黄细把
学习了二元一次方程后,我们知道,二元一次方程的解有无数个.但是,我们在解决日常生活中的实际问题时,列出的二元一次方程,往往具有有限个整数解.
例1 (2014年衡阳)某班组织活动,班委会准备把15元钱全部用来购买笔记本和中性笔两种奖品,已知笔记本2元/本,中性笔1元/支,且每种奖品都要有.有多少种购买方案?请列举所有可能的方案.
分析:要确定有几种购买方案,只需确定符合条件的购买笔记本和中性笔的情况有几种.
解:设应购买笔记本x本,中性笔y支.依题意,得2x+y=15,即y=15-2x.
由题意知x、y都是正整数,所以x=1时,y=13;x=2时,y=ll;x=3时,y=9;x=4时,y=7;x=5时,y=5;x=6时,y=3;x=7日寸,y=l.
故符合条件的购买方案有7种,它们分别是:购买笔记本1本,中性笔13支;购买笔记本2本,中性笔11支;购买笔记本3本,中性笔9支;购买笔记本4本,中性笔7支;购买笔记本5本,中性笔5支;购买笔记本6本,中性笔3支:购买笔记本7本,中性笔1支.
说明:本题中购买的是笔记本和中性笔两种奖品,x、y都是正整数.
例2(2013年黄石)四川雅安地震期间,为了紧急安置60名灾民,需要搭建可容纳6人或4人的帐篷.若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有().
A.4种
B.6种
C.9种
D.11种
分析:要确定有几种搭建方案,只需确定符合条件的搭建可容纳6人或4人的帐篷的情况有几种.
解:设搭建容纳6人的帐篷x顶,容纳4人的帐篷y顶,依题意,得6x+4y=60.
故符合要求的搭建方案有6种,一是搭建容纳6人的帐篷O顶,容纳4人的帐篷15顶:二是搭建容纳6人的帐篷2顶,容纳4人的帐篷12顶;三是搭建容纳6人的帐篷4顶,容纳4人的帐篷9顶:四是搭建容纳6人的帐篷6顶,容纳4人的帐篷6顶:五是搭建容纳6人的帐篷8顶,容纳4人的帐篷3顶:六是搭建容纳6人的帐篷10顶,容纳4人的帐篷0顶,应选B.
说明:本题中搭建的帐篷可以全是容纳6人的帐篷,也可以全是容纳4人的帐篷,还可以是既有容纳6人的帐篷,又有容纳4人的帐篷.
例3(2014年龙东)学校举行足球联赛,共赛17轮(即每队均需参赛17场).记分办法是:胜l场得3分,平1场得1分,负1场得0分,在这次足球比赛中,小虎所在足球队得16分,且踢平场数是所负场数的整数倍,则小虎所在足球队所负场数的情况有().
A.2种
B.3种
C.4种
D.5种
分析:要确定小虎所在足球队所负场数的情况有几种,只需确定小虎所在足球队所负场数和踢平场数有几种符合条件的情况.
说明:本题中小虎所在足球队不可能全胜,根据踢平场数是所负场数的整数倍,且x、y都是正整数即可得解.
1.(2014年齐齐哈尔)将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有().
A.6种 B.7种 C.8种 D.9种
2.(2013年绥化)某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载,则有____种租车方案.
参考答案
1.A 2.2