纳米通道电化学单分子分析检测酶分子的思考

2015-05-30 00:57陈美舟
健康之路(医药研究) 2015年6期

陈美舟

【摘要】目的:分析研究纳米通道电化学单分子分析检测酶分子的应用价值。方法:通过利用溶血素以及卵磷脂的自由组装形成生物纳米孔到,通过溶血素孔径的特性来控制单链DNA以及双链DNA通过孔径的时候不同电流下降,对凝血酶与是凝血酶试题的亲和作用给予分析研究。结果:因为颈环结构属于双链结构无法穿过溶血素纳米孔道卡在溶血素孔道当中,造成电流信号终止。结论:颈环结构可以在高电压下被伸展开,可以顺利通过纳米通道。另外,颈环结构DNA解链时间和双链序列没有关系,和施加电压有密切关系。凝血酶作用以后的dsDNA可以顺利通过溶血素纳米孔道能够看见凝血酶,与凝血酶适体有非常高的亲和力,可以将凝血酶适体从dsDNA当中脱离开。

【关键词】纳米通道;电化学单分子;酶分子

Abstract:Objective: To study the application value of the detection of the enzyme molecules by the electrochemical single molecule analysis of the nano channel. Methods: Analyze the affinity interaction between thrombin and thrombin reagent by using hemolysin and lecithin free assembly to biological nanopores through the characteristics of hemolysin aperture to control single stranded DNA and double stranded DNA. Results: The current signal was terminated because the double stranded structure which made up with cervical loop structure could not pass through the hemolysin nanopore. In addition, under high voltage, the structure of the neck ring was destroyed, and the DNA of the neck ring was ssDNA. Conclusion: There is no relationship between the DNA solution chain time and the double chain sequence of the structure of the neck ring, and the applied voltage is closely related.

Keywords:nano channel; electrochemical single molecule

【中图分类号】R-1 【文献标识码】B 【文章编号】1671-8801(2015)06-0213-02

凝血酶在临床医学领域当中具有一定的地位,其可以作用在血液当中的纤维蛋白原,促使其转变成为纤维蛋白,加速血液凝固,进而起到止血的作用。在临床当中主要应用于外伤、口腔、妇产科、消化道以及泌尿的止血[1]。本文筆者通过利用溶血素以及卵磷脂的自由组装形成生物纳米孔到,通过溶血素孔径的特性来控制单链DNA以及双链DNA通过孔径的时候不同电流下降,对凝血酶与是凝血酶试题的亲和作用给予分析研究,现报告如下。

1资料与方法

1.1试剂与仪器

1.1.1主要试剂

其中包括有SA(溶血素)、APLI(卵磷脂)、盐酸、NEase(限制性核酸内切酶)、Tris、正葵烷以及KCl。试验当中所使用的水全部为二次去离子水,实验所使用的试剂全部为分析纯。试验当中使用到的DNA片段全部参考相关文献进行设计。

1.1.2主要仪器

仪器:Axonpatch200B,DigiData1440A,离心机,冰箱BCD-162AG,202-1AB型电热恒温干燥箱,BS124S电子天平、KQ-600DB型数控超声波清洗器、SZ-93自动双重纯水蒸馏器、CJJ78-1型磁力加热搅拌器、磁力架、数值式水浴温度控制仪、可调式移液器、PHS-3DpH计以及气浴恒温振荡器。

1.2试验方法

1.2.1DNA储备液和缓冲溶液

(1)全部DNA储备液都要采取二次水稀释为10-4M;(2)缓冲溶液Tris-HCl(10mM,pH7.8,1.0MKCl):①:称取0.1213g Tris和7.455gKCI加入到80毫升烧杯当中加水溶解,采取稀释HCI调节pH一直到7.8;②:将以上溶液移到100毫升容量瓶当中加入水稀释一直到刻度线,即得0.01M Tris-HCl缓冲溶液。

1.2.2试验样品制备

(1)采取10 L10-4MSl注入样品管当中,采取Tris-HCl缓冲溶液稀释到10-6M,这个样品为G1;(2)采取10 L10-4MSl与10 L10-4MS2放在同一个样品管当中在37摄氏度之下孕育2小时,之后采取Tris-HCl缓冲溶液稀释到10-6M,这个样品为G2;(3)采取10 L10-4MSl与10 L10-4MS2放在同一个样品管当中在37摄氏度之下孕育2小时,之后向当中加入10 L5.0×10-4M的凝血酶在37摄氏度之下反应40分钟,之后计入970 L Tris-HCl缓冲溶液,这个样品为G3。

1.2.3卵磷脂处理

配制30mg·mL-1卵磷脂溶液:向盛有200毫克卵磷脂的瓶当中加入2毫升正葵烷,得到100mgmL-1卵磷脂溶液,选取60 l100mg·mL-1卵磷脂溶液,加入正葵烷稀释一直到200 l,即会得到30mg·mL-1卵磷脂溶液[2]。

1.2.4制备磷脂双分子层膜

(1)调整好相关仪器,采取1000 L的移液枪在检测槽的cis和trans端分别注入1毫升的Tris-HCl缓冲溶液,这个时候设置电压100mV开启检测,电流应该为无穷大显示过溢状态;(2)使用一个洁净的毛笔沾取一定量的30mg·mL-1卵磷脂涂抹在内部凹面上的小孔表面;(3)在电压100mV下运行工作软件,这个时候孔道处于封闭状态电流应该为0,这个时候打开膜电容界面观察膜电容的变化,当其上升和稳定的时候,即为磷脂双分子层膜成膜成功,这个时候可以停止运行软件,并且切换到电流-时间界面。如果这个环节下封闭状态电流没有为0或膜电容持续不稳定,则一定要把检测槽清洗干净重新开始[3]。

1.2.5在磷脂双分子层膜上形成纳米孔道

采取移液枪选取溶血素10 L 注入到cis端孔的表面,静止30分钟以后,打开工作软件,这个时候还必须要处于封闭电流状态,得到纳米孔道成形以后电流基线会出现一个短暂的突跃,这个时候即为成功形成纳米孔道,如果在这个过程当中电流基线在持续上线波动,则需要再一次制备磷脂双分子层膜。

2结果

因为颈环结构属于双链结构无法穿过溶血素纳米孔道卡在溶血素孔道当中,造成电流信号终止。另外,在高电压下颈环结构被破坏,颈环结构的DNA伸展为ssDNA。颈环结构卡在溶血素孔道当中,在高电压下颈环结构伸展,电流信号得以恢复。由于在140mV下颈环结构的伸展速度和DNA穿过溶血素纳米孔道的时候速度要比在120mV下速度快。G2结构是3`为适体S2与S1的杂交部分,5`端为颈环结构,这个时候的G2不管是3`端还是5`端在80mv电压之下全部无法顺利通过溶血素纳米通道,所以整个过程没有电流下降表现。

3讨论

DNA穿孔纳米孔道的时候,电流脉冲大部分集中在60pA左右。根据相关报道表明[4],在低电压下颈环结构无法顺利通过溶血素纳米孔道,然而在高电压下颈环结构被伸展开,可以顺利通过纳米孔道。本文结果显示,G3在G2的基础之上加入凝血酶的结果,加入凝血酶以后,凝血酶适体S2被脱离出来,这个时候的G3样品通过纳米孔道的时候样品就是颈环结构的S1。另外,结果显示,在比较高的电压之下通过的碱基数要比低电压要多,并且比较高电压下颈环结构的伸展时间要比低电压的时间短。

总之,颈环结构可以在高电压下被伸展开,可以顺利通过纳米通道。颈环结构DNA解链时间和双链序列没有关系,和施加电压有密切关系。凝血酶作用以后的dsDNA可以顺利通过溶血素纳米孔道能够看见凝血酶,与凝血酶适体有非常高的亲和力,可以将凝血酶适体从dsDNA当中脱离开。

参考文献:

[1]丁克儉,张海燕,胡红刚,等.生物大分子纳米孔分析技术研究进展[J].分析化学,2010,38(2):46.

[2]毓娟,揭雪飞,董新法,等.Ce02在催化氧化反应中的应用[J].电源技术,2012,26(1):43-46.

[3]张梅,魏志锋,杜雪岩,等.CeO2包覆盖对TiO2传感器材料的氧敏性能的影响[J].稀有金属,2011,25(1):71-74.

[4]杨素,聚丙烯酞胺凝胶电泳在转基因食品检测中的应用研究[J],食品科技,2012,11(3):61-63.