外源铁对不同品种番茄光合特性、品质及镉积累的影响

2015-06-12 12:37:35徐卫红王崇力熊仕娟谢文文熊治庭王正银谢德体
植物营养与肥料学报 2015年4期
关键词:气孔番茄供试

杨 芸, 周 坤, 徐卫红*, 江 玲, 王崇力,熊仕娟, 谢文文, 陈 蓉, 熊治庭, 王正银, 谢德体

(1西南大学资源环境学院,重庆 400715; 2武汉大学资源环境学院,武汉 430079)

外源铁对不同品种番茄光合特性、品质及镉积累的影响

杨 芸1, 周 坤1, 徐卫红1*, 江 玲1, 王崇力1,熊仕娟1, 谢文文1, 陈 蓉1, 熊治庭2, 王正银1, 谢德体1

(1西南大学资源环境学院,重庆 400715; 2武汉大学资源环境学院,武汉 430079)

铁镉交互; 光合特性; 番茄品质; 镉累积; 镉形态

镉是生物毒性最强的重金属,其在环境中化学活动性强,移动性大,毒性持久[1-2],土壤中的镉通过植物根系吸收和体内转运最终在植物可食部分中积累,进而通过食物链的富集作用而对人体健康产生影响[3]。土壤环境中的镉主要来自工业废物排放、污水灌溉、大气沉降和长期施用磷肥。随着我国工农业的发展,化肥、农药和污泥等的大量施用以及工业废水和重金属的大气沉降的增加,菜田土壤中Cd含量明显增加。植物组织中Cd浓度积累到一定水平时,就会表现出毒害症状,严重时甚至会导致植物死亡[4],影响作物的产量和品质[5]。

重金属污染土地的治理主要有客土法、石灰改良法、化学淋洗法等和植物修复技术等方法[6-10]。近年来,利用竞争性阳离子与Cd2 +的拮抗效应来抑制镉吸收或转移到作物可食部位中的农艺调控方法,已逐渐成为镉污染治理研究的焦点[11]。Shao等[12]报道,土壤加入铁肥后水稻根、茎和果实的Cd含量显著减少。但也存在相反的报道[13]。番茄(LycopersiconesculintumMill.)是人们喜食的果菜之一,在我国各地也均有栽培。有研究表明番茄对Cd耐性和吸收富集方面存在基因型差异[14]。但铁对不同番茄品种果实品质、Cd积累及化学形态的影响报道较少。本研究在人工模拟镉污染土壤条件下,采用盆栽试验研究了叶面喷施不同浓度的Fe对不同品种番茄生长、光合特性、果实品质、Cd积累及化学形态的影响,旨在为镉污染土壤上番茄的安全生产提供理论依据。

1 材料与方法

1.1 供试材料

供试作物为番茄(SolanumlycopersicumMill.),由重庆市农业科学院蔬菜花卉所提供,品种为‘4641’和‘渝粉109’。供试土壤由重庆市九龙坡区白市驿蔬菜基地提供。土壤全氮为1.21 g/kg、 有机质为33.3 g/kg、 有效氮、有效磷和速效钾分别为110.8、10.6和104.6 mg/kg,pH为 6.9,CEC 为20.7 cmol/kg。没有检验出Cd。

1.2 试验设计

1.3 测定方法

1.4 数据处理

试验所得结果均为3次重复测定的平均值,数据用SPSS 18.0软件进行统计分析。

2 结果与分析

2.1 不同Fe浓度处理对蕃茄植株生物量的影响

表1 不同Fe浓度处理对番茄单株干重的影响(g/pot)Table 1 Effects of different Fe levels on the dry weights of tomato

注(Note): 数值后不同小写字母代表同一个品种不同Fe浓度之间差异显著(P≤0.05) Values followed by different letters indicate significant difference (P≤0.05) among different Fe levels in the same cultivar.

2.2 不同Fe浓度处理对番茄光合效率的影响

由图1可知,不同品种间和不同Fe浓度处理下,番茄植株净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)差异达到显著水平。随铁浓度的增加Pn、Gs和Tr先增后降,在200 μmol/LFe时,Pn、Gs和Tr达到最大值,2个番茄品种‘4641’和‘渝粉109’的Pn、Gs和Tr较对照分别增加了8%和28.7%,11%和15.5%,2.9%和18.8%。无论喷施Fe与否,Pn、Gs、Ci和Tr以‘4641’>‘渝粉109’。

图1 不同浓度Fe处理对番茄光合效率的影响Fig.1 Effect of different Fe levels on photosynthetic efficiency of tomato

2.3 不同Fe浓度处理对番茄营养品质的影响

图2 不同Fe浓度处理对番茄果实品质的影响Fig.2 Effect of different Fe levels on fruit quality of tomato

2.4 果实中不同形态Cd含量

2.5 番茄植株各部位Cd含量和积累量

3 讨论

本试验条件下,供试2个番茄品种未出现Cd和Fe中毒症状,生长状态良好。在Cd污染的土壤上,叶面喷施200 μmol/L和400 μmol/L Fe显著提高了番茄果实、根、茎和叶的干重(表1),说明Cd对番茄的毒害作用通过Fe与Cd的拮抗效应得到了抑制,也有可能是喷施Fe改善了植株地上部铁营养状态,从而抑制了高亲和的铁吸收转运系统的表达,降低了根系对Cd的吸收,最终减小了Cd的毒害作用[19]。喷施200 μmol/L Fe能显著提高植株各部位干重,但是当Fe浓度达到400 μmol/L时,各部位干重有所下降,这与李元等在烟草方面的研究基本一致[20],这可能是由于番茄体内过多的游离Fe2+诱发形成多种活性自由基,膜脂过氧化作用加强,质膜透性加大,代谢紊乱,导致生物量下降[21]。试验还发现,未喷施Fe时,番茄果实干质量以‘4641’>‘渝粉109’,表明‘4641’耐Cd性较强,喷施Fe后‘渝粉109’>‘4641’,表明‘渝粉109’对Fe的反应更为敏感。

光合作用是高等植物生长发育和产量形成的基础,而铁是植物合成叶绿素的必须元素之一,因此铁对植株光合作用有着重要的影响。在本试验条件下,与对照相比,喷施Fe 200 μmol/L时,净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)明显增加,说明喷施适当浓度的Fe能够促进番茄植株的光合作用和蒸腾作用。这可能是由于Cd污染诱导了番茄植株的铁营养缺乏,植株铁蛋白、铁硫蛋白等合成受阻,影响了植物光合电子传递,外源补充适当浓度的铁后,光合电子传递链的活性升高所致[22]。但是当Fe浓度增加到400 μmol/L时,净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)有所下降,表明高浓度Fe反而抑制了番茄植株的光合作用与蒸腾作用,该结果与生物量随Fe浓度变化趋势一致。也与章艺等[23]的报道类似。原因可能是过多的亚铁离子会诱发多种活性自由基,并产生多种次生自由基,叶绿素合成受阻,最终导致叶绿素降解、膜脂过氧化,干物质合成降低[24-25]。影响Pn变化的因素有气孔因素和非气孔因素[26],本试验发现,品种‘4641’Pn和Gs随Ci的降低先增加后降低,说明Pn变化由非气孔因素逐渐转变为气孔因素占主导,‘渝粉109’Ci先降低后增加,Pn和Gs呈先增加后下降趋势,表明Pn变化主要是由非气孔因素引起的,这可能与叶片光合活性、RUBP羧化酶活性或者是卡尔文循环等原因有关[27]。试验还表明,无论喷施Fe否,净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)以‘4641’>‘渝粉109’,说明2个番茄品种间,‘4641’叶片对高Fe胁迫的耐性高于‘渝粉109’,同时也表明植株光合作用和蒸腾作用大小不仅与Fe浓度相关,而且还与品种有关。

Fe是植物必需的微量营养元素,Fe在植物体内与血红蛋白有关。李元[28]指出,随着喷施Fe浓度的增加,烟草叶片中总氨基酸含量下降,Cd+Fe处理后,随着Fe浓度的增加,烟草叶片总氨基酸呈上升趋势,而在本试验中,随着喷施Fe浓度的增加,‘渝粉109’氨基酸含量在喷施Fe后呈下降趋势,与李元[28]的结果不一致,原因可能有待进一步研究。在本试验条件下,品种‘4641’还原糖含量随着喷施Fe浓度的增加而降低,这与张木[29]所得出的喷施Fe不利于小白菜可溶性糖的提高结果基本一致。原因可能是由于Fe与Cd发生协同作用影响了植株碳代谢所致。而‘渝粉109’的还原糖含量随着喷施Fe浓度的增加而显著增加,这可能是由于Fe促进了植株叶绿素的合成,而增强了光合作用,从而促进碳代谢所致。说明‘4641’果实对高量Fe更为敏感。Vc是蔬菜重要品质之一[30],在本试验中,喷施200 μmol/L低Fe时,2个番茄品种Vc较对照处理都有所降低。这可能因Vc是植物体内抗氧化系统的重要组成部分,能够清除活性自由基;适量的Fe可缓解Cd胁迫诱导产生的自由基造成的膜脂过氧化[31]。因此,在喷施低Fe时,Vc合成也相应降低。喷施Fe 400 μmol/L时,2个供试番茄品种的果实Vc含量显著高于对照处理,该结果与吴俊华[32]的报道结果不一致。这可能是由于过量的Fe胁迫诱导产生的大量自由基刺激了Vc的合成所致。喷Fe增加了2个供试番茄品质的硝酸盐含量,这可能与Cd胁迫可降低硝酸还原酶活性,导致硝酸盐积累有关[33]。

Cd在植物体内有5种化学形态(乙醇提取态、去离子水提取态、氯化钠提取态、醋酸提取态、盐酸提取态),这5种提取态对重金属在植物体内的运移、累积及其毒性有显著影响[34]。本试验研究了Cd(10 mg/kg)污染条件下,2个番茄品种果实中不同形态Cd积累状况。研究表明, 2个番茄品种中不同形态Cd含量大小顺序为FR>FHCl>FE>FNaCl>FHAC>FW。该结果与一些学者研究中指出的Cd在植物体内的主要形态为氯化钠提取态,其次为醋酸提取态和水提取态不同[35]。本试验中,2个番茄品种果实中残渣态Cd(FR)和盐酸提取态Cd(FHCl)为活性偏低形态Cd,其平均含量之和为1.424 mg/kg,占Cd提取总量的70.8%;水提取态(FW)和乙醇提取态(FE)为活性较高形态Cd,二者平均含量之和为0.238 mg/kg,仅占Cd提取总量的11.8%,有效地限制了Cd的毒害作用。喷施适当浓度的Fe,可以降低番茄果实中各形态Cd含量以及Cd提取总量,Fe、Cd表现出拮抗作用,这与Krupa[36]所报道的结果基本一致。但高量Fe(400 μmol/L )反而较低量Fe增加了‘4641’果实中盐酸提取态Cd、残渣态Cd以及‘渝粉109’果实中乙醇提取态Cd、氯化钠提取态Cd、残渣态Cd和总提取量,铁镉表现出一定的协同效应,这与黄益中报道中指出的施铁可促进烟草对镉的吸收基本一致[37]。可见,铁镉交互作用不仅与Fe浓度有关,还与供试作物种类和品种有关。

在本试验的条件下,番茄各器官的Cd含量顺序为叶>根>茎>果实,Cd积累量大小顺序为叶>茎>果实>根,该结果与朱芳[14]所报道的结果不一致。表明番茄将Cd从根转运至地上部分的能力较强。但本试验也发现,Cd在番茄食用部位的累积量远小于其他非食用部位,食用风险相对较低。喷Fe能够降低植株各部位Cd含量以及叶、茎中的Cd积累量,Fe与Cd表现出明显的拮抗效应,这可能是由于铁供应充足的情况下,铁转运子基因关闭,铁吸收增加,镉的被动吸收量下降,Cd富集降低所致[36]。此外,喷施高浓度Fe后,番茄各部位Cd含量较喷施低浓度Fe时有所增加,此时Cd和Fe表现出协同效应。这表明Cd和Fe在作物体内的交互作用比较复杂,不仅与植物种类和部位有关,还与Cd和Fe的相对含量有关。试验还发现,喷施Fe降低了植株Cd积累总量,但是却增加了果实的Cd积累量,表明Fe对番茄的增产作用比对降低果实Cd含量的作用更显著。无论喷施Fe与否,叶、茎、果实中的Cd积累量以及总Cd积累量总是以‘4641’>‘渝粉109’,表明在Cd污染土壤上种植‘4641’,较‘渝粉109’风险更大。

4 结论

1)重金属Cd污染(Cd 10 mg/kg)下,Fe能缓解Cd对供试番茄生长的抑制,显著增加了2个番茄品种的果实、根、茎、叶及总干重。但随Fe浓度增加,番茄果实、根、茎、叶及总干重均表现出先增后降的趋势。

2)在Cd污染(Cd 10 mg/kg)条件下,随铁浓度的增加净光合速率(Pn)、气孔导度(Gs)、蒸腾速率 Tr)先增后降,在Fe 200 μmol/L时,净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)达到最大值。

3)随着喷施Fe浓度的增加,‘4641’还原糖含量降低,‘渝粉109’还原糖含量却增加;喷施高Fe(400 μmol/L)提高了‘4641’和‘渝粉109’果实中的维生素C含量;喷Fe增加了2个供试品种番茄果实中硝酸盐含量。

4)番茄果实中Cd的主要存在形态为残渣态,其次为盐酸提取态,去离子水提取态和乙醇提取态所占比例较小。喷施Fe降低了‘4641’品种 FE、FW、FHAC含量、‘4641’品种Cd总提取量以及‘渝粉109’品种Fw含量。无论喷Fe与否,4641’的总Cd提取量都大于‘渝粉109’品种。

5)番茄中的Cd主要累积于叶和茎中,喷铁降低了植株各部位Cd含量,但随着喷施Fe浓度的增加,各部位Cd含量呈先降后升趋势。

[1] Moreno C J, Moral R, Perrez E Aetal. Cadmium accumulation and distribution in cucumber plant[J]. Journal of Plant Nutrition 2000, 23(2): 243-250.

[2] Moriarty F. Ecotoxicology: the study of pollutants in ecosystems[M]. London: Academic Press, 1999. 29-35.

[3] 崔玉静, 赵中秋, 刘文菊等. 镉在土壤-植物-人体系统中迁移积累及其影响因子[J]. 生态学报, 2003, 23(10): 2133-2142. Cui Y J, Zhao Z Q, Liu W Jetal. Transfer of cadmium through soil-plant-human continnum and its affecting factors[J]. Acta Ecological Sinica, 2003, 23 (10): 2133-2142.

[4] 赵云香. 铅和镉复合胁迫对小麦保护酶系统的影响[J]. 山西农业大学学报, 2005, 25(3): 261-263. Zhao Y X. Effects of Cd and Pb multiple Stresses on protective enzyme system of wheat[J].Journal of Shanxi Agricultural University, 2003, 23(10): 2133-2142.

[5] 邵国胜, Muhammad J H, 章秀福, 等. 镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响[J]. 中国水稻科学, 2004, 18(3): 239-244. Shao G S, Muhammad J H, Zhang X Fetal. Effects of cadmium stress on plant growth and antioxidative enzyme system in different rice genotypes[J]. Chinese Journal of Rice Science, 2004, 18(3): 239-244.

[6] Kalantari M R, Shokrzadeh M, Ebadi A Getal. Soil pollution by heavy metals and remediation (Mazandaran-Iran)[J]. Journal of Applied Sciences, 2006, 6(9): 2110-2116.

[7] 韦朝阳,陈同斌. 重金属超富集植物及植物修复技术研究进展[J]. 生态学报, 2001, 21(7): 1196-1203. Wei C Y, Chen T B. Hyperaccumulators and phytoremdiation of heavy metal contaminated soil: a review of studies in China and abroad[J]. Acta Ecological Sinica, 2001, 21(7): 1196-1203.

[8] Lee S Z, Allen H E, Huang C Petal. Predicting soil water partition coefficients for cadmium[J]. Environmental Science & Technology, 1996, 30(12): 3418-3424.

[9] Salt D E, Blaylock M, Ensley B Detal. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants[J].Nature Biotechnology, 1995, 13(5): 468-474.

[10] Cunningham S D, William R, Berti W. Phytoremediation of contaminated soils[J]. Trends in Biotechnology, 1995, 13(9): 393-397.

[11] Huang X, Zhou Q, Zhang G Y S. Advances on rare earth application in pollution ecology[J]. Joural of Rare Earths, 2005, 23(1): 5- 11.

[12] Shao G S, Chen, M X, Wang W X,etal. Iron nutrition affects cadmium accumulation and toxicity in rice plants[J]. Plant Growth Regulation, 2007, 53(1): 33-42.

[13] 张燕. 铁营养状况对黄瓜吸收镉的影响[D]. 中国农业大学硕士论文, 2006. Zhang Y. Effect of iron supply on cadmium uptake by cucumber seedling[D]. Beijing: MS dissertation of China Agricultural University, 2006.

[14] 朱芳, 方炜, 杨中艺. 番茄吸收和积累Cd能力的品种间差异[J]. 生态学报, 2006, 26(12): 4071-4080. Zhu F, Fang W. Yang Z Y. Variations of Cd absorption and accumulation of 36Lycopersiconesculentumcultivars[J]. Acta Ecological Sinica, 2006, 26(12): 4017-4080.

[15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. 12-22, 107-195, 335-336. Lu R K. Soil agro-chemistrical analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000. 12-22, 107-195, 335-336.

[16] 牛森. 作物品质分析[M]. 北京: 农业出版社, 1992. 183-185. Niu S. Crop quality analysis[M]. Beijing: Agricultral Press, 1992. 183-185.

[17] 西北农业大学, 华南农业大学. 农业化学研究法(第二版)(上册)[M]. 北京: 中国农业出版社, 1992: 75-80. Northwest Agricultural University, South China Agricultural University. Agricultural chemistry research methods (Second Edition) of volume 1[M]. Beijing: China Agricultural Science and Technology Press, 1992. 75-80.

[18] Alarcón A L, Madrid R, Romojaro Fetal. Calcium forms in leaves of muskmelon plants grown with different calcium compounds[J]. Journal of Plant Nutrition, 1998, 21(9): 1897-1912.

[19] Shao G S, Chen M X, Wang W Xetal. Iron nutrition affects cadmium accumulation and toxicity in rice plants[J]. Plant Growth Regulation, 2007, 53(1): 33-42.

[20] 李元, 王焕校, 吴玉树. 镉、铁及其复合污染对烟草生理的影响[J]. 环境科学学报, 1990, 10(4): 494-500. Li Y, Wang H X, Wu Y S. Effects of cadmium, iron and their combined pollution on the physiological and biochemical characteristics of tobacco[J]. Acta Scientiae Circumstantiae 1990, 10(4): 494-500.

[21] Sinha S, Gupta M, Chndra P. Oxidative stress induced byHydrillaverticillata(l. f.) royle: response of antioxidants[J]. Ecotoxicology and Environmental Safety 1997, 38(3): 286-291.

[22] 黄益宗, 朱永官, 黄凤堂. 镉和铁及其交互作用对植物生长的影响[J]. 生态环境, 2004, 13(3): 406-409. Huang Y Z, Zhu Y G, Huang F T. Effects of cadmium, iron and their interactions on plant growth: a review[J]. Ecology and Envrionment, 2004, 13(3): 406-409.

[23] 章艺, 刘鹏, 史锋, 等. 高Fe2+对大豆叶片光合作用的影响[J]. 中国油料作物学报, 2007, 29(4): 438-442. Zhang Y, Liu P, Shi Fetal. Influence of excessive Fe2+on photosynthesis of soybean leaves[J]. Chinese Journal of Oil Crop Sciences, 2007, 29(4): 438-442.

[24] Ghosh A K, Sen S, Palit S. Comparative efficacy of chlorophyll in reducing cytotoxicity of some heavy metals[J]. Biology of Metals, 1991, 4(3): 158-161.

[25] Halliwell B, Gutteridge J M C. Role of free radicals and catalytic metal ions in human disease: an overview[J]. Methods Enzymol 1990, 186: 81-85.

[26] 张志刚, 尚庆茂. 低温、弱光及盐胁迫下辣椒叶片的光合特性[J]. 中国农业科学, 2010,43(1): 123-131. Zhang Z G, Shang Q M. Photosynthetic characteristics of pepper leaves under low temperature, weak light and salt stress[J]. Scientia Agricultural Sinica 2010, 43(1): 123-131.

[27] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Ann Reviews Plant Physiology 1982, 33: 317-345.

[28] 李元, 祖艳群, 王焕校. 镉、铁及其复合污染对烟草叶片氨基酸含量的影响[J]. 生态学报, 1998, 18(6): 640-647. Li Y, Zu Y Q, Wang Huan X. Effects of cadmium and iron on amino acid content in tobacco leaves[J]. Acta Ecological Sinica 1998, 18(6): 640-345.

[29] 张木, 胡承孝, 孙学成, 等. 叶面喷施微量元素和氨基酸对小白菜产量及品质的影响[J]. 华中农业大学学报, 2011, 30(5): 613-617. Zhang M, Hu C X, Sun X Cetal. Effects of spraying micronutrient and amino acids into surface of leaves on yeild and quality of Chinese cabbage[J]. Journal of Huazhong Agricultural University, 2011, 30(5): 613-617.

[30] 陆景陵. 植物营养学(上册)(第二版)[M]. 北京: 中国农业大学出版社, 1994: 77-82. Lu J L. Plant nutrition of volume 1(Second Edition) [M]. Beijing: China Agriculture University Press, 1994. 77-82.

[31] 董静. 基于悬浮细胞培养的大麦耐镉性基因型差异及大小麦耐渗透胁迫差异的机理研究[D]. 杭州:浙江大学博士学位论文, 2009. Dong J. Studies on differences in the tolerance to cadmium toxicity in different barley genotypes and to osmotic stress between barley and wheat using suspension cell cultures[D]. Hangzhou: PhD Dissertation of Zhejiang University, 2009.

[32] 吴俊华, 候雷平, 李远新等. 不同供铁水平对番茄产量及果实风味品质的影响[J]. 土壤通报, 2011, 42(1): 154-157. Wu J H, Hou L P, Li Y Xetal. Effect of different iron concentrations on yield and flavor quality of friut in tomato[J]. Chinese Journal of Soil Science, 2011, 42(1): 154-157.

[33] 汪洪, 周卫, 林葆. 钙对镉胁迫下玉米生长及生理特性的影响[J]. 植物营养与肥料学报, 2001, 7(1): 78-87. Wang H, Zhou W, Lin B. Effect of Ca on growth and some physiological characteristics of maize under Cd stress[J]. Journal of Plant Nutrtion and Fertilizer, 2001, 7(1): 78-87.

[34] 孙岩, 韩颖, 李军, 等. 硅对镉胁迫下水稻生物量及镉的化学形态的影响[J]. 西南农业学报, 2013, 26(3): 1240-1244. Sun Y, Han Y, Li Jetal. Effect of Si on rice biomass and chemical species of Cd under Cd stress[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(3): 1240-1244.

[35] 王林. 蔬菜对镉铅的吸收累积特征与生理响应研究[D]. 山东: 山东农业大学硕士学位论文, 2005. Wang L. Absorption and accumulation characteristics and physiological responses of different vegetables to Cadmium and Lead [D]. Shandong: MS Thesis of Shandong Agricultural University, 2005.

[36] Krupa-Z, Siedlecka A, Mathis P. Cd/Fe interaction and its effects on photosynthetic capacity of primary bean leaves[A]. Proceedings of the Xth International Photosynthesis Congress[C]. Netherlands: Kluwer Academic Publishers, 1995. 621-624.

[37] 黄益宗. 镉与磷、锌、铁、钙等元素的交互作用及其生态学效应[J]. 生态学杂志, 2004. 23(2): 92-97. Huang Y Z. Interactions of between cadmium and phosphorus, zinc, iron, calcium and their ecological effects[J]. Chinese Journal of Ecology, 2004, 23(2): 92-97.

Effect of exogenous iron on photosynthesis, quality, and accumulation of cadmium in different varieties of tomato

YANG Yun1, ZHOU Kun1, XU Wei-hong1*, JIANG Ling1, WANG Chong-li1, XIONG Shi-juan1,XIE Wen-wen1, CHEN Rong1, XIONG Zhi-ting2, WANG Zheng-yin1, XIE De-ti1

(1CollegeofResourcesandEnvironmentalSciences,SouthwestUniversity,Chongqing400715,China;2CollegeofResourcesandEnvironmentalSciences,WuhanUniversity,Wuhan430079,China)

【Objectives】In soils simulated with cadmium (Cd) pollution, different levels of exogenous Fe were added and their influences on the chemical forms of cadmium (Cd)and the Cd accumulation in tomato were studied to provide a theoretical base for tomato safe production.【Methods】 Pot experiments were carried out to investigate the influence of different iron levels(0,200 and 400 μmol/L, FeSO4·7H2O) on the plant growth,the activities of antioxidant enzymes,the accumulation and chemical forms of cadmium(Cd)in tomato when exposed to Cd(10 mg/kg). 【Results】 The exogenous Fe increased the dry weights of roots, stems, leaves, fruits as well as the total dry matter, which increased by 20.4%-48.6%,13.3%-56.0%, 16.0%-63.1%, 9.8%-16.5% and 21.6%-40.3% respectively. The dry weights of plant parts and whole plant were increased first, and then decreased with increasing of Fe levels. Comparing the two tested tomato cultivars, ‘4641’ had stronger resistance to Cd, ‘Yufen 109’ was more sensitive to Fe. The Pn, Gs and Tr values in tomato leaves of both the cultivars were high with moderate Fe (200 μmol/L) application, and low with excess Fe (400 μmol/L); compared to the control, the Pn, Gs and Tr of ‘4641’ were increased by 8%, 11% and 2.9% and these of ‘Yufen 109’ were increased by 28.7%, 15.5% and 18.8%, while concentration of intercellular carbon dioxide (Ci) decreased with the application of Fe. Both photosynthesis and transpiration of ‘4641’ were stronger than those of ‘Yufen 109’. The contents of nitrate in fruits of both the cultivars and sugar in ‘Yufen 109’ increased after Fe application, while amino acid in ‘Yufen 109’decreased compared to the control, and the increase of nitrate 18.1%-22.2% and 2.3%-22.0%. In addition, high Fe application (400 μmol/L) facilitated the biological synthesis of Vc in fruit increased by 8.2% and 13.2%. Cadmium was mainly existed in the fractions of residual Cd and hydrochloric acid-extractable Cd in fruits, which were low activity form and accounting for 70.8% of the total. Deionized water extractable Cd (FW) and ethanol extractable Cd (FE) were high activity form with only 11.8% of the total Cd. Toxic effects of Cd on Tomato were effectively inhibited by spraying Fe. Foliar application of different levels of Fe reduced the concentrations of all Cd forms compared to the control. Cadmium was mostly accumulated in leaves and stems with the concentrations of Cd in the order of leaves > toots > stem > fruits with foliar Fe. Spraying Fe could reduce the concentration of Cd in tomato leaves, roots, stems and fruits with a ranges of 7.1%-21.9%, 35.6%-50.4%, 13.0%-37.0% and 2.8%-8.2%, respectively. Cadmium concentrations of all plants parts decreased with foliar Fe application compared to the control, while displayed an upward trend when excessive Fe applied. The Cd accumulation of leaves, stems and fruits and total accumulation of ‘4641’ were higher than those of ‘Yufen 109’. It showed that planting ‘4641’ in Cd contaminated soil had greater risk. 【Conclusions】 Appropriate Fe could promote photosynthesis and transpiration of the tomato leaves and increase the dry weights of each part of the tomato plants. Toxic effects of Cd on tomato plants and the concentration of Cd in each part could be decreased by applying the appropriate concentration of Fe.

iron and cadmium interaction;photosynthetic characteristic;tomato quality;Cd accumulation;Cd fraction

2014-03-12 接受日期: 2014-10-15 网络出版日期: 2015-05-11

现代农业产业技术体系建设专项(Nycy-25);国家自然科学基金项目(20477032);国家科技支撑计划项目(2007BAD87B10)资助。

杨芸(1989—), 女, 四川乐山人, 硕士研究生,主要从事植物营养与环境生态研究。 E-mail:410713602@qq.com * 通信作者 E-mail:xuwei_hong@163.com

S641.2

A

1008-505X(2015)04-1006-10

猜你喜欢
气孔番茄供试
阿瑞匹坦乳液氢键作用近红外光谱研究
煤炭与化工(2024年2期)2024-03-30 08:09:52
番茄炒蛋
玉米叶气孔特征对氮素和水分的响应及其与叶气体交换的关系
秋茬番茄“疑难杂症”如何挽救
今日农业(2021年21期)2022-01-12 06:31:52
番茄果实“起棱”怎么办
今日农业(2020年23期)2020-12-15 03:48:26
某灰铸铁汽油机缸体电机面气孔的解决探讨
KD490:一种软包锂离子电池及其制作工艺
2015年版《中国药典》脑安胶囊项下阿魏酸供试品溶液制备方法的改进
中成药(2018年12期)2018-12-29 12:26:02
Flexible ureteroscopy:Technological advancements,current indications and outcomes in the treatment of urolithiasis
重型车用气缸盖湿型砂铸造气孔缺陷的降低