算术思维的基本形式

2015-05-30 06:54刘伟
杂文月刊(学术版) 2015年5期
关键词:算术内化运算

刘伟

凝聚是算术思维的基本形式,思维的分析相对于具体知识内容的教学而言并非某种外加的成分,而是有着重要的指导意义。

具体地说,这正是现代关于数学思维研究的一项重要成果,即指明了所谓的“凝聚”,也即由“过程”向“对象”的转化构成了算术以及代数思维的基本形式,这也就是说,在数学特别是算术和代数中有不少概念在最初是作为一个过程得到引进的,但最终却又转化成了一个对象──对此我们不仅可以具体地研究它们的性质,也可以此为直接对象去施行进一步的运算。

例如,加减法在最初都是作为一种过程得到引进的,即代表了这样的“输入—输出”过程:由两个加数(被减数与减数)我们就可求得相应的和(差);然而,随着学习的深入,这些运算又逐渐获得了新的意义:它们已不再仅仅被看成一个过程,而且也被认为是一个特定的数学对象,我们可具体地去指明它们所具有的各种性质,如交换律、结合律等,从而,就其心理表征而言,就已经历了一个“凝聚”的过程,即由一个包含多个步骤的运作过程凝聚成了单一的数学对象。再如,有很多教师认为,分数应当定义为“两个整数相除的值”而不是“两个整数的比”,这事实上也可被看成包括了由过程向对象的转变,这就是说,就分数的掌握而言我们不应停留于整数的除法这样一种运算,而应将其直接看成一种数,我们可以此为对象去实施加减乘除等运算。

对于所说的“凝聚”可进一步分析如下:

第一,“凝聚”事实上可被看成“自反性抽象”的典型例子,而后者则又可以说集中地體现了数学的高度抽象性,即“是把已发现结构中抽象出来的东西射或反射到一个新的层面上,并对此进行重新建构”。这正如著名哲学家、心理学家皮亚杰所指出的:“全部数学都可以按照结构的建构来考虑,而这种建构始终是完全开放的……当数学实体从一个水平转移到另一个水平时,它们的功能会不断地改变;对这类‘实体进行的运演,反过来,又成为理论研究的对象,这个过程在一直重复下去,直到我们达到了一种结构为止,这种结构或者正在形成‘更强的结构,或者在由‘更强的结构来予以结构化。”例如,由加法到乘法以及由乘法到乘方的发展显然也可被看成更高水平上的不断“建构”。

第二,以色列著名数学教育家斯法德(A.Sfard)指出,“凝聚”主要包括以下三个阶段:(1)内化;(2)压缩;(3)客体化。其中,“内化”和“压缩”可视为必要的准备。前者是指用思维去把握原先的视觉性程序,后者则是指将相应的过程压缩成更小的单元,从而就可从整体上对所说的过程作出描述或进行反思──我们在此不仅不需要实际地去实施相关的运作,还可从更高的抽象水平对整个过程的性质作出分析;另外,相对于前两个阶段而言,“客体化”则代表了质的变化,即用一种新的视角去看一件熟悉的事物:原先的过程现在变成了一个静止的对象。容易看出,上述的分析对于我们改进教学也具有重要的指导意义。例如,所说的“内化”就清楚地表明了这样一点:我们既应积极提倡学生的动手实践,但又不应停留于“实际操作”,而应十分重视“活动的内化”,因为,不然的话,就不可能形成任何真正的数学思维。另外,在不少学者看来,以上的分析在一定程度上表明了“熟能生巧”这一传统做法的合理性。

第三,由“过程”向“对象”的过渡不应被看成一种单向的运动;恰恰相反,这两者应被看成同一概念心理表征的不同侧面,我们应善于依据不同的情景与需要在这两者之间作出必要的转换,包括由“过程”转向“对象”,以及由“对象”重新回到“过程”。

例如,在求解代数方程时,我们显然应将相应的表达式,如(x+3)2=1,看成单一的对象,而非具体的计算过程,不然的话,就会出现(x+3)2=1=x2+6x+9=1=…这样的错误;然而,一旦求得了方程的解,如x=-2和-4,作为一种检验,我们又必须将其代入原来的表达式进行检验,而这时所采取的则就是一种“过程”的观点。

正因为在“过程”和“对象”之间存在所说的相互依赖、互相转化的辩证关系,因此,一些学者提出,我们应把相应的数学概念看成一种“过程—对象对偶体”procept,这是由“过程”(process)和(作为对象的)“概念”(concept)这两个词组合而成的。,即应当认为其同时具有“过程”与“对象”这样两个方面的性质。再者,我们又应很好地去把握相应的思维过程(可称为“过程—对象性思维”〔proceptual thinking〕)的以下特征:(1)“对偶性”,是指在“过程”与相应的“对象”之间所存在的相互依存、互相转化的辩证关系;(2)“含糊性”,这集中地体现于相应的符号表达式:它既可以代表所说的运作过程,也可以代表经由凝聚所生成的特定数学对象;(3)灵活性,是指我们应根据情境的需要自由地将符号看成过程或概念。特殊地,数学中常常会用几种不同的符号去表征同一个对象,从而,在这样的意义上,上述的“灵活性”就获得了更为广泛的意义:这不仅是指“过程”与“对象”之间的转化,而且也是指不同的“过程—对象对偶体”之间的转化。例如,5不仅是3与2的和,也是1与4的和、7与2的差、1与5的积,等等。

综上可见,在算术的教学中我们应自觉地应用和体现“凝聚”这样一种思维方式。

猜你喜欢
算术内化运算
重视运算与推理,解决数列求和题
激活中队活力,内化少先队员组织归属感
激活中队活力,内化少先队员组织归属感
有趣的运算
德鲁大叔内化营销胜过广告
算算术
“整式的乘法与因式分解”知识归纳
学算术
小狗算算术
做算术(外一则)