施氮量与播种期对棉花产量和品质及棉铃对位叶光合产物的影响

2015-06-12 12:37刘敬然赵文青周治国董合林赵新华孟亚利
植物营养与肥料学报 2015年4期
关键词:棉铃对位播种期

刘敬然, 赵文青, 周治国*, 董合林, 赵新华, 孟亚利

(1南京农业大学农学院,农业部南方作物生理生态重点开放实验室,江苏南京 210095;2中国农业科学院棉花研究所,棉花生物学国家重点实验室,河南安阳 455000)

施氮量与播种期对棉花产量和品质及棉铃对位叶光合产物的影响

刘敬然1, 2, 赵文青1, 周治国1*, 董合林2, 赵新华2, 孟亚利1

(1南京农业大学农学院,农业部南方作物生理生态重点开放实验室,江苏南京 210095;2中国农业科学院棉花研究所,棉花生物学国家重点实验室,河南安阳 455000)

棉花(GossypiumhirsutumL.); 棉铃对位叶; 播种期; 施氮量; 光合产物; 产量和品质

温度是影响棉铃发育与纤维品质形成的主要生态因子,花铃期低温对棉花产量与纤维品质的影响尤为明显[5-6]。研究表明,晚播低温条件下,棉铃对位叶中净光合速率和磷酸蔗糖合成酶活性较低,蔗糖转化率下降,导致铃重降低[7],进而引起棉花产量和品质下降。

【实验操作及现象】取少量固体酒精于蒸发皿中,用火柴点燃,在火焰上方罩一个冷而干燥的烧杯,观察到烧杯内壁有水珠出现;将烧杯迅速地倒转过来,并注入适量澄清的石灰水,发现澄清石灰水变浑浊。

施氮是调控棉花产量形成的重要栽培措施之一[8]。研究表明,施氮量过高或过低均会造成叶片CO2同化能力降低,光合产物的积累与运输受阻,影响纤维比强度的形成[9-10]。适量追加氮肥可改善棉花叶片的光合性能[11];氮不足可导致棉花衰老进程的加剧[12]和抵抗外界胁迫能力的降低,显著减少光合产物在叶片的分配,进而导致棉花产量和品质下降[13]。

温度和氮素作为影响棉花生长的重要因子,其协同互作会影响棉花的产量和品质。赵文青等研究发现,在低温下增加施氮量可减小因低温而造成的纤维长度和比强度降低的幅度[14-15],但很少研究两个因子的互作效应对棉铃对位叶光合产物形成与分配的影响。本文基于大田分期播种试验,研究施氮量对不同播种期棉铃对位叶光合产物形成与运转的影响,揭示施氮量调控不同播种期棉铃对位叶光合产物形成与运转的生理机制,以期为棉花的合理氮肥运筹提供理论依据。

1 材料与方法

1.1 试验设计

试验于2005年和2007年在中国农业科学院棉花研究所(河南安阳,114°13′E,36°04′N,黄河流域黄淮棉区)进行,供试品种为科棉1号(Kemian 1,低温敏感性品种)和美棉33B(NuCOTN 33B,低温适度敏感性品种)。供试土壤为沙壤土,两年供试土壤(0—20 cm)分别含有机质19.7、14.7 g/kg,全氮0.94、0.94 g/kg,速效氮57.8、39.3 mg/kg,速效磷23.6、25.6 mg/kg,速效钾71.2、76.3 mg/kg。

儒学在东晋有所复兴,是相对魏晋南北朝尤其汉末、三国这段分裂动荡而又儒学极为衰微的时代而言的,其远未超过两汉这一经学的极盛时代。儒学在东晋的复兴是局部而又微弱的,即所谓儒学有所复兴而不强盛。这种局部而微弱的复兴,蕴育着其深层的自我否定因素与很大的外部挑战。这一两面性,突出表现在东晋的皇帝教育与官学教育上。

试验设播种期和施氮量两个处理因子。采用分期播种以形成棉铃发育期温度差异的方法,播种期设置为适宜播种期(4月25日)和晚播(5月25日),采用直播。4月25日和5月25日播种的棉花,其棉铃发育期的日均最低温以及大于15℃总积温差异较大(表1),达到了设计要求。

②执行性立法一般是指为了执行上位法而进行的行政立法活动,其特点是不创设新的法律规则,只对上位法的具体执行问题作出更明确更具操作性的规定。

表1 花铃期不同播种期棉铃发育期的气象条件Table 1 Weather factors at the boll development period with different planting dates

注(Note): 所用气象资料由安阳气象局提供Weather data in Anyang were provided by Anyang meteorological information center. MDTmin—Daily minimum temperature; >15℃ TAT—Total accumulated temperature; TAT = (max. temp. + min. temp.)/2 -15℃.

“你们不能这样。我在老家就知道《小二黑结婚》《王贵与李香香》,我们现在是新中国的新女性,更要反对包办婚姻。我不能嫁给杨连长,我坚决不同意。这个小伙子不行,就另找别人,反正我不嫁给又老又丑的杨连长。谁说也不行!”田志芳几乎是疯了一样地喊叫着。

随花后天数的增加,棉铃对位叶中氮浓度呈降低趋势;随施氮增加和播种期推迟,棉铃对位叶氮浓度增加(图1),其关系可用幂函数方程YN=α×DAA-β拟合,式中:YN为棉铃对位叶氮浓度(%),DAA为花后天数(d),α、β为参数。各处理拟合度均达极显著水平(表2)。随施氮量的增加和播种期推迟,叶氮浓度下降速率(β)降低。品种间比较,美棉33B棉铃对位叶的氮浓度稍高于科棉1号。

采用Origin 8.1对试验数据进行处理及作图,SPSS 17.0统计分析软件进行方差分析,LSD法检验显著性。

1.2.1 蔗糖和淀粉含量 取烘干棉铃对位叶0.1 g放入10 mL离心管,加80%酒精5 mL后80℃提取30 min,然后在于4000 r/min离心5 min,将上清液倾入25 mL容量瓶。重复提取2次,收集上清液于容量瓶,合并离心液于25 mL容量瓶中,用蒸馏水定容后转至-80℃冰箱保存,用以测定碳水化合物(蔗糖和淀粉)含量[17]。蔗糖转化量用Tn =(Cn-4-Cn+3)/7公式计算[18]。其中,n表示开花后的天数,Tn表示第n天的单叶蔗糖转化量,Cn-4表示第n-4 d的单叶蔗糖积累量,Cn+3表示第n+3 d的单叶蔗糖积累量。

1.2.2 棉铃对位叶氮浓度 粉碎已烘干的棉铃对位叶,过0.38 mm筛,用凯氏定氮法测定叶片全氮含量[19],并计算其氮浓度(%)。

机械油泵采用余摆线型油泵,内置于混合动力传动桥内。由发动机驱动,压力润滑各部齿轮。另外传动桥还通过减速齿轮旋转,飞溅润滑齿轮,减小机械油泵运转负载。

1.2.3 棉纤维品质性状 棉纤维品质指标在中国农业科学院棉花研究所农业部棉花纤维检测中心用HVI 900仪器测定,并用HVICC校准。

1.2.4 棉子品质性状 采用SoxtecTM Avanti 2050索式自动浸提系统(SoxtecTM Avanti 2050)测定棉子脂肪含量[20];采用凯氏定氮法测定棉子全氮含量[19],棉子蛋白质含量= 6.25×全氮含量。

(2)回填土采用3∶7灰土,分层铺摊,每层铺摊后随之耙平,铺土厚度为200~250 mm;采用压路机压实,压实系数应≥0.96。

1.2 测定项目与方法

进入20世纪以来,从文化上占优势的“西学东渐”,发展到越来越自觉的“东学西渐”,正在成为一种趋势。正如乐戴云先生所言,近年来西方文化显示了对他种文化、特别是中国文化的强烈兴趣。她还特别提到一位法国学者曾经写过一篇题为“为什么我们西方人研究哲学不能绕过中国?”的文章,该学者认为“穿越中国也是为了更好地阅读希腊”[23]。这说明了有5000年文明史的中国,其优秀的传统文化确实有相当多有待发掘的领域,这不仅包括这位法国学者所提到的哲学领域,而且包括与此相关的中西科学发展模式的探索。中外学者需要携起手来,共同探讨。

2 结果与分析

2.1 施氮量与播种期对棉铃对位叶氮浓度的影响

图1 棉铃对位叶氮浓度对氮素的响应Fig.1 Effect of N rates on nitrogen concentration in the subtending leaves of cotton boll[注(Note): 空心符号表示4月25日各处理Hollow symbol indicate in 25-Apr, ○— N0 kg/hm2; △—N 240 kg/hm2; ☆—N 480 kg/hm2. 实心符号表示5月25日各处理Solid symbol indicate in 25-May, ●—N 0 kg/hm2; ▲—N 240 kg/hm2; ★—N 480 kg/hm2.]表2 施氮量与播种期对棉铃对位叶氮浓度变化特征的影响Table 2 Effect of N rates on changing characteristics of nitrogen concentration in the subtending leaves of cotton with different planting dates

品种Cultivar播种期Plantingdate施氮量Nrate(kg/hm2)2005方程EquationR22007方程EquationR2科棉1号Kemian125-Apr0YN=6.19×DAA-0.270.995**YN=6.05×DAA-0.280.996**240YN=6.84×DAA-0.260.990**YN=6.42×DAA-0.260.992**480YN=7.03×DAA-0.240.997**YN=6.55×DAA-0.240.996**25-May0YN=7.13×DAA-0.220.989**YN=7.03×DAA-0.250.991**240YN=7.77×DAA-0.220.990**YN=7.58×DAA-0.250.984**480YN=8.06×DAA-0.210.978**YN=7.85×DAA-0.230.987**美棉33BNuCOTN33B25-Apr0YN=6.94×DAA-0.290.990**YN=6.68×DAA-0.290.980**240YN=7.26×DAA-0.270.975**YN=6.86×DAA-0.270.980**480YN=7.49×DAA-0.250.959**YN=7.25×DAA-0.260.977**25-May0YN=7.49×DAA-0.220.984**YN=7.17×DAA-0.240.995**240YN=7.65×DAA-0.200.983**YN=7.31×DAA-0.220.984**480YN=7.90×DAA-0.190.957**YN=7.72×DAA-0.210.965**

2.2 施氮量与播种期对棉铃对位叶光合产物含量的影响及与叶氮浓度的关系

2.2.1 光合产物含量 从图2可以看出,棉铃对位叶中蔗糖含量随花后天数的增加而降低,前期降低幅度大于后期。随施氮量的增加,蔗糖含量呈先增加后降低的趋势;与适宜播种期相比,推迟播种期(5月25日,2005、 2007年棉铃发育期的日均最低温MDTmin约为15℃)蔗糖含量有增加趋势,且棉铃对位叶蔗糖含量由下降趋势变为单峰变化。与N240相比,N480处理的棉铃对位叶蔗糖含量在晚播低温条件下差异较N0处理小。说明晚播低温条件下,增加施氮量可促进棉铃对位叶中蔗糖的运输。年际间和品种间的变化趋势一致。

图2 施氮量与播种期对棉铃对位叶中蔗糖含量的影响Fig.2 Effect of N rates on sucrose content in the subtending leaves of cotton boll during boll development with different planting dates

图3 施氮量与播种期对棉铃对位叶中淀粉含量的影响Fig.3 Effect of N rates on starch content in the subtending leaves of cotton boll during boll development with different planting dates

2.2.2 光合产物含量与叶氮浓度的相关性分析 蔗糖和淀粉是表征叶片“源”活性的重要指标。考虑到两品种的变化趋势相同,将品种作为重复分析棉铃对位叶碳水化合物含量、蔗糖转化量与叶氮浓度之间的关系。

根据薛晓萍等[16]认为施氮N 240 kg/hm2是棉花高产的适宜施氮量,本试验设置3个施氮量水平,即低氮,N 0 kg/hm2(N0);适氮,N 240 kg/hm2(N240);高氮,N 480 kg/hm2(N480)。试验小区面积为15 m × 4 m,行株距100 cm × 25 cm,每处理3次重复,随机区组排列。氮肥为尿素,按基施50%、花铃肥50%比例施入,基肥于移栽前施用,花铃肥在始花期(7月15日)追施,追肥采用穴施法。田间其他管理均按高产栽培要求进行。

2.4 施氮量对晚播棉纤维主要品质性状的影响

1.3 数据处理

表3 棉铃对位叶蔗糖含量、蔗糖转化量和淀粉含量与叶氮浓度的相关性分析Table 3 Correlation coefficients (r) between sucrose content, transport capacity of sucrose (Tn), starch content and N concentration in the subtending leaves of cotton boll at various days after anthesis

注(Note): Tn—Transport capacity of sucrose . *, **分别表示在0.05和0.01水平上显著Indicate significant differences at the 0.05 and 0.01 probability levels, respectively(n=12,r0.05=0.576,r0.01=0.707).

2.3 施氮量与播种期对棉花产量及产量构成因素的影响

播种期推迟使棉花单株铃数、铃重和皮棉产量均明显下降,N0和N480处理对不同播种期棉花产量及产量构成因素的影响不同(表4)。N0处理对不同播种期棉花单株铃数、铃重和皮棉产量的影响均为负效应,而N480处理对不同播种期棉花产量及产量构成因素的效应不一致: 4月25日播种条件下,N480处理对棉花单株铃数、铃重和皮棉产量的影响为负效应;晚播低温条件下,N480处理对棉花产量构成三因素的影响均表现为正效应,且铃重和皮棉产量达到显著水平(P<0.05)。年际间和品种间的变化趋势一致。此外,N480处理对棉花铃重和皮棉产量的调节效应最大。品种间比较发现,晚播低温条件下,与低温弱敏感性品种科棉1号相比,N480处理对低温适度敏感性品种美棉33B产量、铃重的调控幅度较大,对衣分调控幅度较小。

品种、播种期和施氮量对棉纤维长度和比强度的影响均达极显著水平(表5、 表6),播种期对麦克隆值的影响达到显著水平,纤维比强度和麦克隆值受播种期与施氮量的互作效应的影响最大。进一步分析棉纤维长度、比强度和麦克隆值的变化发现(表5),随播种期的推迟,纤维长度、比强度和麦克隆值均呈降低趋势。

大量研究表明,父母的信念是儿童信念发展的锚定起点(Ozorak, 1989; Boyatzis et al., 2006)。不同信仰的父母有着不同的观念和行为方式,这些不同借助亲子谈话等方式,影响着儿童各种观念的形成(Boyatzis et al., 2006)。 例如, Rosengren(2004)等人发现, 父母(天主教徒)被问及如何回答3~6岁的儿童的死亡问题时,大部分父母是用宗教相关的字眼来回应的,例如,天堂、灵魂、上帝等。有宗教信仰的父母的信念更加与众不同,对儿童信念的影响也显得尤为突出。

结合实际,对微机继电保护装置做日常维护方案的设定,针对设备本身特性,明确设备运行人员不仅需要掌握设备操作方式和操作细节,更要对其具体工作流程有客观认知,全面提升自身综合专业技术,以此保障设备运行的可靠性。检修过程中,要做好详细记录检查的结果明确故障发生原因,做好应对方案,保障微机继电保护装置整体运行效率。

4月25日播种条件下,施氮量对纤维长度和麦克隆值的影响较小,而N240处理下纤维比强度显著高于N0和N480处理(P<0.05)。晚播棉花纤维品质各指标在N240、N480处理下显著高于N0处理(表5)。与4月25日播种棉花相比,晚播条件下N0、N240、N480处理的棉纤维比强度分别降低了30.1%、25.0%和22.5%;棉纤维长度分别降低了9.9%、8.4%和8.2%。因此,增加施氮量可对晚播低温进行补偿,有利于高强纤维的形成。品种间比较发现,施氮量对低温弱敏感性品种科棉1号棉纤维长度和比强度的影响程度较低温适度敏感性品种美棉33B大。年际间的变化趋势一致。

表4 施氮量与播种期对棉花产量及产量构成因素的影响和效应值分析Table 4 Effect of N rates on cotton yield, and yield components in cotton plant with different planting dates and their effect indices (EI)

注(Note): 效应因子EI=[(N0或N480)-N240]×100/N240,当EI>0时为负效应,EI<0时为正效应,且EI绝对值越大,其影响程度越大EI=[(N0或N480)-N240]×100/N240. It is a positive effect if EI > 0 and vice versa, and following increasing the absolute value of EI, effect of PGR on cotton increases. “nd”表示未计算N0或N480处理对棉花衣分的效应因子 Means no data in EI of cotton lint percentage. 同列数值后不同字母表示不同施氮量间在0.05水平上差异显著 Values followed by different letters in the same column are significantly different among N rates at the 0.05 probability level.

2.5 施氮量与播种期对棉子主要品质性状的影响

播种期、品种与施氮量的互作对棉子主要品质性状的影响均达显著或极显著水平(表6、 表7)。子指受品种与播种期及播种期与施氮量的互作效应影响较大,棉子蛋白质含量和脂肪含量受品种与施氮量的互作效应的影响最大,且年际间变化趋势一致。随播种期的推迟,施氮量对两个品种棉子各品质性状的影响不显著。

表5 施氮量与播种期对棉纤维主要品质性状的影响Table 5 Effect of N rates on fibre quality characteristics in cotton plant with different planting dates

注(Note): 同列数据后不同字母表示不同施氮量间在0.05水平上差异显著(P<0.05) Values followed by different letters in the same column are significantly different among different N rates at the 0.05 probability level.

表6 不同处理下棉花主要纤维和棉子品质性状的方差分析Table 6 Variance analysis of quality characteristics of fibre and seed

注(Note): *, **—分别表示在0.05和0.01水平上差异显著Indicate significant differences at the 0.05 and 0.01 probability levels, respectively; NS—表示不显著NS denotes no significant difference (P>0.05).

表7 施氮量与播种期对棉子主要品质性状的影响Table 7 Effect of N rates on seed quality characteristics in cotton plant with different planting dates

注(Note): 同列数值后不同字母表示不同施氮量间在0.05水平上差异显著Values followed by different letters in the same column are significantly different among different N rates at the 0.05 probability level (P<0.05).

3 讨论

4 结论

本试验条件下,播种期(温度)和施氮量对棉铃对位叶光合产物含量、棉花产量和品质的影响存在互作效应,其中主导因素是播种期(温度),施氮量对其有补偿效应。随播种期推迟,施氮量N 240 kg/hm2时棉花单铃重、产量及纤维品质降低,主要原因是晚播低温使棉铃对位叶中光合产物(蔗糖和淀粉)含量增加,抑制了光合产物向棉铃及纤维的运输。晚播低温条件下,适量追施氮肥可调节棉铃对位叶中的氮浓度并提高光合产物再利用能力,从而相对促进棉花单铃的形成,降低棉纤维比强度的下降幅度,优化麦克隆值。

[1] Constable G, Rawson H. Carbon production and utilization in cotton: Inferences from a carbon budget[J]. Functional Plant Biology, 1980, 7(5): 539-553.

[2] Ashley D A.14C-labeled photosynthate translocation and ultilization in cotton plant[J]. Crop Science, 1972, 12(1): 69-74.

[3] Wullschleger S D, Oosterhuis D M. Photosynthetic carbon production and use by developing cotton leaves and bolls[J]. Crop Science, 1990, 30(6): 1259-1264.

[4] 董志强, 舒文华, 翟学军, 等. 棉株不同器官中几种内源激素的变化及相关关系[J]. 核农学报, 2005, 19(01): 62-67. Dong Z Q, Shu W H, Zhai X Jetal. The change and relationship of several endogenesis hormone in different organs of cotton plant[J]. Acta Agriculturae Nucleatae Sinica, 2005, 19(1): 62-67.

[5] Davidonis G H, Johnson A S, Landivar J Aetal. Cotton fiber quality is related to boll location and planting date[J]. Agronomy Journal, 2004, 96(1): 42-47.

[6] Dong H, Li W, Tang Wetal. Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China[J]. Field Crops Research, 2006, 98(2-3): 106-115.

[7] Liu J R, Ma Y N, Lü F Jetal. Changes of sucrose metabolism in leaf subtending to cotton boll under cool temperature due to late planting[J]. Field Crops Research, 2013, 144(C): 200-211.

[8] Salvagiotti F, Miralles D J. Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat[J]. European Journal of Agronomy, 2008, 28(3): 282-290.

[9] Reddy K R, Koti S, Davidonis G Hetal. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality[J]. Agronomy Journal, 2004, 96(4): 1148-1157.

[10] 孙红春, 冯丽肖, 谢志霞, 等. 不同氮素水平对棉花不同部位—铃叶系统生理特性及铃重空间分布的影响[J]. 中国农业科学, 2007, 40(8): 1638-1645. Sun H C, Feng L X, Xie Z Xetal. Physiological characteristics of boll-leaf system and boll weight space distributing of cotton under different nitrogen levels[J]. Scientia Agricultura Sinica, 2007, 40(8): 1638-1645.

[11] 勾玲, 闫洁, 韩春丽, 等. 氮肥对新疆棉花产量形成期叶片光合特性的调节效应[J]. 植物营养与肥料学报, 2004, 10(5): 488-493. Gou L, Yan J, Han C Letal. Effects of nitrogen rates on photosynthetic chaxracteristics and yield of high-yielding cotton in Xinjiang[J]. Plant Nutrition and Fertilizer Science, 2004, 10(05): 488-493.

[12] Fernaandez C J, McInnes K J, Cothren J T. Water status and leaf area production in water-and nitrogen-stressed cotton[J]. Crop Science, 1996, 36(5): 1224-1233.

[13] 马宗斌, 严根土, 刘桂珍, 等. 施氮量对黄河滩区棉花叶片生理特性、干物质积累及产量的影响[J]. 植物营养与肥料学报, 2013, 19(4): 849-857. Ma Z B, Yan G T, Liu G Xetal. Effects of nitrogen application rates on main physiological characteristics of leaves, dry matter accumulation and yield of cotton cultivated in the Yellow River bottomlands[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(04): 849-857.

[14] 赵文青, 孟亚利, 陈美丽, 等. 棉株果枝部位, 温光复合因子及施氮量对纤维伸长的影响[J]. 作物学报, 2011, 37(6): 1077-1086. Zhao W Q, Meng Y L, Chen M Letal. Effects of fruiting branch position, temperature-light factors and nitrogen rates on cotton (GossypiumhirsutumL.) fiber elongation[J]. Acta Agronomica Sinica, 2011, 37(6): 1077-1086.

[15] 赵文青, 孟亚利, 陈兵林, 等. 棉株果枝部位, 温光复合因子及施氮量对纤维比强度形成的影响[J]. 中国农业科学, 2011, 44(18): 3721-3732. Zhao W Q, Meng Y L, Chen B Letal. Effects of fruiting-branch position, temperature-light factors and nitrogen rates on cotton (GossypiumhirsutumL.) fiber strength formation[J]. Scientia Agricultura Sinica, 2011, 48(18): 3721-3732.

[16] 薛晓萍, 周治国, 张丽娟, 等. 棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J]. 生态学报, 2006, 26(6): 1781-1791. Xue X P, Zhou Z G, Zhang L Jetal. Development and application of critical nitrogen concentration dilution model for cotton after flowering[J]. Acta Ecologica Sinica, 2006, 26(6): 1781-1791.

[17] Lightfoot D, Orford S, Timmis J. Identification and characterisation of cotton boll wall-specific gene promoters for future transgenic cotton varieties[J]. Plant Molecular Biology Reporter, 2013, 31(1): 174-184.

[18] 刘霞, 姜春明, 郑泽荣, 等. 藁城8901和山农1391淀粉合成酶活性和淀粉组分积累特征的比较[J]. 中国农业科学, 2005, 38(5): 897-903. Liu X, Jiang C M, Zheng Z Retal. Activities of the enzymes involved in starch synthesis and starch accumulation in grains of wheat cultivars GC8901 and SN1391[J]. Scientia Agricultura Sinica, 2005, 38(5): 897-903.

[19] Feil B M, Moser S B, Jampatong Setal. Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization[J]. Crop Science, 2005, 45(2): 516-523.

[20] Luque de Castro M D, García-Ayuso L E. Soxhlet extraction of solid materials: an outdated technique with a promising innovative future[J]. Analytica Chimica Acta, 1998, 369(1-2): 1-10.

[21] Zheng M, Wang Y H, Liu Ketal. Protein expression changes during cotton fiber elongation in response to low temperature stress[J]. Journal of Plant Physiology, 2012, 169(4): 399-409.

[22] 束红梅, 赵新华, 周治国, 等. 不同棉花品种纤维比强度形成的温度敏感性差异机理研究[J]. 中国农业科学, 2009, 42(7): 2332-2341. Shu H M, Zhao X H, Zhou Z Getal. Physiological mechanisms of variation in temperature-sensitivity of cotton fiber strength formation between two cotton cultivars[J]. Scientia Agricultura Sinica, 2009, 42(7): 2332-2341.

[23] 刘敬然, 刘佳杰, 孟亚利, 等. 外源6-BA和ABA对不同播种期棉花产量和品质及其棉铃对位叶光合产物的影响[J]. 作物学报, 2013, (6): 1078-1088. Liu J R, Liu J J, Meng Y Letal. Effect of 6-BA and ABA applications on yield, quality and photosynthate contents in the subtending leaf of cotton with different planting dates[J]. Acta Agronomica Sinica, 2013, 39(6): 1078-1088.

[24] Wang S H, Zhu Y, Jiang H Detal. Positional differences in nitrogen and sugar concentrations of upper leaves relate to plant N status in rice under different N rates[J]. Field Crops Research, 2006, 96(2-3): 224-234.

[25] Chen D, Ye G, Yang Cetal. Effect after introducingBacillusthuringiensisgene on nitrogen metabolism in cotton[J]. Field Crops Research, 2004, 87(2-3): 235-244.

[26] Gao X B, Wang Y H, Zhou Z Getal. Response of cotton fiber quality to the carbohydrates in the leaf subtending the cotton boll[J]. Journal of Plant Nutrition and Soil Science, 2012, 175(1): 152-160.

[27] Invers O, Kraemer G P, Pérez Metal. Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrassPosidoniaoceanica[J]. Journal of Experimental Marine Biology and Ecology, 2004, 303(1): 97-114.

[28] Boussadia O, Steppe K, Zgallai Hetal. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’[J]. Scientia Horticulturae, 2010, 123(3): 336-342.

[29] Hendrix D L, Grange R I. Carbon partitioning and export from mature cotton leaves[J]. Plant Physiology, 1991, 95(1): 228-233.

[30] 李伶俐, 房卫平, 谢德意, 等. 施氮量对杂交棉光合生理特性及产量、品质的影响[J]. 植物营养与肥料学报, 2010, 16(5): 1183-1189. Li L L, Fang W P, Xie D Yetal. Effects of nitrogen application rates on photosynthetic and physiological characteristics and yield and quality of hybrid cotton[J]. Plant Nutrition and Fertilizer Science, 2010, 16(05): 1183-1189.

[31] 高相彬, 王友华, 陈兵林, 等. 棉 (GossypiumhirsutumL.) 纤维发育相关酶和纤维比强度对棉铃对位叶氮浓度变化的响应研究[J]. 植物营养与肥料学报, 2011, 17(5): 1227-1236. Gao X B, Wang Y H, Chen B Letal. Effects of nitrogen concentration in subtending leaves of boll on related enzymes and strength formation of cotton fiber[J]. Plant Nutrition and Fertilizer Science, 2011, 17(5): 1227-1236.

[32] Reddy A R, Reddy K R, Padjung Retal. Nitrogen nutrition and photosynthesis in leaves of Pima cotton[J]. Journal of Plant Nutrition, 1996, 19(5): 755-770.

Effects of nitrogen rates and planting dates on yield, quality and photosynthate contents in the subtending leaves of cotton boll

LIU Jing-ran1,2, ZHAO Wen-qing1, ZHOU Zhi-guo1*, DONG He-lin2, ZHAO Xin-hua2, MENG Ya-li1

(1CollegeofAgriculture,NanjingAgriculturalUniversity/KeyLaboratoryofCropPhysiology&EcologyinSouthernChina,MinistryofAgriculture,Nanjing210095,China; 2InstituteofCottonResearchofChineseAcademyofAgriculturalSciences/StateKeyLaboratoryofCottonBiology,Anyang,Henan455000,China)

【Objectives】The aim for this study was to elucidate physiological mechanism on photosynthate synthesis and transport of subtending leaves of cotton boll (SLCB) under cool temperature for nitrogen fertilizer, and provide theoretical support for reasonable nitrogen application.【Methods】 To study effect of nitrogen rates on photosynthate contents and nitrogen concentrations in subtending leaves of cotton boll (SLCB) and their relationship to cotton yield and quality under different planting dates, a field experiment is conducted with two cotton cultivars, Kemian 1 and NuCOTN 33B, in the Yellow River Valley (Anyang), China. The cotton seeds were sowed on 25-Apr and 25-May in 2005 and 2007, which could result in different growth temperatures for the boll and its SLCB at the same fruiting branches, and three N levels, N 0, 240 and 480 kg/hm2, standing for low, medium and high nitrogen level (N0, N240and N480), were applied at the flowering-boll development stage. 【Results】 1) The sucrose contents in the SLCB have a single trend following increasing nitrogen rates, and the starch contents in the SLCB are increased in the 25-Apr planting date. With the delayed planting date, the differences of the sucrose and starch contents between N240and N480are non-significant, but their contents are significantly higher than those of N0. In the present research, the sucrose content of the SLCB at 24-45 days after anthesis (DAA) has a significantly positive correlation with nitrogen concentration, and the correlation coefficient is decreased with the increase of DAA. In addition, the transport capacity of sucrose (Tn) has a significantly negative correlation with the nitrogen concentration at 17-24 DAA, and has a positive correlation with the nitrogen concentration at 31-52 DAA (P<0.01). These results indicate that an optimal leaf nitrogen concentration is favorable for carbon accumulation and export. 2) In the 25-Apr planting date, boll number, the boll weight and lint yield are decreased in N0and N480, and non-significant differences are observed in the two treatments. However, in the late planting date of 25-May, the boll weight and lint yield in the treatment of N480is improved as well as fiber strength, and micronaire values is optimized, thus suggesting that nitrogen application has a compensatory effect on cool temperature due to late planting. 【Conclusions】 In this study, there is an interaction on cool temperature due to the late planting and nitrogen application for carbohydrate, cotton yield and quality. The planting date is the dominant factor, and nitrogen fertilizer has a compensatory effect on cool temperature. With the delayed planting date, the boll weight, lint yield and fiber quality under the treatment of N 240 kg/hm2are declined, which is mainly due that sufficient non-structural carbohydrates (such as sucrose, hexose and starch) are stored in the SLCB, and carbohydrate might not be exported efficiently to cotton boll. Through increasing the nitrogen application, the decreased degree of fiber strength is less and the micronaire value is optimized, mainly due to the regulated nitrogen concentration and the improved recycling capacity of carbohydrate.

cotton (GossypiumhirsutumL.); subtending leaves of cotton boll; planting date; nitrogen rate; photosynthate; yield and quality

2014-05-23 接受日期: 2014-07-19 网络出版日期: 2015-06-04

农业部公益性行业科研专项计划(201203096); 国家自然科学基金(31171487);江苏省三新工程[SXGC(2013)334]项目资助。

刘敬然(1986—),女,河北石家庄人,博士,助理研究员,主要从事植物营养与分子生物学研究。 Tel: 0372-2562225, E-mail: liujingran_66@163.com。 * 通信作者 Tel: 025-84396813, E-mail: giscott@njau.edu.cn

S562.062.01

A

1008-505X(2015)04-0951-011

猜你喜欢
棉铃对位播种期
棉花
以“对位变奏思维及模式”观兴德米特“天体音乐”
镇平县依据冬前气温变化对小麦播种期及播种量的调整探索
不同棉花品种棉铃壳含Fe、Zn 量及其空间分布分析
江西省双季早稻直播适宜播种期的区域划分*
棉铃疫病人工接种方法优化及应用
自由对位与严格对位的博弈
——论传统对位教学两种体系的冲突
辟斯顿弦乐四重奏作品中对位化段落的和音形态
棉铃成熟度对抗虫棉纤维品质与铃重及衣分的影响
舞蹈:从诗歌中的舞蹈成像到舞蹈符号的多重对位