 斜长石后成合晶,温压条件约在600~450℃,1.0~0.6GPa。对大别-苏鲁超高压榴辉岩中复杂脉的形成时代、演化历史已有较多的研究(Castelli et al.,1998;Zhang et al.,2008;Chen et al.,2012a;Guo et al.,2012;Sheng et al.,2013)。由岩相学和矿物学结果显示大别-苏鲁超高压榴辉岩中矿物组合复杂脉可以形成于进变质(Castelli et al.,1998)、峰期变质(Zhang et al.,2008;Guo et al.,2012)或是和寄主榴辉岩一起经历进-峰期-退变质作用(Xiao et al.,2011,Huang et al.,2012)。而关于大别-苏鲁超高压榴辉岩中矿物组合复杂脉的形成时代,利用锆石U-Pb 定年得到的年龄大多处在高压石英榴辉岩相(215~225Ma)(Chen et al.,2012a;Sheng et al.,2013),与复杂矿物组合指示的超高压阶段相矛盾。这表明锆石U-Pb 年龄结果可能记录的是锆石从成脉流体中结晶析出的年代,因此晚于成脉流体形成的时代(Sheng et al.,2013)。

本文研究的区域位于苏鲁造山带南部的东海池庄(图1),该区域含有大量超高压变质岩,主要是花岗质片麻岩、榴辉岩和大理岩。前人的研究显示,东海地区变质岩的峰期变质条件为700~850℃,3.0~4.5GPa,折返P-T 轨迹近似等温降压(Zhang et al.,1994,1995,2000a,b,2006);超高压变质作用发生在230~240Ma,高压石英榴辉岩相退变质作用发生在220Ma (Li et al.,1993;Zheng et al.,2003a;Zhao et al.,2006)。在该区榴辉岩、片麻岩、大理岩的锆石中均发现了柯石英包裹体,表明陆壳整体深俯冲并发生超高压变质作用(Ye et al.,2000;Liu et al.,2001a,b)。榴辉岩和片麻岩的原岩是700~800Ma 新元古代双峰式火山岩(Zheng et al.,2003a;Zhang et al.,2006)。榴辉岩和片麻岩中的超高压矿物具有亏损的δ18O,表明原岩在俯冲之前与大气降水来源流体发生了高温热液蚀变作用(Zheng et al.,1996,2003a;Zhang et al.,2005a,2006;Xiao et al.,2006)。整个区域上氧同位素空间分布不均匀,说明在进变质、峰期变质及折返过程中,流体活动有限(Xiao et al.,2000,2001,2006;Fu et al.,2003;Zheng et al.,2003a;Ferrando et al.,2005a,b;Zhang et al.,2005b,2006,2011)。

样品采集区域位于中国大陆科学钻探工程(CCSD)钻孔西北约2.5km 的池庄。我们采集了两种复杂变质脉及其寄主榴辉岩,分别为:黝帘石-绿辉石-石英脉(13CZ-7V)和寄主榴辉岩(13CZ-7E);绿辉石-多硅白云母-石英脉(12CZ-9V)和寄主榴辉岩(12CZ-9E)。脉体13CZ-7V 和12CZ-9V 中矿物非常不均一,靠近榴辉岩区域可以观察到暗色矿物颗粒(如金红石、黝帘石和绿辉石等),远离榴辉岩区域以石英为主。脉体13CZ-7V 靠近榴辉岩边界处可以观察到绿辉石和黝帘石(图2a)。脉体12CZ-9V 中可以观察到颗粒状的绿辉石、多硅白云母、石榴石和金红石(图2b)。

表1 苏鲁池庄榴辉岩和脉体的矿物组合及矿物含量(vol.%)Table 1 Mineral assemblages and estimated volume contents(vol.%)

岩相学观察结果显示(表1),榴辉岩13CZ-7E 的主要组成矿物有:石榴石(Grt)、绿辉石(Omp)、多硅白云母(Phg)、石英(Qtz)、蓝晶石(Ky)、金红石(Rt),还包括少量的锆石(Zrn)(图2c)。榴辉岩12CZ-9E 中可以观察到1~2mm 的黝帘石颗粒(图2d)。榴辉岩和脉体均发现绿辉石被角闪石+钠长石后成合晶取代和石榴石边缘存在角闪石退变质边(图2h),说明它们经历了角闪岩相退变质作用。

变质脉中矿物的体积丰度变化较大,脉体13CZ-7V 的矿物组合是石英(80%)+绿辉石(8%)+黝帘石(4%)+石榴石(2%)+多硅白云母(2%)+蓝晶石(2%)+金红石(2%)+少量锆石。其中,绿辉石颗粒较大,可以达到0.6~2mm(图2f);黝帘石主要分布在脉体边缘处,靠近榴辉岩(图2e)。脉体12CZ-9V 的矿物组合是石英(75%)+ 绿辉石(5%)+石榴石(5%)+多硅白云母(8%)+蓝晶石(5%)+金红石(2%)+少量锆石。脉体中白云母和金红石颗粒较自形,粒径约为0.5~3mm(图2g,f)。

3 分析方法

3.1 电子探针和拉曼光谱分析

电子探针分析在中国科学技术大学(USTC)电子探针实验室完成。仪器型号为Shimadzu 1600。工作条件设定如下:电压为15.0kV,电流为20nA,电子束直径为5μm,对所测元素的计数时间为15s。不同元素用自然硅酸盐矿物或者人工合成氧化物作为标准物质。Na 元素误差约为10%,其他元素误差均优于5%。

锆石中包裹体的激光拉曼分析在中国科技大学(USTC)激光拉曼实验室完成,使用的仪器为Thermo Scientific DXR型激光共聚焦拉曼光谱仪。使用1~3mW,532nm Nd (YVO4 DPSS)的激发激光,测试束斑设定为~0.6μm,测试时间为5s。测试时,叠加3 次记录,记录区间为100~3000cm-1。整个测试在常温常压下进行。

3.2 LA-ICP-MS 原位微量元素分析

单矿物微量元素分析在中国科学技术大学(USTC)激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)实验室完成。ICPMS 是Agilent 7700,配备有ArF 准分子激光器(GeoLas Pro,193 nm 波长)。高纯He 气作为载气,能量输出为90mJ/cm2,脉冲频率为10Hz,激光束斑的直径为32μm。单点分析包含空白时间20~30s 和样品采集时间~40s。在仪器分析和数据处理过程中,无水硅酸盐矿物采用多外标(BCR-2G,BIR-1G 和BHVO-2G,Liu et al.,2008)无内标方法;而含水矿物(如黝帘石和多硅白云母)采用单内标多外标方法(Si 作内标,BCR-2G,BIR-1G 和BHVO-2G 作外标);金红石采用Ti 作内标,NIST610 作外标。数据处理校正使用ICPMSDataCal 软件(Liu et al.,2008,2010a),标准物质推荐值来自GeoReM数据库。BCR-2G、BIR-1G、BHVO-2G 和NIST610 的分析结果表明,大部分元素的准确度(相对误差)优于10%。

3.3 锆石U-Pb 年龄及微量元素分析

锆石U-Pb 年龄及微量元素分析在中国科学技术大学激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)实验室完成。仪器参数设置与原位的单矿物微量元素分析相同。锆石UPb 年龄采用国际标准锆石91500 作为外标标准物质,每测量4 个未知样品点,测量一次标准锆石。U-Th-Pb 同位素的时间漂移校正使用线性内插法(即91500 +4 个样品+91500)。91500 的U-Th-Pb 同位素比值推荐值取自Wiedenbeck et al.(1995)。谐和图和加权平均图使用Isoplot/Ex_ver3(Ludwig,2003)制作。锆石微量元素使用29Si 作为内标,NIST610 作外标,使用数据处理软件ICPMSDataCal (Liu et al.,2008,2010a)获得。

3.4 全岩主微量元素分析

每个单独的岩石样品用刚玉颚式破碎机粉碎成60 目粉末,再取60g 在玛瑙研钵中磨制成小于200 目的岩石粉末。主量元素分析在广州澳实矿物实验室,采用X 射线荧光光谱分析(XRF)仪完成。重复测量美国地质勘探局(USGS)岩石样品标准显示,主要氧化物的准确度和精确度均优于1%。

微量元素分析在中国科学技术大学完成。样品先烘干,称取50.00mg (49.5~50.5mg),放入聚四氟乙烯溶样弹中,加几滴高纯水润湿,再加入1.50mL 高纯HNO3、1.50mL 高纯HF 和0.01mL HClO4,然后将溶样弹置于电热板上,在140℃条件下蒸至湿盐状。等冷却后,再加入高纯HNO3和高纯HF 各1.50mL,加钢套密闭,放入烘箱中在190℃下溶样48h,以保证样品的完全溶解。待溶液在电热板上蒸干后,再加入3mL HNO3溶解,随后蒸至湿盐状,加入约3mL 50%的HNO3,加钢套密闭,在烘箱中(150℃)保持12h。待提取液冷却后,将其转移至100mL PET 瓶中,加入1mL Rh 内标溶液,并加高纯水稀释至80.00g。稀释后的溶液使用ELAN DRCII 电感耦合等离子体质谱仪(ELAN DRCII ICP-MS)进行分析,分析程序详见侯振辉和王晨香(2007)和Huang and Xiao(2014)。美国地质勘探局标准物质BHVO-2 的分析结果表明,大部分元素的精确度(相对标准偏差)优于5%,准确度(相对误差)优于10%,对于大多数元素相对误差在3%以内。

图2 苏鲁池庄榴辉岩及变质脉野外照片和岩相学照片(a)黝帘石-绿辉石-石英脉(13CZ-7V)和寄主榴辉岩(13CZ-7E),脉体和榴辉岩边界处可以观察到绿辉石和黝帘石颗粒,13CZ-7E1~3 为依次靠近脉体的榴辉岩样品,13CZ-7Va 为靠近榴辉岩的脉体样品,13CZ-7Vb 为远离榴辉岩的脉体样品;(b)绿辉石-多硅白云母-石英脉体(12CZ-9V)和寄主榴辉岩(12CZ-9E);(c)榴辉岩13CZ-7E1;(d)榴辉岩中的柱状的黝帘石颗粒;(e)脉体13CZ-7Va 中的黝帘石,中间包含有石榴石包体;(f)脉体12CZ-9V 中的金红石颗粒;(g)脉体13CZ-7Vb 中的多硅白云母;(h)脉体13CZ-7Vb 中石榴石退变质为角闪石,绿辉石退变质为角闪石+斜长石后成合晶Fig.2 Hand specimens and photomicrographs showing petrology of the veins and their host eclogites from Chizhuang in the Sulu orogen(a)zoisite-omphacite-quartz vein (13CZ-7V)and host eclogite (13CZ-7E),at the boundary of the vein and eclogite,coarsed omphacite and zoisite can be observed,sample 13CZ-7E1~3 are the eclogites gradually close to the vein,sample 13CZ-7Va is the vein close to the eclogite,sample 13CZ-7Vb is the vein away from the eclogite;(b)omphacite-phengite-quartz vein (12CZ-9V)and host eclogite (12CZ-9E);(c)eclogite 13CZ-7E1;(d)columnar zoisite in the eclogite;(e)zoisite in the vein (13CZ-7Va)containing garnet inclusions;(f)rutile in sample 12CZ-9V;(g)phengite in sample 13CZ-7Vb;(h)garnet rimmed by amphibole and omphacite rimmed by symplectitic corona of fine-grained plagioclase and amphibole

图3 苏鲁池庄榴辉岩及变质脉原始地幔标准化微量元素蛛网图和球粒陨石标准化稀土元素配分图(标准化值据Sun and McDonough,1989)Fig.3 Primitive mantle-and chondrite-normalized diagrams for the veins and their host eclogites from Chizhuang in the Sulu orogen (normalization values after Sun and McDonough,1989)

3.5 氧同位素分析

单矿物氧同位素分析在德国哥廷根大学地学中心完成,使用的方法是CO2激光氟化法。挑选颗粒完好,无明显包裹体的矿物颗粒,称取0.5~1.5mg,装载到一个镍质孔盘,上有18 个2mm 深的孔。使用CO2激光将样品加热熔融,并与F2反应,来获得O2。氧气纯化方法与Wiechert et al.(2002)描述的紫外激光方法类似。获得的18O/16O 比值用δ 形式给出(相对于标准平均海水,SMOW)。

4 结果

榴辉岩及变质脉全岩主微量数据见表2,矿物主微量数据见表3~表8,锆石U-Pb 同位素定年数据见表9,锆石微量元素数据见表10,矿物氧同位素数据见表11。

4.1 全岩主微量元素

依次远离变质脉的榴辉岩样品13CZ-7E1~13CZ-7E3 的主量元素组成相似,SiO2含量为47.8%~48.6%;Al2O3为16.1%~16.6%,Fe2O3为10.8%~11.3%,MgO 为7.8%~8.0%,Na2O 为3.3%~3.5%(表2)。相对榴辉岩,靠近榴辉岩的脉体13CZ-7V 部分(编号13CZ-7Va,图2a),SiO2(63.7%)和 Na2O (5.1%)含量显著升高,而 Al2O3(11.3%)、Fe2O3(3.2%)、MgO(5.6%)和CaO(8.7%)含量明显降低;远离榴辉岩的脉体13CZ-7V 部分(标号13CZ-7Vb,图2a)基本为纯石英,SiO2含量高达95.8%。由于变质脉中矿物颗粒分布十分不均匀,脉体的全岩数据可能不具有代表性。榴辉岩12CZ-9E 的SiO2含量为45.3%,Al2O3为22.3%,Fe2O3为11.5%,MgO 为5.6%,Na2O 为2.3%;变质脉13CZ-9V 的SiO2含量高达90.6%。

表2 苏鲁池庄榴辉岩和脉体的全岩主量(wt%)和微量(×10 -6)元素数据Table 2 Bulk rock major (wt%)and trace (×10 -6)element concentrations of eclogites and veins from Chizhuang in the Sulu orogen

图4 苏鲁池庄榴辉岩及变质脉中矿物三端元组分图(a)石榴石:Prp-镁铝榴石;Grs-钙铝榴石;Alm-铁铝榴石;Spe-锰铝榴石;(b)绿辉石:Jd-硬玉;Ae-霓石;Aug-普通辉石Fig.4 Ternary diagram showing the molecular compositions of minerals in the veins and their host eclogites from Chizhuang in the Sulu orogen(a) garnet:Prp-pyrope;Grs-grossular;Alm-almandine;Spespessartine;(b)omphacite:Jd-jadeite;Ae-aegirine;Aug-augite

在微量元素原始地幔标准化蛛网图中(图3a),距脉体较远的2 个榴辉岩样品13CZ-7E1 和13CZ-7E2 的微量元素分布特征类似,具有Pb 的正异常。在稀土球粒陨石标准化图上(图3b),这两个样品的LREE 相对亏损。距脉体最近的榴辉岩13CZ-7E3 与前者有较大区别,表现为Rb、Ba、U、Th和LREE 的明显相对富集。相比于榴辉岩,样品13CZ-7Va更加富集LREE,亏损HREE 和Ta(低于检出限,故未列于表中)、Zr、Hf 等流体不活动元素(图3a,b),并且具有较高的Sr 含量(400 ×10-6vs.103 ×10-6),但是Rb (1.24 ×10-6vs.8.65 ×10-6)和Ba(50.9 ×10-6vs.156 ×10-6)含量较低。样品13CZ-7Vb 的微量元素整体含量较低,其中Ti 的正异常可能与含较多的金红石含量有关。

表3 苏鲁池庄脉体(12CZ-9V)及寄主榴辉岩(12CZ-9V)中绿辉石的主量(wt%)和微量(×10 -6)元素的含量Table 3 Major (wt%)and trace (×10 -6)element concentrations of omphacite in vein (12CZ-9V)and its host eclogite (12CZ-9E)from Chizhuang in the Sulu orogen

榴辉岩12CZ-9E 的Rb、Ba 含量较低,分别只有0.86 ×10-6和6.94 ×10-6(表2)。脉体12CZ-9V 相比于围岩榴辉岩的微量元素差异主要表现为HREE 亏损(图3d),较低的Nb(0.67 ×10-6vs.2.58 ×10-6)、Ta(0.05 ×10-6vs.0.15 ×10-6)和Y(0.91 ×10-6vs.12.6 ×10-6)含量。

表4 苏鲁池庄脉体(12CZ-7V)及寄主榴辉岩(12CZ-7E)中绿辉石的主量(wt%)和微量(×10 -6)元素的含量Table 4 Major (wt%)and trace (×10 -6)element concentrations of omphacite in vein (12CZ-7V)and its host eclogite (12CZ-7E)from Chizhuang in the Sulu orogen

4.2 矿物地球化学

4.2.1 石榴石

石榴石主量元素十分均一,基本不存在环带。在石榴石三端元图上(图4a),变质脉与寄主榴辉岩中石榴石组分对比变化不大,样品12CZ-9E 和12CZ-9V 中石榴石的端元组分为:铁铝榴石为0.33~0.41,镁铝榴石为0.22~0.28,钙铝榴石为0.33~0.43。样品12CZ-7E 和12CZ-7V 中石榴石组成为:铁铝榴石为0.39~0.43,镁铝榴石为0.29~0.31,钙铝榴石为0.28~0.30。在微量元素方面,石榴石中含有很高的Zn、Y、Co、Sc 和HREE 含量,但是基本不含Rb、Sr、Cs、Nb、Ta、W、U、Th、Pb 和Hf(表5、表6)。相对榴辉岩中的石榴石,脉体中的石榴石HREE 含量更高(图5a,b)。脉体13CZ-7V 中石榴石Cr 含量(528 ×10-6~827 ×10-6)要明显高于13CZ-7E 榴辉岩中的(140 ×10-6~265 ×10-6)。

表5 苏鲁池庄脉体(12CZ-9V)及寄主榴辉岩(12CZ-9E)中石榴石的主量(wt%)和微量(×10 -6)元素的含量Table 5 Major (wt%)and trace (×10 -6)element concentrations of garnet in the vein (12CZ-9V)and its host eclogite (12CZ-9E)from Chizhuang in the Sulu orogen

表6 苏鲁池庄脉体(12CZ-7V)及寄主榴辉岩(12CZ-7E)中石榴石的主量(wt%)和微量(×10 -6)元素的含量Table 6 Major (wt%)and trace (×10 -6)element concentrations of garnet in vein (12CZ-7V)and its host eclogite (12CZ-7E)from Chizhuang in the Sulu orogen

4.2.2 绿辉石

图5 苏鲁池庄榴辉岩及变质脉中单矿物球粒陨石标准化稀土元素配分曲线(标准化值据Sun and McDonough,1989)(a)变质脉13CZ-7V 和寄主榴辉岩中的石榴石;(b)变质脉12CZ-9V 和寄主榴辉岩中的石榴石;(c)变质脉13CZ-7V 和寄主榴辉岩中的绿辉石;(d)变质脉12CZ-9V 和寄主榴辉岩中的绿辉石;(e)变质脉13CZ-7V 和榴辉岩12CZ-9E 中的黝帘石Fig.5 Chondrite-normalized REE patterns for minerals from the veins and their host eclogites from Chizhuang in the Sulu orogen(normalization values after Sun and McDonough,1989)(a)garnet in the vein 13CZ-7V and its host eclogite;(b)garnet in the vein 12CZ-9V and its host eclogite;(c)omphacite in the vein 13CZ-7V and its host eclogite;(d)omphacite in the vein 12CZ-9V and its host eclogite;(e)zoisite in the vein 13CZ-7V and the eclogite 12CZ-9E

榴辉岩和变质脉中的绿辉石没有发现成分环带,并且有相似的主量元素成分(图4b):硬玉组分含量占0.42~0.53,霓石组分小于0.09。绿辉石有很高的V、Ni、Zn、Cr、Ga 和Sr含量;基本不含Nb、Ta、W、U、Th、Pb 和Hf(表3、表4)。绿辉石的稀土元素含量很低,表现为MREE 相对富集,LREE 和HREE 相对亏损的特点。脉体和榴辉岩中绿辉石稀土元素分布模式基本一致(图5c,d)。

4.2.3 多硅白云母

榴辉岩中的多硅白云母SiO2在53.2%~53.9% (Si ≈3.51)左右,Ba 含量很高(1364 ×10-6~1676 ×10-6),Rb 含量为283 ×10-6~261 ×10-6,Sr 含量约为26.4 ×10-6,V 约为327.2 ×10-6,几乎不含Nb、Ta、W、U、Th、Hf 和稀土元素。脉体13CZ-7V 中的多硅白云母SiO2为52.4%~53.6% (Si=3.44~3.48),Rb 含量为195.2 ×10-6~244.9 ×10-6、Ba为865 ×10-6~1762 ×10-6,与榴辉岩中多硅白云母组成相似(表7)。

4.2.4 黝帘石

在池庄榴辉岩和变质脉中均存在黝帘石。相比于榴辉岩,脉体中黝帘石更加富集LREE(图5e),并且含有较高的FeO(~2.2% vs.4.63%),REE (45 ×10-6~107 ×10-6vs.4000 ×10-6~6500 ×10-6)和Sr 含量(167 ×10-6~199 ×

10-6vs.7315 ×10-6~8886 ×10-6)。

表7 苏鲁池庄变质脉及榴辉岩中多硅白云母和黝帘石的主量(wt%)和微量(×10 -6)元素的含量Table 7 Major (wt%) and trace (× 10 -6 ) element concentrations of phengite and zoisite in the veins and eclogites from Chizhuang in the Sulu orogen

表8 苏鲁池庄变质脉及榴辉岩中金红石微量元素的含量(×10-6)Table 8 Trace element concentrations of rutilein the veins and eclogites from Chizhuangin the Sulu orogen( ×10-6 )

图6 苏鲁池庄榴辉岩及变质脉中金红石Nb-Nb/Ta 图Fig.6 Nb vs.Nb/Ta of the rutiles in the veins and their host eclogites from Chizhuang in the Sulu orogen

图7 苏鲁池庄变质脉(13CZ-7V)及寄主榴辉岩(13CZ-7E)中锆石的CL 图像(a)榴辉岩13CZ-7E;(b)变质脉13CZ-7VFig.7 The zircon cathodoluminescence (CL)images of the vein (13CZ-7V)and its host eclogite (13CZ-7E)from Chizhuang in the Sulu orogen(a)eclogite 13CZ-7E;(b)vein 13CZ-7V

4.2.5 金红石

榴辉岩中的金红石的V 含量很高(1521 ×10-6~2134×10-6),Zr 含量为105.4 ×10-6~125 ×10-6,Nb 为115 ×10-6~198 ×10-6、Ta 为5.6 ×10-6~10.2 ×10-6,Nb/Ta 比值为18.7~29.1,略高于球粒陨石值(17.5,Sun and McDonough,1989)。此外,金红石还含有少量的Sr、Hf、W、Th 和U。脉体中的金红石没有明显的生长环带,V 含量为2384 ×10-6~3207 ×10-6,Zr 为123 ×10-6~139 ×10-6,Nb为120 ×10-6~143 ×10-6,Ta 为7.5 ×10-6~10.6 ×10-6,Nb/Ta 比值为12.4~17.9(图6)。

总结池庄榴辉岩和变质脉中各种矿物的微量元素特征如下:石榴石是主要的Y 储库,并含有大量的Zn、Co、V 和HREE 元素;绿辉石含有很高的V、Ni、Zn、Cr、Ga 和Sr,但是基本不含REE;多硅白云母中含大量的LILE;黝帘石中REE和Sr、Ba、V、Cr、U、Th、Pb 等元素含量很高;金红石富集Ti、Nb、Ta 和V,并含有一定量的Sr、Zr、Hf、Th、U 和W。

图8 苏鲁池庄变质脉(13CZ-7V)中锆石的矿物包裹体的拉曼图谱(a)石英(Qtz);(b)石榴石(Grt);(c)绿辉石(Omp)Fig.8 Micro-inclusions in zircons in the vein (13CZ-7V)from Chizhuang in the Sulu orogen(a)quartz(Qtz);(b)garnet(Grt);(c)omphacite(Omp)

4.3 锆石

4.3.1 锆石U-Pb 定年

对榴辉岩13CZ-7E 及变质脉13CZ-7V 中的锆石进行了LA-ICP-MS U-Pb 年龄分析。变质脉中的锆石多为圆形或椭圆形,大小为50~200μm。在CL 图像上(图7b),大部分颗粒为无分带或弱分带。脉锆石中含有石榴石、绿辉石和石英等矿物包裹体(图8)。脉锆石的U 含量为106.4 ×10-6~151.2 ×10-6,Th 为5.8 ×10-6~14.0 ×10-6,Th/U 比值为0.05~0.10(表9),与热液成因锆石相似(Williams et al.,1996;Rubatto and Hermann,2003;Zheng et al.,2007)。LAICPMS 分析结果显示,脉锆石U-Pb 年龄为218 ± 2.4Ma(2σ,MSWD=3.5)(图9a)。

表9 苏鲁池庄变质脉(13CZ-7V)和寄主榴辉岩(13CZ-7E)LA-ICP-MS 锆石U-Pb 同位素定年结果Table 9 Results of LA-ICP-MS zircon U-Pb dating of vein (13CZ-7V)and its host eclogite (13CZ-7E)from Chizhuang in the Sulu orogen

榴辉岩中的锆石也多为圆形或椭圆形,大小为30~200μm。在CL 图像中可观察到特征的岩浆锆石核和变质锆石边(图7a)。由于变质锆石边很窄,小于20μm,在LA-ICPMS 分析中无法得到纯锆石边数据,所以大多数分析点表示岩浆锆石核和增生边混合结果。所分析锆石的U 含量为47.8 × 10-6~212 × 10-6,Th 含量为53.8 × 10-6~111 ×10-6,Th/U 比值为0.42~1.53。在Pb-Pb 谐和图上,数据点落在Pb 丢失线上,仅能获得不谐和的下交点年龄为218 ±21Ma,上交点年龄为691 ±48Ma (图9b)。

4.3.2 锆石微量元素

在稀土元素球粒陨石标准化图上(图10),脉锆石都具有平坦的HREE 特征((Lu/Gd)N=1.1~2.9,LuN=8.1~27.8),没有明显的Eu 异常(Eu/Eu*=1.10~1.22)。脉锆石的LREE 含量较低,部分锆石的La 和Pr 含量低于检出限(表10)。它们的Hf 含量为11377 ×10-6~12554 ×10-6,Nb为0.12 ×10-6~0.18 × 10-6,Ta 为0.04 × 10-6~0.12 ×10-6,Nb/Ta 比值为1.31~3.21。榴辉岩锆石具有陡峭的HREE 特 征((Lu/Gd)N= 17.7~30.6,LuN= 670.7~1982.4),存在Eu 的负异常(Eu/Eu*=0.36~0.53)。它们的Hf 含量为6459 ×10-6~9317 ×10-6,Nb 为0.21 ×10-6~0.85×10-6,Ta 为 0.12×10-6~0.49 × 10-6,Nb/Ta 比值为1.26~2.07。

图9 苏鲁池庄变质脉(13CZ-7V)及寄主榴辉岩(13CZ-7E)锆石U-Pb 谐和图(a)脉体13CZ-7V;(b)榴辉岩13CZ-7EFig.9 Zircon U-Pb concordia diagrams for the vein (13CZ-7V)and its host eclogite (13CZ-7E)from Chizhuang in the Sulu orogen(a)vein 13CZ-7V;(b)eclogite 13CZ-7E

4.4 氧同位素

脉体13CZ-7V 中,石英的δ18O 为2.42‰,石榴石为-0.30‰,绿辉石为0.25‰,金红石为-2.38‰(表11)。榴辉岩13CZ-7E 中,石英的δ18O 为2.79‰,石榴石为0.01‰,绿辉石为0.07‰,多硅白云母为0.96‰(表11)。符合高温下矿物18O 富集顺序:石英>多硅白云母>绿辉石>石榴石>金红石。在氧同位素等温图上(图11),脉体中石英-绿辉石和石英-石榴石氧同位素温度为754~830℃,表明氧同位素达到平衡,保存了超高压变质条件;而石英-金红石的氧同位素温度较低,为681℃,可能是因为在金红石中,氧扩散速率比石榴石和绿辉石快(Zheng and Fu,1998),从而具有低的氧扩散封闭温度。榴辉岩中石英-石榴石和石英-多硅白云母氧同位素温度为774~818℃,与脉体中石英-绿辉石和石英-石榴石氧同位素温度相近,同样保存了超高压变质条件,但是石英-绿辉石给出的温度为645℃,代表冷却过程中榴辉岩相温度。

图10 苏鲁池庄变质脉(13CZ-7V)及其寄主榴辉岩(13CZ-7E)的锆石球粒陨石标准化稀土元素配分曲线(标准化值据Sun and McDonough,1989;深溶锆石数值据Zong et al.,2010)Fig.10 Chondrite-normalized REE patterns of zircon in the vein (13CZ-7V)and its host eclogite (13CZ-7E)from Chizhuang in the Sulu orogen (normalization values after Sun and McDonough,1989;anatexis zircon data after Zong et al.,2010)

图11 苏鲁池庄变质脉(13CZ-7V)及其寄主榴辉岩(13CZ-7E)中石英-其他矿物间氧同位素分馏等温线(分馏系数值据Zheng et al.,2003b)Fig.11 Isotherm plot for O-isotope fractionations between quartz and other minerals in the vein (13CZ-7V)and its host eclogite (13CZ-7E)from Chizhuang in the Sulu orogen(fractionation coefficients are after Zheng et al.,2003b)

表10 苏鲁池庄变质脉(13CZ-7V)及寄主榴辉岩(13CZ-7E)LA-ICP-MS 锆石微量元素含量(×10 -6)Table 10 Zircon trace element data of vein (13CZ-7V)and its host eclogite (13CZ-7E)from Chizhuang in the Sulu orogen(×10 -6)

表11 苏鲁池庄变质脉(13CZ-7V)及寄主榴辉岩(13CZ-7E)的矿物氧同位素组成Table 11 Oxygen isotopic composition of minerals from vein(13CZ-7V)and its host eclogite (13CZ-7E)from Chizhuang in the Sulu orogen

5 讨论

5.1 变质脉形成的温压条件和年代

关于苏鲁榴辉岩,前人做了大量的研究(Hirajima et al.,1990;Enami et al.,1993;Zhang et al.,2005a,2008)。Zhang et al.(2006)利用CCSD 榴辉岩中石榴石、绿辉石、多硅白云母矿物温压计估计的峰期变质温压条件为3.0~4.5GPa 和700~850℃。我们利用Krogh and Terry (2004)给出的石榴石-绿辉石-多硅白云母-蓝晶石-石英温压计计算得到池庄榴辉岩13CZ-7E 的峰期变质温压条件为679 ± 65℃、3.7 ±0.3GPa,脉体13CZ-7V 峰期变质温压条件为692 ±65℃、3.6±0.3GPa。氧同位素温度计得到的脉体和榴辉岩中不同矿物与石英的等温线相近,在830~645℃之间,这些温度与氧同位素扩散和矿物的封闭温度有关(Zheng et al.,2003b)。其中石英-石榴石给出的温度最高,为818~830℃,略高于用矿物对温压计得到的温度。矿物对温压计所得结果与Zhang et al.(2006)估计的苏鲁超高压变质岩体折返温压条件一致。

锆石的生长和改变都需要有流体的参与(Corfu et al.,2003;Zheng,2009;Chen et al.,2010),这些流体可以是富水流体、含水熔体或超临界流体(Zhang et al.,2008;Zheng et al.,2011)。流体活动会使锆石生长、改变,在没有后期扰动情况下,锆石的U-Pb 体系可以记录下流体活动的年代(Rubatto and Hermann,2003;Li et al.,2004;Wu et al.,2006;Zheng et al.,2007)。流体活动造成的锆石生长,既可以是围绕原有继承锆石的生长,也可以发育新的颗粒。这为我们研究流体的形成年代提供了很重要的手段。

图12 大别-苏鲁造山带中变质脉体锆石U-Pb 年龄统计直方图锆石年龄值据Franz et al.,2001;Zheng et al.,2007;Wu et al.,2009;Zong et al.,2010;Chen et al.,2012a;Sheng et al.,2012,2013;本文数据Fig.12 Zircon U-Pb age histogram of metamorphic veins in the Dabie-Sulu orogenic beltZircon age data sources:Franz et al.,2001;Zheng et al.,2007;Wu et al.,2009;Zong et al.,2010;Chen et al.,2012a;Sheng et al.,2012,2013;and this study

池庄榴辉岩和变质脉中的锆石存在很大差别。脉锆石不含岩浆锆石继承核,CL 图像偏亮,说明它是在流体活动中生长的,而不是从榴辉岩中机械混入的。并且脉锆石中含有石榴石、绿辉石、石英等榴辉岩相矿物包裹体,说明锆石是在榴辉岩相条件下生长的。锆石较低的REE 含量及平坦的HREE 特征((Lu/Gd)N=1.1~2.9,LuN=8.1~27.8),无明显的Eu 异常(Eu/Eu*=1.10~1.22),同样证明它们是在石榴石稳定而斜长石不稳定条件下生长的(Hermann and Green,2001;Rubatto,2002;Rubatto and Hermann,2003)。脉锆石LA-ICPMS 定年给出的U-Pb 年龄为218 ± 2.4Ma(2σ,MSWD =3.5),稍晚于峰期超高压变质年龄(225~242Ma,Zheng,2008)。

图12 统计的大别-苏鲁造山带变质脉中锆石的U-Pb 年龄,大部分年龄集中在210~225Ma,只有Zheng et al.(2007)在南大别黄镇地区一个蓝晶石-石英脉的锆石中获得了180 ±5Ma 的年龄。作者认为这个较晚的年龄与大陆碰撞无关,而是反映了一个独立的热事件。使用正态分布拟合得到峰值年龄为217.7 ±0.3Ma,这些年龄结果同池庄脉体中锆石年龄一样都晚于榴辉岩的峰期超高压变质时代(227~242Ma,Zheng,2008)。根据矿物对温压计和氧同位素计算得到的变质脉形成的峰期温压条件为692 ± 65℃、3.6 ±0.3GPa,对应于超高压变质条件。Zhang et al.(2008)在苏鲁造山带南部池庄榴辉岩中脉体内发现柯石英假象,证明该脉体形成于超高压变质条件。而池庄变质脉中的锆石U-Pb年龄为218 ±2.4Ma,晚于榴辉岩的峰期超高压变质时代,说明池庄榴辉岩中变质脉形成于深俯冲陆壳折返初期的超高压变质阶段。

5.2 成脉流体的来源

自发现大别-苏鲁造山带超高压变质岩氧同位素异常以来,前人进行了大量的氧同位素工作(Zheng et al.,2003a,b;Chen et al.,2007;Zhang et al.,2005a,b;Zheng,2009,2012)。超高压变质岩低的δ18O 值表明它们的原岩在俯冲前和大气降水来源的流体发生了强烈的高温热液蚀变作用(Zheng et al.,2003a;Zheng,2009)。这些低δ18O 岩石经历深俯冲-折返并保持氧同位素负异常特征,是因为俯冲陆块在地幔深部居留时间较短,未能发生充分的同位素重置(Zheng,2009)。Chen et al.(2007)根据CCSD 中超高压变质岩与相邻样品的距离、岩相学和矿物氧同位素组成,确定了相同岩性和不同岩性之间氧同位素组成不均一的尺度为20~50cm,对应于流体活动的最大尺度,说明大陆碰撞过程中流体活动有限。

Zheng et al.(2007)对南大别黄镇的石英脉及其围岩榴辉岩矿物间的氧同位素组成进行了对比研究,发现脉体和榴辉岩中同种矿物具有相似的δ18O 值,表明成脉流体直接来自围岩榴辉岩的脱水。Sheng et al.(2013)对大别山三祖寺地区超高压榴辉岩中蓝晶石-绿帘石-多硅白云母-石英脉中氧同位素进行了研究,发现同种矿物间氧同位素组成相似,也得到了相同的结果。可见,通过比较榴辉岩与变质脉中矿物的氧同位素组成,可以很好的制约形成脉体的流体的来源。

本研究对变质脉13CZ-7V 和榴辉岩13CZ-7E 中矿物氧同位素分析,变质脉和榴辉岩中石英的δ18O 分别为2.42‰和2.79‰,相差0.37‰;石榴石的δ18O 分别为-0.30‰和0.010‰,相差0.31‰;绿辉石的δ18O 分别为0.25‰和0.071‰,相差0.18‰。变质脉和围岩榴辉岩中的同种矿物的氧同位素在误差范围内一致,说明成脉流体来自围岩榴辉岩的脱水。与前人的数据进行对比(图13),三组变质脉和围岩榴辉岩的氧同位素组成均相近,表明这些成脉流体来自围岩榴辉岩自身的脱水。但是,不同区域的脉体或者榴辉岩的氧同位素组成差异较大,表明流体活动是有限的,无法在大的尺度上达到氧同位素平衡。

5.3 成脉流体的性质和元素迁移

图13 大别-苏鲁造山带变质脉及其寄主榴辉岩间矿物氧同位素对比δ18O 值据Zheng et al.,2007;Sheng et al.,2013 和本文数据Fig.13 Contrast of O-isotope between the veins and their host eclogites in the Dabie-Sulu orogenic beltThe δ18O data sources:Zheng et al.,2007;Sheng et al.,2013 and this study

本次研究的变质脉中,含有很多的含水矿物(黝帘石、多硅白云母),其LOI 达到1.67% (表2)。在脉体中观察到了黝帘石,说明成脉流体中富含Si、Ca、Al。脉黝帘石的LREE含量明显高于榴辉岩中黝帘石的LREE 含量,说明成脉流体中富含LREE 元素。脉体中含有多硅白云母,指示成脉流体中富含K。脉体中含有大颗粒金红石,而金红石富集Nb-Ta-Ti (图6),说明成脉流体可以有效迁移HFSE。因氧同位素证据表明成脉流体来自围岩榴辉岩自身的脱水,脉金红石的Nb/Ta 比值低于榴辉岩金红石的Nb/Ta 比值(图6),说明Ta比Nb 更容易进入超高压流体中,从而导致显著的Nb/Ta 分异。脉矿物(如石榴石、绿辉石和金红石)成分都比较均一,不存在变质环带,并且脉石榴石的HREE 比榴辉岩中的石榴石更加富集,说明HREE 在一定条件下也具有流体活动性。榴辉岩和脉体中的绿辉石成分相近,稀土元素含量很低,MREE 相对富集。池庄脉体中锆石没有继承核,均是在流体中生长的,颗粒大小在50~200μm,而围岩榴辉岩中的锆石大多只有宽度不到10μm 的生长边,说明有大量的Zr 被流体搬运出榴辉岩,进入变质脉。此外,脉体中锆石的稀土元素分布模式有别于典型的岩浆锆石和大别-苏鲁造山带UHP 变质岩部分熔融产生的深熔锆石(图10,Xia et al.,2009;Zong et al.,2010;曾令森等,2011),进一步说明脉体中锆石是从变质流体中结晶沉淀形成。

前人研究表明,成脉流体性质存在如下三种类型。

(1)含水熔体,实验证明镁铁质和长英质岩石部分熔融可以产生长英质熔体(Hermann et al.,2006;Liu et al.,2009;Zheng et al.,2011)。在大别-苏鲁造山带可以观察到HP/UHP 变质岩中的长英质脉体,它们的矿物组成与花岗岩类似(Liu et al.,2010b;Wallis et al.,2005;Zong et al.,2010;曾令森等,2011);而在西天山UHP 榴辉岩中的长英质脉体,是由榴辉岩中绿辉石熔融产生的(Chen et al.,2012b),这些脉体中含有大量的长石等矿物。岩相学观察发现,池庄复杂脉体中存在的主要矿物有:石榴石、绿辉石、多硅白云母、蓝晶石、黝帘石、绿帘石、金红石、石英。这些矿物都可以在高压榴辉岩相甚至超高压榴辉岩相中稳定存在(石英以柯石英形式存在)。池庄榴辉岩中的变质脉不含长石,只在蓝晶石和多硅白云母边缘存在退变质成因的长石边。变质脉中含有的石榴石、绿辉石、蓝晶石、金红石、多硅白云母、黝帘石等矿物,与部分熔融产生的花岗质脉体在矿物组合上有很大区别,所以池庄复杂脉体不是由部分熔融产生的花岗质熔体结晶产生的。

(2)富水流体,实验证明富水流体对主微量元素的溶解度都很低(Manning,2004;Hermann et al.,2006;Spandler et al.,2007;Hermann and Spandler,2008)。在变质流体中矿物的沉淀,说明形成矿物的元素过饱和。如果成脉流体没有丢失,而是全部沉淀下来,那么,脉体中全部矿物的丰度和组成就能得到初始流体的组成。但是,很多研究都表明,脉体中矿物的生长可能要经历很长的阶段(Rubatto and Hermann,2003;Spandler and Hermann,2006;Spandler et al.,2011;Huang et al.,2012)。脉体可能是流体活动的堆积,或者流体的不完全结晶(Hermann et al.,2006)。所以,脉体中某些矿物富含特定的元素,可能不一定表示这种元素在流体中有很大的溶解度,也可能是流体与岩石反应反复累积的结果(Spandler and Hermann,2006;Chen et al.,2012a;Huang et al.,2012)。例如,Spandler and Herman (2006)在New Caledonia 高压榴辉岩中发现的石榴石-石英-多硅白云母脉,脉中石榴石粒度可达5mm,并且存在明显不同于围岩榴辉岩中石榴石的Mn 和HREE 生长环带,解释为进变质过程中,榴辉岩内部矿物(硬柱石、绿泥石等)脱水流体反复累积沉淀的结果。Huang et al.(2012)在大别山碧溪岭地区黝帘石-石英脉和围岩榴辉岩中,发现脉体和榴辉岩中金红石Nb/Ta 比值存在互补性的生长环带,解释为俯冲初期,流体具有低的Nb/Ta,随着温度压力升高,流体Nb/Ta 比值升高,所以在流体中结晶出的金红石Nb/Ta 比值也相应改变。可见如果矿物是流体活动反复累积的结果,随着流体的成分发生变化,结晶出的矿物元素含量也会相应改变,应该能够观察到矿物生长环带。然而岩相学和地球化学证据显示,池庄变质脉中石榴石,绿辉石和金红石等矿物成分都很均一,没有观察到多期次生长的现象,说明本研究中变质脉里的矿物不是流体活动反复累积的结果。

(3)超临界流体,在一定的温压区间里硅酸盐流体对MREE、HREE、HFSE 等微量元素的溶解度都大幅提升(Herman et al.,2006),一般将这种流体称为超临界流体。由于微量元素在超临界流体中的活动性要比富水流体中强很多,大量的难溶元素都可以被带入流体,从而结晶出富含特定的元素的矿物(如金红石、帘石)。

图14 大别-苏鲁造山带超高压变质P-T 演化轨迹(据Zhang et al.,2011 修改)A-峰期变质折返初期,超高压榴辉岩相;B-高压榴辉岩相重结晶;C-退变质角闪岩相.花岗岩+ 水体系固相线据Huang and Wyllie,1981;玄武岩+水体系固相线据Mibe et al.,2011;花岗岩+水体系第二临界点条件据Hermann et al.,2006;玄武岩+水体系第二临界点条件据Mibe et al.,2011;花岗岩+水体系临界曲线据Bureau and Keppler,1999Fig.14 Schematic P-T path for metamorphic processes concerning fluid activity during subduction and exhumation of continental crust in the Dabie-Sulu orogenic belt(modified after Zhang et al.,2011)A-peak metamorphic exhumation, UHP eclogite facies; B-HP eclogite phase recrystallization;C-retrograde amphibolite facies.Wet solidus for the system granite-H2O after Huang and Wyllie (1981)and that for the system basalt-H2O after Mibe et al.(2011).The position of the second critical endpoint in the system granite +H2O after Hermann et al.(2006)and that in the system basalt + H2O after Mibe et al.(2011).The critical curve for the system granite+H2O after Bureau and Keppler (1999)

根据大别-苏鲁造山带超高压变质P-T 演化轨迹(图14),在峰期变质折返初期,由于压力降低,一些含水矿物的分解(如硬柱石、黝帘石、多硅白云母)和名义无水矿物中结构水的出溶(如绿辉石、石榴石和金红石)将产生大量的流体(Zheng et al.,2003a;Li et al.,2004)。这些流体是从榴辉岩内部产生的,并且温压条件在花岗岩+水体系和玄武岩+水体系的第二临界点以上,处在超临界流体条件下(图14 中点A)。超临界流体对REE、HFSE 等微量元素具有很高的溶解度(Kessel et al.,2005),大大提升了这些元素的活动性。可以很好解释池庄脉体中含有大量的REE 和HFSE 等传统上流体不活动元素。而随着压力温度的降低,低于玄武岩-水体系的第二临界点的温压条件时,流体向富水流体或含水熔体转变(图14,点B),REE、HFSE 等微量元素溶解度降低,从而可能结晶出一些富含这些元素的矿物(如石榴石、锆石和金红石)。Zhang et al.(2008)在池庄褐帘石-石英变质脉中发现褐帘石和锆石中存在柯石英假象,表明褐帘石-石英变质脉形成于超高压变质条件,褐帘石中富含有大量的REE、Th 等微量元素,很可能是超临界流体溶解了这些元素。同时,从图14 中也可以看出,这些元素的活动只存在于一个特定的温压范围内,持续的时间可能很短暂,活动性有限;但是流体活动可能要持续很长的时间,而随着温压条件降低,超临界流体会转变为富水流体(或含水熔体),之后的演化特征和富水流体(或含水熔体)脉体相同。至高压榴辉岩相,减压脱水释放出的花岗质岩石中的流体以含水熔体形式存在,如Zong et al.(2010)在苏鲁造山带观察到由花岗片麻岩部分熔融产生的长英质脉体,而在此温压条件下玄武质岩石中的流体则以富水流体形式存在,如Sheng et al.(2012)在大别山地区UHP 榴辉岩中观察到的石英脉等。脉体中锆石UPb 年龄显示的218 ±2.4Ma,可能反应的是流体从超临界流体向富水流体(或含水熔体)转变,此时Zr 在流体中从不饱和元素变为饱和元素,结晶出锆石。而在超临界流体中,可能没有锆石的生长。

6 结论

苏鲁造山带池庄榴辉岩中的复杂脉体中含有石榴石、绿辉石、多硅白云母、蓝晶石、黝帘石、绿帘石、金红石、石英等与寄主榴辉岩类似的矿物组成。氧同位素分析表明,变质脉和榴辉岩中各主要矿物的氧同位素组成相近,说明池庄榴辉岩中的黝帘石-石英脉体是由内部释放的流体结晶形成。综合大别-苏鲁造山带其它地区的榴辉岩和变质脉,发现不同脉体间氧同位素差别较大,说明在大陆深俯冲和折返过程中,流体活动有限。由石榴石-绿辉石-多硅白云母-蓝晶石-石英温压计和氧同位素温度计计算表明,脉体经历了超高压变质。岩相学观察和矿物成分分析表明,成脉流体是富集Al、Ca、K 的硅酸盐流体,并且溶解了大量MREE、HREE、HFSE 等流体不活动元素。而锆石U-Pb 定年结果为218 ±2.4Ma,可能要晚于流体形成的年龄。超临界流体条件存在于一个很小的温压范围下,在大陆深俯冲折返过程中持续的时间可能很短暂,随着温度压力降低,流体可能会转变为富水流体(或含水熔体),从而导致一些富含MREE、HREE、HFSE 等元素的矿物析出,从而形成苏鲁池庄观察到的变质脉。

Becker H,Jochum KP and Carlson RW.1999.Constraints from highpressure veins in eclogites on the composition of hydrous fluids in subduction zones.Chemical Geology,160(4):291-308

Becker H, Jochum KP and Carlson RW.2000.Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones.Chemical Geology,163(1-4):65-99

Beinlich A,Klemd R,John T and Gao J.2010.Trace-element mobilization during Ca-metasomatism along a major fluid conduit:Eclogitization of blueschist as a consequence of fluid-rock interaction.Geochimica et Cosmochimica Acta,74 (6):1892-1922

Boettcher AL and Wyllie PJ.1969.The system CaO-SiO2-CO2-H2O-III.Second critical end-point on the melting curve.Geochimica et Cosmochimica Acta,33(5):611-632

Bureau H and Keppler H.1999.Complete miscibility between silicate melts and hydrous fluids in the upper mantle:Experimental evidence and geochemical implications.Earth and Planetary Science Letters,165(2):187-196

Cartwright I,Power WL,Oliver NHS et al.1994.Fluid migration and vein formation during deformation and greenschist facies metamorphism at Ormiston Gorge,Central Australia.Journal of Metamorphic Geology,12(4):373-386

Castelli D,Rolfo F,Compagnoni R et al.1998.Metamorphic veins with kyanite,zoisite and quartz in the Zhu-Jia-Chong eclogite,Dabie Shan,China.Island Arc,7(1-2):159-173

Chen DL,Liu L,Sun Y et al.2012b.Felsic veins within UHP eclogite at Xitieshan in North Qaidam,NW China:Partial melting during exhumation.Lithos,136-139:187-200

Chen RX,Zheng YF,Gong B et al.2007.Oxygen isotope geochemistry of ultrahigh-pressure metamorphic rocks from 200~4000m core samples of the Chinese Continental Scientific Drilling.Chemical Geology,242(1-2):51-75

Chen RX,Zheng YF and Xie LW.2010.Metamorphic growth and recrystallization of zircon: Distinction by simultaneous in-situ analyses of trace elements,U-Th-Pb and Lu-Hf isotopes in zircon from eclogite-facies rocks in the Sulu orogen.Lithos,114(1-2):132-154

Chen RX,Zheng YF and Hu ZC.2012a.Episodic fluid action during exhumation of deeply subducted continental crust:Geochemical constraints from zoisite-quartz vein and host metabasite in the Dabie orogen.Lithos,155:146-166

Cong BL.1996.Ultrahigh-pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China.Beijing:Science Press,1-224

Cong B and Wang Q.1996.A review on researches of UHPM rocks in the Dabieshan-Sulu region.In:Cong BL (ed.).Ultrahigh-Pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China.Beijing:Science Press,1-170

Corfu F,Hanchar JM,Hoskin PWO et al.2003.Atlas of zircon textures.Reviews in Mineralogy and Geochemistry,53(1):469-500

Davies JH.1999.The role of hydraulicfractures and intermediate-depth earthquakes in generating subduction-zone magmatism.Nature,398(6723):142-145

Enami M,Zang QJ and Yin YJ.1993.High-pressure eclogites in northern Jiangsu-southern Shangdong provinces,eastern China.Journal of Metamorphic Geology,11(4):589-603

Ernst WG and Liou JG.1999.Overview of UHP metamorphism and tectonics in well-studied collisional orogens.International Geology Review,41(6):477-493

Ferrando S,Frezzotti ML,Dallai L et al.2005a.Fluid-rock interaction in UHP phengite-kyanite-epidote eclogite from the Sulu orogen,eastern China.International Geology Review,47(7):750-774

Ferrando S,Frezzotti ML,Dallai L et al.2005b.Multiphase solid inclusions in UHP rocks (Su-Lu,China):Remnants of supercritical silicate-rich aqueous fluids released during continental subduction.Chemical Geology,223(1-3):68-81

Franz L,Romer RL,Klemd R et al.2001.Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China):Pressuretemperature-time-deformation path,composition of the fluid phase and fluid flow during exhumation of high-pressure rocks.Contributions to Mineralogy and Petrology,141(3):322-346

Frezzotti ML,Fernando S,Dallai L et al.2007.Intermediate alkalialumino-silicate aqueous solutions released by deeply subducted continental crust:Fluid evolution in UHP OH-rich topaz-kyanite quartzites from Donghai (Sulu,China).Journal of Petrology,48(6):1219-1241

Fu B,Touret JLR and Zheng YF.2003.Remnants of premetamorphic fluid and oxygen isotopic signatures in eclogites and garnet clinopyroxenite from the Dabie-Sulu terranes,eastern China.Journal of Metamorphic Geology,21(6):561-578

Gao J,John T,Klemd R et al.2007.Mobilization of Ti-Nb-Ta during subduction:Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite,Tianshan,NW China.Geochimica et Cosmochimica Acta,71(20):4974-4996

Guo S,Ye K,Chen Y et al.2012.Fluid-rock interaction and element mobilization in UHP metabasalt:Constraints from an omphaciteepidote vein and host eclogites in the Dabie orogen.Lithos,136-139:145-167

Hack AC,Thompson AB and Aerts M.2007.Phase relations involving hydrous silicate melts,aqueous fluids,and minerals.Reviews in Mineralogy and Geochemistry,65(1):129-185

Hermann J and Green DH.2001.Experimental constraints on high pressure melting in subducted crust.Earth and Planetary Science Letters,188(1-2):149-168

Hermann J,Spandler CJ,Hack A et al.2006.Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks:Implications for element transfer in subduction zones.Lithos,92(3-4):399-417

Hermann J and Spandler CJ.2008.Sediment melts at sub-arc depths:An experimental study.Journal of Petrology,49(4):717-740

Herms P,John T,Bakker RJ et al.2012.Evidence for channelized external fluid flow and element transfer in subducting slabs (Raspas Complex,Ecuador).Chemical Geology,310-311:79-96

Hirajima T,Ishiwateri A,Cong B et al.1990.Identification of coesite in Mengzhong eclogite from Donghai County,northeastern Jiangsu Province,China.Mineralogical Magazine,54:579-584

Hou ZH and Wang CZ.2007.Determination of 35 trace elements in geological samples by inductively coupled plasma mass spectrometry.Journal of University of Science and Technology of China,37(8):940-944 (in Chinese with English Abstract)

Huang J,Xiao YL,Gao YJ et al.2012.Nb-Ta fractionation induced by fluid-rock interaction in subduction-zones:Constraints from UHP eclogite-and vein-hosted rutile from the Dabie orogen,Central-Eastern China.Journal of Metamorphic Geology,30(8):821-842 Huang J and Xiao YL.2014.Element mobility in mafic and felsic ultrahigh pressure metamorphic rocks from the Dabie UHP Orogen,China:Insights into supercritical liquids in continental subduction zones.International Geology Review,57(9-10):1-28

Huang WL and Wyllie PJ.1981.Phase relationships of S-type granite with H2O to 35kbar:Muscovite granite from Harney Peak,South Dakota.Journal of Geophysical Research,86:10515-10529

Hwang SL,Shen PY,Chu HT et al.2001.Genesis of microdiamonds from melt and associated multiphase inclusions in garnet of ultrahighpressure gneiss from Erzgebirge,Germany.Earth and Planetary Science Letters,188(1-2):9-15

John T,Klemd R,Gao J et al.2008.Trace-element mobilization in slabs due to non steady-state fluid-rock interaction:Constraints from an eclogite-facies transport vein in blueschist (Tianshan,China).Lithos,103(1-2):1-24

Kessel R,Schmidt MW,Ulmer P et al.2005.Trace element signature of subduction-zone fluids,melts and supercritical liquids at 120~180km depth.Nature,437(7059):724-727

Krogh Ravna EJ and Terry MP.2004.Geothermobarometry of UHP and HP eclogites and schists:An evaluation of equilibria among garnetclinopyroxene-kyanite-phengite-coesite/quartz.Journal of Metamorphic Geology,22(6):579-592

Kogiso T,Tatsumi Y and Nakano S.1997.Trace element transport during dehydration processes in the subducted oceanic crust:1.Experiments and implications for the origin of ocean island basalts.Earth and Planetary Science Letters,148(1-2):193-205

Lü Z,Zhang LF,Du JX et al.2012.Petrology of HP metamorphic veins in coesite-bearing eclogite from western Tianshan,China:Fluid processes and elemental mobility during exhumation in a cold subduction zone.Lithos,136-139:168-186

Li SG,Xiao YL,Liou D et al.1993.Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites:Timing and processes.Chemical Geology,109(1-4):89-111 Li SG,Jagoutz E,Chen YZ et al.2000.Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains,Central China.Geochimica et Cosmochimica Acta,64(6):1077-1093

Li XF,Rusk B,Wang RC et al.2011.Rutile inclusions in quartz crystals record decreasing temperature and pressure during the exhumation of the Su-Lu UHP metamorphic belt in Donghai,East China.American Mineralogist,96(7):964-973

Li XP,Zheng YF,Wu YB et al.2004.Low-T eclogite in the Dabie terrane of China:Petrological and isotopic constraints on fluid activity and radiometric dating.Contributions to Mineralogy and Petrology,148(4):443-470

Li YL,Zheng YF,Fu B et al.2001.Oxygen isotope composition of quartz-vein in ultrahigh-pressure eclogite from Dabieshan and implications for transport of high-pressure metamorphic fluid.Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,26(9-10):695-704

Liou JG, Banno S and Ernst WG.1995.Ultrahigh-pressure metamorphism and tectonics.Island Arc,4(4):233-239

Liou JG and Zhang RY.1996.Occurrences of intergranular coesite in ultrahigh-P rocks from the Sulu region,eastern China:Implications for lack of fluid during exhumation.American Mineralogist,81(9-10):1217-1221

Liu FL,Xu ZQ,Katayama I et al.2001a.Mineral inclusions in zircons of para-and orthogneiss from pre-pilot drillhole CCSD-PP1,Chinese Continental Scientific Drilling Project.Lithos,59(4):199-215

Liu JB,Ye K,Maruyama S et al.2001b.Mineral inclusions in zircon from gneisses in the ultrahigh-pressure zone of the Dabie Mountains,China.The Journal of Geology,109(4):523-535

Liu Q,Jin ZM and Zhang JF.2009.An experimental study of dehydration melting of phengite-bearing eclogite at 1.5~3.0GPa.Chinese Science Bulletin,54(12):2090-2100

Liu YS,Hu ZC,Gao S et al.2008.In situ analysis of Major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chemical Geology,257(1-2):34-43

Liu YS,Gao S,Hu ZC et al.2010a.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons of mantle xenoliths.Journal of Petrology,51(1-2):537-571

Liu YS,Hu ZC,Zong KQ et al.2010b.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS.Chinese Science Bulletin,55(15):1535-1546

Ludwig KR.2003.User’s Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel (No.4 ).Berkeley: Berkeley Geochronlogical Center Special Publication

Manning CE.2004.The chemistry of subduction-zone fluids.Earth and Planetary Science Letters,223(1-2):1-16

McCulloch MT and Gamble JA.1991.Geochemical and geodynamical constraints on subduction zone magmatism.Earth and Planetary Science Letters,102(3-4):358-374

Mibe K,Kawamoto T,Matsukage KN et al.2011.Slab melting versus slab dehydration in subduction-zone magmatism.Proceedings of the National Academy of Sciences of the United States of America,108(20):8177-8182

Miller LD,Goldfarb RJ,Gehrels GE et al.1994.Genetic links among fluid cycling,vein formation,regional deformation,and plutonism in the Juneau gold belt,southern Alaska.Geology,22(3):203-206 Miller C,Zanetti A,Thöni M et al.2007.Eclogitisation of gabbroic rocks:Redistribution of trace elements and Zr in rutile thermometry in an Eo-Alpine subduction zone (Eastern Alps).Chemical Geology,239(1-2):96-123

Navon O,Hutcheon ID,Rossman GR et al.1988.Mantle-drived fluids in diamond Micro-inclusions.Nature,335(6193):784-789

Okay AI,Xu ST and Şengör AMC.1989.Coesite from the Dabie Shan eclogites,central China.European Journal of Mineralogy,1(4):595-598

Oliver NHS and Bons PD.2001.Mechanisms of fluid flow and fluid-rock interaction in fossil metamorphic hydrothermal systems inferred from vein-wallrock patterns,geometry and microstructures.Geofluids,1(2):137-162

Rubatto D.2002.Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism.Chemical Geology,184(1-2):123-138

Rubatto D and Hermann J.2003.Zircon formation during fluid circulation in eclogites (Monviso,Western Alps):Implications for Zr and Hf budget in subduction zones.Geochimica et Cosmochimica Acta,67(12):2173-2187

Schmidt A,Weyer S,John T et al.2009.HFSE systematics of rutilebearing eclogites:New insights into subduction zone processes and implications for the earth’s HFSE budget.Geochimica et Cosmochimica Acta,73(2):455-468

Shen AH and Keppler H.1997.Direct observation of complete miscibility in the albite-H2O system.Nature,385(6618):710-712

Sheng YM,Zheng YF and Wu YB.2011.Studies of metamorphic vein in ultrahigh-pressure rocks.Acta Petrologica Sinica,27(2):490-500 (in Chinese with English abstract)

Sheng YM,Zheng YF,Chen RX et al.2012.Fluid action on zircon growth and recrystallization during quartz veining within UHP eclogite:Insights from U-Pb ages,O-Hf isotopes and trace elements.Lithos,136-139:126-144

Sheng YM,Zheng YF,Li SN et al.2013.Element mobility during continental collision:Insights from polymineralic metamorphic vein within UHP eclogite in the Dabie orogen.Journal of Metamorphic Geology,31(2):221-241

Spandler C and Hermann J.2006.High-pressure veins in eclogite from New Caledonia and their significance for fluid migration in subduction zones.Lithos,89(1-2):135-153

Spandler C, Mavrogenes J and Hermann J.2007.Experimental constraints on element mobility from subducted sediments using high-P synthetic fluid/melt inclusions.Chemical Geology,239(3-4):228-249

Spandler C,Pettke T and Rubatto D.2011.Internal and external fluid sources for eclogite-facies veins in the Monviso meta-ophiolite,Western Alps:Implications for fluid flow in subduction zones.Journal of Petrology,52(6):1207-1236

Stöckhert B,Duyster J,Trepmann C et al.2001.Microdiamond daughter crystals precipitated from supercritical COH+silicate fluids included in garnet,Erzgebirge.Germany Geology,29(5):391-394

Sun SS and McDonough W.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.).Magmatism in the Ocean Basins.Geological Society,London,Special Publications,42(1):313-345

Sun X,Xu L,Sun W et al.2010.Channelized fluids in subducted continental crust:constraints from δD-δ18O of quartz and fluid inclusions in quartz veins from the Chinese Continental Scientific Drilling Project.International Geology Review,53:1443-1463

Tatsumi Y,Shukuno H,Yoshikawa M et al.2005.The petrology and geochemistry of volcanic rocks on Jeju Island:Plume magmatism along the Asian continental margin.Journal of Petrology,46(3):523-553

Wallis S,Enami M and Banno S.1999.The Sulu UHP terrane:A review of the petrology and structural Geology.Int.Geol.Rev.,41(10):906-920

Wallis S,Tsuboi M,Suzuki K et al.2005.Role of partial melting in the evolution of the Sulu (eastern China)ultrahigh-pressure terrane.Geology,33(2):129-132

Wiedenbeck M,Allé P,Corfu F et al.1995.Three natural zircon standards for U-Th-Pb,Lu-Hf,trace element and REE analyses.Geostandards and Geoanalytical Research,19(1):1-23

Wiechert U,Fiebig J,Przybilla R et al.2002.Excimer laser isotoperatio-monitoring mass spectrometry for in situ oxygen isotope analysis.Chemical Geology,182(2-4):179-194

Williams IS,Buick IS and Cartwright I.1996.An extended episode of Early Mesoproterozoic metamorphic fluid flow in the Reynolds Range,central Australia.Journal of Metamorphic Geology,14(1):29-47

Wu YB,Zheng YF,Zhao ZF et al.2006.U-Pb,Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marblehosted eclogites from the Dabie orogen.Geochimica et Cosmochimica Acta,70(14):3743-3761

Wu YB,Gao S,Zhang HF et al.2009.U-Pb age,trace-element,and Hf-isotope compositions of zircon in a quartz vein from eclogite in the western Dabie Mountains:Constraints on fluid flow during early exhumation of ultrahigh-pressure rocks.American Mineralogist,94(2-3):303-312

Xia QX,Zheng YF,Yuan HL et al.2009.Contrasting Lu-Hf and U-Th-Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie orogen,China.Lithos,112(3-4):477-496

Xiao YL,Hoefs J,van den Kerkhof AM et al.2000.Fluid history of UHP Metamorphism in Dabie Shan,China:A fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling.Contributions to Mineralogy and Petrology,139(1):1-6

Xiao YL,Hoefs J,van den Kerkhof AM et al.2001.Geochemical constraints of the eclogite and granulite facies metamorphism as recognized in the Raobazhai complex from North Dabie Shan,China.Journal of Petrology,19(1):3-19

Xiao YL, Zhang ZM, Hoefs J et al.2006.Ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling Project-II.Oxygen isotope and fluid inclusion distributions through vertical sections.Contributions to Mineralogy and Petrology,152(4):443-458

Xiao YL,Hoefs J,Hou ZH et al.2011.Fluid/rock interaction and mass transfer in continental subduction zones:Constraints from trace elements and isotopes (Li,B,O,Sr,Nd,Pb)in UHP rocks from the Chinese Continental Scientific Drilling Program,Sulu,East China.Contributions to Mineralogy and Petrology,162(4):797-819

Xu ST,Okay AI,Ji SY et al.1992.Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting.Science,256(5053):80-82

Ye K,Yao YP,Katayama I et al.2000.Large areal extent of ultrahighpressure metamorphism in the Sulu ultrahigh-pressure terrane of East China:New implications from coesite and omphacite inclusions in zircon of granitic gneiss.Lithos,52(1-4):157-164

You ZD,Han YJ,Yang WR et al.1996.The High-Pressure and Ultrahigh-Pressure Metamorphic Belt in the East Qinling and Dabie Mountains,China.Wuhan:China University of Geoscience Press

Zack T and John T.2007.An evaluation of reactive fluid flow and trace element mobility in subducting slabs.Chemical Geology,239(3-4):199-216

Zeng LS,Gao LE,Yu JJ et al.2011.SHRIMP zircon U/Pb dating on ultrahigh pressure rocks Yangkou:Implications for the timing of partial melting in the Sulu UHP metamorphic belt.Acta Petrologica Sinica,27(4):1085-1094 (in Chinese with English abstract)

Zhang RY,Liou JG and Cong BL.1994.Petrogenesis of garnet-bearing ultramafic rocks and associated eclogites in the Su-lu ultrahighpressure metamorphic terrane,China.Journal of Metamorphic Geology,12(2):169-186

Zhang RY,Hirajima T,Banno S et al.1995.Petrology of ultrahigh pressure rocks from the southern Sulu region,eastern China.Journal of Metamorphic Geology,13(6):659-675

Zhang ZM,Xu ZQ and Xu HF.2000a.Petrology of ultrahigh-pressure eclogite from the ZK703 drill hole in the Donghai,eastern China.Lithos,52(1-4):35-50

Zhang RY,Liou JG,Yang J et al.2000b.Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane,eastern-central China.Journal of Metamorphic Geology,18(2):149-166

Zhang ZM,Xiao YL,Liu FL et al.2005a.Petrogenesis of UHP metamorphic rocks from Qinglongshan,Southern Sulu,East-Central China.Lithos,81(1-4):189-207

Zhang ZM,Shen K,Xiao YL et al.2005b.Fluid composition and evolution attending UHP metamorphism:Study of fluid inclusions from drill cores,southern Sulu Belt,eastern China.International Geology Review,47(3):297-309

Zhang ZM,Shen K,Xiao YL et al.2006.Mineral and fluid inclusions in zircon of UHP metamorphic rocks from the CCSD-main drill hole:A record of metamorphism and fluid activity.Lithos,92(3-4):378-398

Zhang ZM,Shen K,Sun WD et al.2008.Fluids in deeply subducted continental crust:Petrology,mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen,eastern China.Geochimica et Cosmochimica Acta,72(13):3200-3228

Zhang ZM,Shen K,Liou JG et al.2011.Fluid-rock interactions during UHP metamorphism:A review of the Dabie-Sulu orogen,east-central China.Journal of Asian Earth Sciences,42(3):316-329

Zhao ZF,Zheng YF,Gao TS et al.2006.Isotopic constraints on age and duration of fluid-assisted high-pressure eclogite-facies recrystallization during exhumation of deeply subducted continental crust in the Sulu orogen.Journal of Metamorphic Geology,24(8):687-702

Zheng YF,Fu B,Cong B et al.1996.Extremed18O depletion in eclogite from the Su-Lu terrane in East China.European Journal of Mineralogy,62(8):317-323

Zheng YF and Fu B.1998.Estimation of oxygen diffusivity from anion porosity in minerals.Geochemical Journal,32(2):71-89

Zheng YF,Fu B,Gong B et al.2003a.Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:Implications for geodynamics and fluid regime.Earth-Science Reviews,62(1-2):105-161

Zheng YF,Zhao ZF,Li SG et al.2003b.Oxygen isotope equilibrium between ultrahigh-pressure metamorphic minerals and its constraints on Sm-Nd and Rb-Sr chronometers.Geological Society,London,Special Publications,220(1):93-117

Zheng YF,Gao TS,Wu YB et al.2007.Fluid flow during exhumation of deeply subducted continental crust:Zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite.Journal of Metamorphic Geology,25(2):267-283

Zheng YF.2008.A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt.Chinese Science Bulletin,53(20):3081-3104

Zheng YF.2009.Fluid regime in continental subduction zones:Petrological insights from ultrahigh-pressure metamorphic rocks.Journal of the Geological Society,166(4):763-782

Zheng YF,Xia QX,Chen RX et al.2011.Partial melting,fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision.Earth-Science Reviews,107(3-4):342-374

Zheng YF.2012.Metamorphic chemical geodynamics in continental subduction zones.Chemical Geology,328:5-48

Zong KQ,Liu YS,Hu ZC et al.2010.Melting-induced fluid flow during exhumation of gneisses of the Sulu ultrahigh-pressure terrane.Lithos,120(3-4):490-510

附中文参考文献

侯振辉,王晨香.2007.电感耦合等离子体质谱法测定地质样品中35 种微量元素.中国科学技术大学学报,37(8):940-944

盛英明,郑永飞,吴元保.2011.超高压岩石中变质脉的研究.岩石学报,27(2):490-500

曾令森,高利娥,于俊杰等.2011.苏鲁仰口超高压岩石SHRIMP 锆石U/Pb 定年与部分熔融时限.岩石学报,27(4):1085-1094

猜你喜欢
苏鲁石榴石辉石
不发糖的克苏鲁
Sn掺杂石榴石型Li7La3Zr2O12固态电解质的制备
粉色蔷薇辉石的宝石学及矿物学特征
高压下镁辉石弹性波速的第一性原理研究*
蔷薇辉石:既为宝,亦为玉
独特的暗黑体系 你可能并不了解的克苏鲁神话
重器千秋——石榴宝石
如何正确的鉴别石榴石
地质学
我的课题我做主(连载)