减重手术后肠道的适应性改变

2015-04-16 19:10张晓倩刘少壮综述胡三元审校
腹腔镜外科杂志 2015年8期
关键词:糖异生胆汁酸菌群

张晓倩,刘少壮,综述 胡三元,审校

(山东大学齐鲁医院,山东 济南,250012)

目前,减重手术缓解糖尿病及改善重度肥胖的机制尚不明确,本文现对减重手术后肠道发生的适应性变化作一综述。

1 肠道激素的改变

肠道是最活跃的内分泌器官,分泌许多激素参与食物的消化与吸收。已经被接受、承认的两个肠道激素是生长激素释放肽(peptide YY,PYY)、胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)。GLP-1 由末端回肠、结肠L 细胞分泌释放到血液中,影响食物营养成分的摄入,调节食物介导的胰岛素及胰高血糖素分泌,并通过胰岛beta 细胞上的G 蛋白偶联受体发挥抑制beta 细胞凋亡,促进beta 细胞增殖,改善beta细胞功能的作用[1],即肠-胰岛轴。肠胰岛轴的提出使我们重新认识了肠道与胰岛间的关系。Salehi 等[2]在啮齿类动物Roux-en-Y 胃旁路术(Roux-en-Y gastric bypass,RYGB)术后予以GLP-1 拮抗剂,发现胰岛素的分泌作用减弱。目前,GLP-1 的类似物及激活剂的口服制剂已用于临床治疗糖尿病。PYY 可延迟胃排空、肠转运,生理性调节食欲,抑制食物的摄取,从而降低体重。低剂量链脲佐菌素(streptozocin,STZ)诱导的2 型糖尿病大鼠行减重手术后,GLP-1 与PYY 显著升高,并且先于体重的下降。有研究指出,用药物诱导体重降低后,血清GLP-1 浓度无升高,有的甚至下降[3],血清PYY 浓度也未升高[4]。这表明减重手术后GLP-1、PYY 的升高不依赖于体重的下降。为什么术后GLP-1、PYY 升高?1999年,Mason 提出了远端回肠假说,认为减重手术改变了肠道原有的解剖关系,未消化的或消化不完全的食物提早与回结肠接触,刺激回结肠L 细胞分泌GLP-1 增加,即后肠假说。有学者将GLP-1、PYY 与胆汁酸联系起来,对肥胖患者[5]、肥胖啮齿类动物[6]予以胆汁酸螯合剂,发现血清中GLP-1 水平上升,PYY 浓度有下降[7]、无变化[8]及上升(在大鼠)[9]三种情况,胆汁酸螯合剂降低肠道胆固醇的吸收,利于胆汁酸从肠道排出,而吸收不良型减重手术升高胆汁酸,两者都可升高GLP-1,可能的解释是,肠道中胆汁酸流量的增加升高了GLP-1。减重手术后PYY 升高,而予以胆汁酸螯合剂后,PYY 浓度变化不定,肠道胆汁酸流量也许与PYY 浓度的变化有关。已经证明在体外胆汁酸可刺激GLP-1 的释放[10]。也有学者认为GLP-1 可通过血脑屏障,减重手术后,大脑中高水平的GLP-1 激活迷走神经传导信号,并刺激胃肠-脑驱动系统,降低糖尿病与肥胖症患者的血糖水平[11]。

2 肠道胆汁酸的改变

肠道中的胆汁酸具有促进脂肪消化吸收、防止胆道结石生成的作用,还具有抗微生物的作用,防止肠道细菌过度生长及菌群移位。与正常人相比,病态肥胖患者餐后胆汁排出减少[12],但血清胆汁酸浓度较正常人高[13]。减重手术后,血清胆汁酸水平有升高[14]、降低[15]、不变[16]三种情况。肠道内的胆汁酸通过TGR-5 途径及法尼酯X 受体(farnesoid X receptor,FXR)途径发挥生理作用[17]。在体外无FXR 的条件下实验,证明了胆汁酸可激活细胞膜G 蛋白偶联受体—TGR-5,刺激肠道GLP-1 的分泌[18]。因此,回肠中游离胆汁酸的增加,激活了TGR-5,从而提高了GLP-1 的水平,改善胰岛beta 细胞功能。FXR 在胃肠道细胞的配体是成纤维细胞成长因子(fibroblast growth factor,FGF)(人类是FGF-19,啮齿类动物是FGF-15)。在肠道游离胆汁酸结合FXR,激活FGF-19,然后FGF-19 激活肝脏细胞胆汁酸合成的限速酶胆固醇7α 羟化酶(cholesterol 7α-hydroxylase,CYP7A1),产生胆汁酸,这是一条胆汁酸合成增加的正反馈途径。FGF-19 也许能增强线粒体活性,改善胰岛素抵抗[19]。最近已证明FGF-19 以一种不依赖于胰岛素的方式改善糖代谢[20]。糖尿病患者FGF-19 降低,RYGB 后FGF-19 的表达及胆汁酸的产生增加[21]。另一方面,一些数据表明RYGB 后FGF-19 不增加[22]。有趣的是,FGF-19 在服用胆酸螯合剂后减少,而在口服胆汁酸溶剂后增加[23]。

3 肠道菌群的改变

近年,对减重手术后肠道菌群改变的研究主要集中在拟杆菌、厚壁菌门及变形菌。对肥胖受试者进行的研究已经证实,肠道菌群的组成成分发生了变化,拟杆菌减少,厚壁菌成比例的增加。厚壁菌门与拟杆菌比例在肥胖个体增加[24],药物减轻体重后比例下降[25]。在RYGB 术后,厚壁菌门与拟杆菌比例下降[26],此外,有研究显示RYGB 后变形菌增加[27]。RYGB 可降低厚壁菌菌群在总种群中的比例,并增加γ-变形菌的比例[28],有证据表明,宿主与肠道细菌之间的相互作用可通过细菌代谢物来实现,如短链脂肪酸或微生物外膜的脂多糖[29]。在胃肠结构重构引起的代谢改善中,微生物群的变化起关键作用。将RYGB 术后的小鼠肠道菌群转移到非手术操作处理的无菌小鼠体内,无菌小鼠体重下降,肥胖减轻[30]。将假手术操作的小鼠肠道细菌移植给无菌肥胖小鼠,体重未发生变化。术后肠道菌群的改变,与减重手术对胆汁酸水平及FXR 信号的影响有关。FXR 信号在广泛的肠道功能中起重要作用,肠道菌群是其中一个靶点[29]。在FXR 基因敲除小鼠袖状胃切除术后,肠道菌群的改变被抑制[31]。FXR 能通过改变血清胆汁酸的水平,间接影响肠道细菌的组成比例。但肠道细菌不是胆汁酸的被动接受者,也可通过干预多种胆汁酸降解途径影响胆汁酸水平[32]。很重要的一点是,我们不知道减重手术后,肠道菌群的改变引起了胆汁酸的改变,还是胆汁酸的改变引起了肠道菌群的变化。

4 小肠糖异生

近年的研究对肠道有一个新的功能描述,即门静脉葡萄糖传感调节饥饿感。门静脉有血糖感受器,可将信号通过肠道神经通路传导至下丘脑,下丘脑发出信号调节食欲及胰岛素敏感性[33]。Rajas 等[34]研究发现,以前认为的只在肝脏、肾脏表达的糖异生关键酶葡萄糖-6-磷酸酶(glucose-6-phosphatase,G-6-P)基因在小肠也有表达。表明小肠也可进行糖异生。小肠能通过适当的糖异生作用促进内源性葡萄糖生成。GK 大鼠十二指肠空肠旁路术(duodenal-jejunal bypass,DJB)后,肠道糖异生关键酶G-6-P 和磷酸烯醇式丙酮酸羧激酶上调,在肝脏这两个酶的表达下调[35]。有学者指出,胃旁路术后,食物迅速进入远端小肠,此举可激活肠道糖异生的酶,增加肠道血糖浓度,门静脉的迷走神经将血糖浓度信号传递给大脑,从而抑制肝糖输出,提高葡萄糖稳态[36],此现象在空腹、胰岛素缺乏的情况下表现更甚[37]。胃肠吻合术后的小鼠,肠道糖异生较胃束带术后的小鼠活跃[38]。表明肠道有营养感受机制,可随肠腔里的营养物质来调节肠糖异生。予以门静脉感受血糖浓度的受体葡萄糖转运体(glucose transporter 2,GLUT-2)[39]基因敲除的小鼠[38]及门静脉去神经的小鼠行胃肠吻合术后,肠糖异生的增强作用被消除,这表明肠异生可被视为大脑控制调节葡萄糖和能量稳态的一个关键信号[36]。Hayes 等[40]通过检测空腹状态下的28 位患者(8 位糖尿病患者,20 位非糖尿病患者)RYGB 术前及术后6 h 门静脉与中心静脉血血糖,发现术前术后糖尿病患者血糖无显著差异,说明小肠糖异生不能解释RYGB 缓解的糖尿病。

5 肠道神经系统

小肠不但由丰富的自主神经系统(autonomic nerves system,ANS)的神经支配,也有自己的肠神经系统(enteric nervous system,ENS),这种独立运作的神经系统是由神经回路控制肠道的运动功能、血流量、黏膜运输与调节免疫、内分泌功能。此ENS 跨越胃肠道的肌间及黏膜下神经丛[41]。已证实了脑到肠道传入、传出神经是迷走神经,肥胖患者迷走神经活性异常[42]。Gautron 等[43]试图了解手术对迷走神经的影响,他们用一种记忆蛋白标记小鼠的胃肠道迷走神经,RYGB术后,用免疫组化观察此小鼠的肠道迷走神经的变化,结果表明术后胃肠吻合部位的迷走神经丢失,纤维形态变化,而肝脏、其他部位肠道的迷走神经支配正常。迷走神经纤维形态显示异常主要在胃肌间神经丛,包括轴突肿胀与神经节前纤维终端形态异常。这种重构的生理意义是未知的。在大鼠RYGB 中,保留迷走神经较切除迷走神经获得更少的食物摄入量、更成功的减肥[44]。临床研究表明,迷走神经感觉张力的阈值与RYGB 术后食物量的摄取呈负相关关系[45]。在内分泌调节方面,肠道将当前的营养状况告知大脑,一方面调节肠道分泌细胞分泌肠肽、胆囊收缩素(cholecystokinin,CCK)和GLP-1,抑制肝糖异生;另一方面调节肠道FGF-19,继而调节胆汁酸与GLP-1。反过来,这些激素中的某些激素通过肠道的迷走神经反馈给中枢神经系统(central nervous system,CNS)负反馈调节它们的分泌;也可以直接通过血脑屏障,反馈调节大脑的活动[46]。Hao 等[47]指出,迷走神经的腹腔分支特异性地支配肠道的具体手术部位,完整的腹腔支可减少RYGB 术后早期的体重下降。这些数据表明,手术疗效的成功需要完整的神经支配。

减重手术有效且持续的降低体重及改善糖代谢作用的机制仍不完全清楚。目前对其机制的解释只能围绕过去的框架去理解,即机械的限制食物摄取与营养吸收不良的基本原理。新的机制框架须着眼于将手术进程中的生理系统及对体重、新陈代谢起作用的分子信号通路联系起来理解。肥胖、2 型糖尿病仍较为流行,现代减重手术是安全、可靠的,可有效减轻体重、缓解胰岛素抵抗。但是,仍需要更多的机制研究工作。减重手术不仅是一种有效的治疗手段,而且可通过对其机制的研究更深入的了解代谢性疾病的病理生理,从而提供一种非侵入性的方式治疗疾病。

[1]Baggio LL,Drucker DJ.Biology of incretins:GLP-1 and GIP[J].Gastroenterology,2007,132(6):2131-2157.

[2]Salehi M,Prigeon RL,D'Alessio DA.Gastric bypass surgery enhances glucagon-like peptide 1-stimulated postprandial insulin secretion in humans[J].Diabetes,2011,60(9):2308-2314.

[3]Yip S,Signal M,Smith G,et al.Lower glycemic fluctuations early after bariatric surgery partially explained by caloric restriction[J].Obes Surg,2014,24(1):62-70.

[4]Hill BR,De Souza MJ,Wagstaff DA,et al.The impact of weight loss on the 24-h profile of circulating peptide YY and its association with 24-h ghrelin in normal weight premenopausal women[J].Peptides,2013,49:81-90.

[5]Smushkin G,Sathananthan M,Piccinini F,et al.The effect of a bile acid sequestrant on glucose metabolism in subjects with type 2 diabetes[J].Diabetes,2013,62(4):1094-1101.

[6]Potthoff MJ,Potts A,He T,et al.Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice[J].Am J Physiol Gastrointest Liver Physiol,2013,304(4):G371-380.

[7]Rigamonti AE,Resnik M,Compri E,et al.The cholestyramine-induced decrease of PYY postprandial response is negatively correlated with fat mass in obese women[J].Horm Metab Res,2011,43(8):569-573.

[8]Chen L,McNulty J,Anderson D,et al. Cholestyramine reverses hyperglycemia and enhances glucose-stimulated glucagon-like peptide 1 release in Zucker diabetic fatty rats[J].J Pharmacol Exp Ther,2010,334(1):164-170.

[9]Marina AL,Utzschneider KM,Wright LA,et al.Colesevelam improves oral but not intravenous glucose tolerance by a mechanism independent of insulin sensitivity and β-cell function[J].Diabetes Care,2012,35(5):1119-1125.

[10]Katsuma S,Hirasawa A,Tsujimoto G.Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1[J].Biochem Biophys Res Commun,2005,329(1):386-390.

[11]Breen DM,Rasmussen BA,Côté CD,et al.Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes[J].Diabetes,2013,62(9):3005-3013.

[12]Glicksman C,Pournaras DJ,Wright M,et al.Postprandial plasma bile acid responses in normal weight and obese subjects[J].Ann Clin Biochem,2010,47(Pt 5):482-484.

[13]Halmy L,Fehér T,Steczek K,et al.High serum bile acid level in obesity:its decrease during and after total fasting[J].Acta Med Hung,1986,43(1):55-58.

[14]Nakatani H,Kasama K,Oshiro T,et al.Serum bile acid along with plasma incretins and serum high-molecular weight adiponectin levels are increased after bariatric surgery[J].Metabolism,2009,58(10):1400-1407.

[15]Kohli R,Bradley D,Setchell KD,et al.Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids[J].J Clin Endocrinol Metab,2013,98(4):E708-712.

[16]Scholtz S,Miras AD,Chhina N,et al.Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding[J].Gut,2014,63(6):891-902.

[17]Lefebvre P,Cariou B,Lien F,et al.Role of bile acids and bile acid receptors in metabolic regulation[J].Physiol Rev,2009,89(1):147-191.

[18]Kreymann B,Williams G,Ghatei MA,et al.Glucagon-like peptide-1 7-36:a physiological incretin in man[J].Lancet,1987,2(8571):1300-1304.

[19]Schaap FG,Trauner M,Jansen PL. Bile acid receptors as targets for drug development[J]. Nat Rev Gastroenterol Hepatol,2014,11(1):55-67.

[20]Tomlinson E,Fu L,John L,et al.Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity[J].Endocrinology,2002,143(5):1741-1747.

[21]Kir S,Beddow SA,Samuel VT,et al.FGF19 as a postprandial,insulin-independent activator of hepatic protein and glycogen synthesis[J].Science,2011,331(6024):1621-1624.

[22]Pournaras DJ,Glicksman C,Vincent RP,et al.The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control[J].Endocrinology,2012,153(8):3613-3619.

[23]Patti ME,Houten SM,Bianco AC,et al.Serum bile acids are higher in humans with prior gastric bypass:potential contribution to improved glucose and lipid metabolism[J].Obesity (Silver Spring),2009,17(9):1671-1677.

[24]Balamurugan R,George G,Kabeerdoss J,et al.Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children[J].Br J Nutr,2010,103(3):335-338.

[25]Furet JP,Kong LC,Tap J,et al.Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss:links with metabolic and low-grade inflammation markers[J].Diabetes,2010,59(12):3049-3057.

[26]Zhang H,DiBaise JK,Zuccolo A,et al.Human gut microbiota in obesity and after gastric bypass[J].Proc Natl Acad Sci U S A,2009,106(7):2365-2370.

[27]Graessler J,Qin Y,Zhong H,et al.Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes:correlation with inflammatory and metabolic parameters[J].Pharmacogenomics J,2013,13(6):514-522.

[28]Osto M,Abegg K,Bueter M,et al.Roux-en-Y gastric bypass surgery in rats alters gut microbiota profile along the intestine[J].Physiol Behav,2013,119:92-96.

[29]Liou AP,Paziuk M,Luevano JM Jr,et al.Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity[J].Sci Transl Med,2013,5(178):178ra41.

[30]Cani PD,Geurts L,Matamoros S,et al. Glucose metabolism:focus on gut microbiota,the endocannabinoid system and beyond[J].Diabetes Metab,2014,40(4):246-257.

[31]Sayin SI,Wahlström A,Felin J,et al.Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid,a naturally occurring FXR antagonist[J].Cell Metab,2013,17(2):225-235.

[32]Ryan KK,Tremaroli V,Clemmensen C,et al.FXR is a molecular target for the effects of vertical sleeve gastrectomy[J].Nature,2014,509(7499):183-188.

[33]Mithieux G.Influence of diabetes surgery on a gut-brain-liver axis regulating food intake and internal glucose production[J].Nutr Hosp,2013,28 Suppl 2:109-114.

[34]Rajas F,Bruni N,Montano S,et al.The glucose-6 phosphatase gene is expressed in human and rat small intestine:regulation of expression in fasted and diabetic rats[J].Gastroenterology,1999,117(1):132-139.

[35]Sun D,Wang K,Yan Z,et al.Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic Goto-Kakizaki rats[J].Obes Surg,2013,23(11):1734-1742.

[36]Mithieux G.A novel function of intestinal gluconeogenesis:central signaling in glucose and energy homeostasis[J].Nutrition,2009,25(9):881-884.

[37]Croset M,Rajas F,Zitoun C,et al.Rat small intestine is an insulin-sensitive gluconeogenic organ[J].Diabetes,2001,50(4):740-746.

[38]Troy S,Soty M,Ribeiro L,et al.Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice[J].Cell Metab,2008,8(3):201-211.

[39]Burcelin R,Dolci W,Thorens B.Glucose sensing by the hepatoportal sensor is GLUT2-dependent:in vivo analysis in GLUT2-null mice[J].Diabetes,2000,49(10):1643-1648.

[40]Hayes MT,Foo J,Besic V,et al.Is intestinal gluconeogenesis a key factor in the early changes in glucose homeostasis following gastric bypass?[J].Obes Surg,2011,21(6):759-762.

[41]Bitar KN,Raghavan S,Zakhem E.Tissue engineering in the gut:developments in neuromusculature[J].Gastroenterology,2014,146(7):1614-1624.

[42]de Lartigue G,Barbier de la Serre C,Espero E,et al.Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons[J].Am J Physiol Endocrinol Metab,2011,301(1):E187-195.

[43]Gautron L,Zechner JF,Aguirre V.Vagal innervation patterns following Roux-en-Y gastric bypass in the mouse[J].Int J Obes(Lond),2013,37(12):1603-1607.

[44]Bueter M,Löwenstein C,Ashrafian H,et al.Vagal sparing surgical technique but not stoma size affects body weight loss in rodent model of gastric bypass[J].Obes Surg,2010,20(5):616-622.

[45]Björklund P,Laurenius A,Een E,et al. Is the Roux limb a determinant for meal size after gastric bypass surgery?[J]. Obes Surg,2010,20(10):1408-1414.

[46]Breen DM,Rasmussen BA,Cöté CD,et al.Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes[J].Diabetes,2013,62(9):3005-3013.

[47]Hao Z,Townsend RL,Mumphrey MB,et al.Vagal innervation of intestine contributes to weight loss After Roux-en-Y gastric bypass surgery in rats[J].Obes Surg,2014,24(12):2145-2151.

猜你喜欢
糖异生胆汁酸菌群
胆汁酸代谢与T2DM糖脂代谢紊乱的研究概述
“云雀”还是“猫头鹰”可能取决于肠道菌群
石斛合剂基于PKB/FoxO1通路抑制糖尿病大鼠 肝糖异生的机制研究
马苏大马哈鱼籽营养成分分析及其卵磷脂对胰岛素抵抗的改善作用
总胆汁酸高是肝脏出问题了吗?
“水土不服”和肠道菌群
胆汁酸代谢在慢性肝病中的研究进展
肝糖异生的调控机制及降糖药物的干预作用
黄秋葵醇提物中2种成分对肝细胞糖异生及AMPKα磷酸化的影响
新生儿胆红素和总胆汁酸测定的临床意义