豆敬兆 付顺 张华锋**
DOU JingZhao1,FU Shun2 and ZHANG HuaFeng1**
1. 中国地质大学地球科学与资源学院,北京 100083
2. 成都理工大学,数学地质四川省重点实验室,成都 610059
1. School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China
2. Sichuan Mathematical Geology Key Laboratory,Chengdu University of Technology,Chengdu 610059,China
2014-09-07 收稿,2015-01-31 改回.
研究地壳隆升剥蚀过程对了解造山带的演化及找矿具有重要意义。地壳隆升剥蚀的研究方法主要有热年代学、盆地碎屑锆石年龄统计分析及矿物压力计。不同矿物的同位素体系封闭温度不同而导致记录的同位素年龄也存在差异,这一特征能够反映地质体的冷却历史(Hart,1964)。Dodson(1973)在此基础上提出了矿物封闭温度的概念,建立了矿物同位素冷却年龄理论,并得到了良好应用(Chen et al.,2013;Lin et al.,2011)。此方法前提是隆升速率等于地表剥蚀速率。盆地碎屑锆石年龄统计分析是通过对沉积物中碎屑锆石的年龄与区域地质体同位素年龄进行对比,通过同位素示踪判断沉积物源区,结合造山时限,进而反演造山带的隆升剥蚀过程(Yang et al.,2006,2014c)。矿物压力计则是利用岩体中某些特定矿物的化学成分估算岩体侵位固结压力,该方法简单有效而得到应用(马昌前等,1995;Sial et al.,1999;Helmy et al.,2004;Zhang et al.,2006)。近年来锆石、磷灰石(U-Th)/He 热年代学开始在矿床剥露史示踪中得到应用(Li et al.,2014;Liu et al.,2014)。本文采用矿物温压计对胶东郭家岭岩体的冷却固结条件进行分析,结合前人发表的同位素数据,探讨其冷却抬升历史。
郭家岭岩体位于胶东半岛西北部,玲珑金矿区及招掖成矿带的北部。该岩体侵入胶东岩群及侏罗纪玲珑岩体,形成时间在130 ~126Ma(关康等,1998;Wang et al.,1998,2014;Yang et al.,2012,2014b)。前人通过矿物学及岩石学的研究,提出岩浆混合(陈光远等,1993;曲晓明和王鹤年,1997;Hou et al.,2007)、高Ba-Sr 花岗岩(Wang et al.,2014)及下地壳镁铁质岩石脱水部分熔融(杨进辉等,2003)等不同认识。
对于郭家岭岩体形成物理化学条件,前人研究颇少。林文蔚和殷秀兰(1998)通过Q-Ab-Or-H2O 体系实验相图、矿物温压计等对郭家岭岩体形成的温度、压力及氧逸度等物理化学条件进行了研究,认为郭家岭岩体形成过程中富水的岩浆流体捕获了金,热液的浓缩作用促进了金矿的形成。陈光远等(1993)通过详细的成因矿物学提出,由东向西,角闪石由短柱状至长柱状的变化反映的是郭家岭岩体由东至西岩体侵位逐渐变浅。而角闪石-斜长石温压计获得的结果则显示由东向西温度及压力逐渐升高,这种现象被认为是胶东西部差异隆升的结果(陆丽娜等,2011)。尽管前人对郭家岭岩体形成的物理化学条件有过相应研究,并对胶东西部100Ma 年以来地壳隆升剥蚀速率进行过研究(柳振江等,2010),但对于郭家岭岩体形成后的冷却史、隆升剥蚀及其机制缺乏详细研究,对岩体形成与金矿的关系也存在争议。本文通过郭家岭岩体物理化学条件的详细研究,结合已有资料针对上述问题进行深入探讨。
胶东半岛位于中国东部,西界为郯庐断裂,南侧为苏鲁-大别造山带(图1a),由经历超高压变质作用的扬子陆块和具有华北克拉通属性的胶北隆起组成,是金矿床的主要富集区(Li and Santosh,2014;Fan et al.,2014)。两大构造单元则以桃村和米山断裂围限的昆嵛山混杂带分隔(Zhai et al.,2000)。区域上出露的地层主要有太古宙胶东岩群、古元古界荆山群和粉子山群变质岩以及少量震旦亚界蓬莱群(陈光远等,1993)。岩浆活动主要为中生代花岗岩类,伴生少量中基性脉岩,出露的花岗岩体主要为侏罗纪玲珑、滦家河及白垩纪郭家岭和艾山岩体(徐金方和沈步云,1989;孙丰月等,1995)。玲珑岩体位于新城-焦家断裂带和招远-平度断裂带之间,呈NNE 带状展布,岩性为片麻状黑云母花岗岩和花岗闪长岩,区域上侵入太古宙胶东岩群;锆石U-Pb 年龄显示形成时代在163 ~149Ma(Jiang et al.,2012;Yang et al.,2014b),是胶西北金矿床主要的容矿围岩。赋存于玲珑岩体内的金矿类型主要为石英脉型金矿(杨立强等,2014;Wen et al.,2014;Song et al.,2015)。研究区内发育多条NE、NNE 向断裂带,是中生代金矿的主要控矿断裂(邓军等,1996,1999;吕古贤等,2006;宋明春等,2009)。
郭家岭岩体是胶东西北部金矿床的主要控矿围岩,呈NE 向带状分布(图1b),自东向西依次为郭家岭、丛家、北截、上庄、三山岛等岩体(陈光远等,1993)。郭家岭岩体侵入玲珑岩体,并在东部郭家岭地区被艾山岩体侵入。赋存于郭家岭岩体中的金矿为破碎蚀变岩型金矿,其矿化时间在126 ~120Ma(Wang et al.,1998;Qiu et al.,2002;Hu et al.,2013)。岩体内广泛发育韧性剪切变形,同时可见大量暗色微粒包体以及暗色矿物为主的流动状条带(图2a)。
本次野外样品采自郭家岭63(37°29'18″N,120°36'01″E),丛家15B(37°32'25″N,120°33'15″E),北截11B(37°29'17″N,120°23'28″E)及上庄07(37°24'54″N,120°11'40″E)等岩体。岩性主要为花岗闪长岩、二长花岗岩及石英闪长岩,普遍为似斑状结构,块状构造,斑晶主要为斜长石(40% ~50%),钾长石(25% ~30%),石英(20% ~25%),角闪石(4% ±),黑云母(5% ±),另有副矿物榍石、褐帘石、绿帘石、磷灰石及磁铁矿等(图2d,f)。
斜长石自形-半自形,普遍发育聚片双晶,大小约0.5 ×1mm,并见蠕虫结构(图2d)。斜长石存于矿物颗粒之间及钾长石中,表明钾长石晚于斜长石结晶。钾长石,自形-半自形,斑晶颗粒较大,约4 ×3cm,基质钾长石中发育自形斜长石及黑云母等(图2b,e)。
角闪石较自形,斑晶大小约1.5 ×2mm,不同的岩体中角闪石含量略有变化,约4% ~5%。
图1 胶东西部区域地质简图(a,据Zhao et al.,1999 修改;b,据山东省地勘局,1999①山东省地勘局.1999.1∶150 万山东省地质图修改)Fig.1 Geological sketch map of the Guojialing granodiorites in western Jiaodong Peninsula,China (a,after Zhao et al.,1999)
黑云母形态上明显的分为两类,一类自形,存于钾长石中及矿物颗粒间;另一类弯曲变形,发育于矿物颗粒间,可能受后期的构造作用所致(图2c,d)。两类黑云母多色性较弱,浅绿或浅褐色-褐色,局部绿泥石化,并沿解理析出磁铁矿。石英他形充填于矿物颗粒间,见波状消光。褐帘石自形柱状,边缘为绿帘石,并显示出弱的成分环带,无次生蚀变现象,表明为岩浆成因(图2f)。
岩相学特征显示,基质中角闪石及斜长石自形,钾长石自形-半自形,且矿物内部包含有自形的黑云母及斜长石,说明基质中的钾长石晚于斜长石及黑云母结晶,黑云母发育于自形板状的斜长石矿物颗粒之间,暗示黑云母结晶于斜长石之后,而他形的石英则表明其最晚结晶。
我们对黑云母、角闪石、钾长石及斜长石进行矿物化学分析,采用角闪石全铝压力计(Anderson and Smith,1995),获得岩体侵位压力;利用角闪石-斜长石温度计(Holland and Blundy,1994)计算其平衡温度;采用黑云母-角闪石温压计(Симонова,1979)、黑云母温度计(Henry et al.,2005)及二长石温度计(Putirka,2008)进行矿物平衡温度估算。在中国地质科学院电子探针实验室JXA-8230 型电子探针测试仪器上完成,加速电压15kV,电流20nA,束斑直径5μm。测试结果见表1。
矿物化学分析显示,两类黑云母在化学成分上基本相同。黑云母-角闪石平衡温压反映的是共生的角闪石和黑云母达到平衡时的温压条件,故边部成分更接近平衡时的状态。为采用黑云母-角闪石平衡温压计,我们选择黑云母干净且无后期蚀变的边部进行矿物化学的分析。其氧化物含量SiO2=34.94% ~37.69%,FeO =15.70% ~17.92%,MgO=12.01% ~14.39%,TiO2=1.81% ~2.43%,Mg/(Mg+Fe)=0.55 ~0.63;黑云母分类图解中属于镁黑云母(图3a),与前人的结果一致(陈光远等,1993)。在成因分类中,落入再平衡区域(图3c)。黑云母镜下多色性较弱,呈浅绿色,并见含钛磁铁矿沿黑云母解理及黑云母与钾长石接触边缘发育,这与前人对于再平衡黑云母特征的描述一致,可能与岩浆后期流体作用有关(Nachit et al.,2005),而在形态上发生变形弯曲的黑云母,与岩体固结后的韧性剪切作用有关。在黑云母MgO-FeOT-Al2O3构造环境判别图中,显示郭家岭花岗闪长岩为造山带钙碱性花岗岩(图3d),与前人利用全岩化学成分获得的结果一致(陈光远等,1993)。
图2 胶东郭家岭岩体野外及岩相学特征(a、b)郭家岭岩体中闪长质包体及钾长石斑晶;(c)自形及弯曲变形的两类黑云母;(d、e)黑云母与石英、榍石、角闪石、斜长石及钾长石共生;(f)自形褐帘石及粒状角闪石. 矿物缩写据Whitney and Evans (2010):Am-角闪石;Bi-黑云母;Kfs-钾长石;Pl-斜长石;Qz-石英;Spn-榍石;Aln-褐帘石;Ep-绿帘石Fig.2 Field and micrographical photos for the Guojialing granodiorites in Jiaodong Peninsula
角闪石斑晶在花岗闪长岩中以短柱状、长柱状产出,半自形-自形。矿物化学显示,角闪石SiO2= 42.54% ~44.76%,Al2O3=8.91% ~10.18%,MgO、CaO 含量较高,分别为10.64% ~11.99%和11.11% ~11.52%,其CaB>1.5,(Na+K)A<0.5 属于钙质角闪石亚族中的镁角闪石(图3b)。
与角闪石共生的斜长石矿物边部化学分析表明,斜长石SiO2= 62.13% ~62.53%,Na2O 含量较高,为8.97% ~9.51%,Al2O3=22.81% ~23.51%;Ab =0.79 ~0.82,An =0.17 ~0.21。
钾长石产于斑晶及基质中,电子探针结果显示:SiO2=60.05% ~64.48%,Al2O3= 18.71% ~18.78%,K2O =13.69% ~14.26%;Ab=0.14 ~0.18,Or=0.82 ~0.86。
根据前人数据(Zhang et al.,2010;陆丽娜等,2011),据Watson and Harrison (1983)提供的花岗岩锆饱和温度计算方法,获得郭家岭岩体的锆饱和温度为726 ~800℃,平均为755℃,代表岩浆侵位温度。结合已有的主量数据(杨进辉等,2003;Zhang et al.,2010;陆丽娜等,2011),采用QAb-Or 标准矿物的共结压力图解(Huang and Wyllie,1975),获得岩体固结压力集中在4 ~5kbar 之间。少量点偏离压力线而处于5kbar 之下,这可能与岩体局部钾长石斑晶较多有关,反映岩体局部的钾长石斑晶先结晶的特点(图4a)。
表1 胶东郭家岭岩体黑云母、角闪石、斜长石及钾长石矿物化学成分表(wt%)Table1 Chemicalcomposition ofbiotite, amphibole, plagioclaseand potassiumfeldsparfromGuojialingpluton in JiaodongPeninsula, China(wt%)
图3 郭家岭岩体角闪石和黑云母矿物化学分类图解(a,b)黑云母、角闪石分类图解(底图分别据Foster,1960;Leake et al. ,1997);(c)黑云母10TiO2-FeOT-MgO 成因类型图解(Nachit et al. ,2005),其中A、B、C 分别代表原生、再平衡、新生黑云母区域;(d)黑云母MgO-FeOT-Al2O3 相关图(Abdel-Rahman,1994),A、C、P 分别代表非造山带碱性花岗岩、造山带钙碱性花岗岩、过铝质花岗岩. 空心圆圈为本人数据,实心圆圈引自陈光远等(1993)Fig.3 Chemical composition classification diagrams of amphibole and biotite for the Guojialing granodiorites(a,b)Classification diagrams of biotite and calcic amphibole (after Foster,1960;Leake et al. ,1997,respectively);(c)10TiO2-FeOT-MgO diagram of biotite (after Nachit et al. ,2005),A,B and C correspond to the domains of primary magmatic biotites,reequilibrated biotites and the neoformed biotites,respectively;(d)MgO-FeOT-Al2O3 biotite discriminant diagram for biotite in anorogenic alkaline suites(field A),biotite in calcalkaline orogenic suites (field C)and biotite in peralumino us suites (field P)(after Abdel-Rahman,1994). Data represented by open circles from this paper and filled circles after Chen et al.(1993)
Holland and Blundy (1994)基于浅闪石-透闪石(A)和浅闪石-钠透闪石(B)反应平衡的研究,分别提出两个角闪石-斜长石温度计(A、B),其方程式如下:
因为温度计B 所获得温度能够被其他矿物温度计所再现,故温度计B 获得的结果更为可信(Anderson,1996)。采用温度计B 计算时,需要代入相应的压力值,故先利用Schmit (1992)提到的角闪石全铝压力计获得压力结果,将获得的压力值代入温度计B 中,得到平衡温度为657 ~717℃(±40),集中在693 ~717℃(±40)。采用角闪石全铝压力计(Anderson and Smith,1995),并利用温度计B 所获得的结果对所获压力进行校正,获得的压力为4.8 ±0.6kbar。
图4 郭家岭岩体固结冷却温压条件图解(a)花岗岩Q-Ab-Or 共结压力图解(底图据Huang and Wyllie,1975),数据引自Zhang et al. (2010);陆丽娜等(2011);(b、c)角闪石-黑云母矿物对Mg/(Ti+Mg+Fe+Mn)Bi-Mg/(Ti+Mg+Fe+Mn)Am温度及Al/(Ti+Mg+Fe+Mn)Bi-Mg/(Ti+Mg+Fe+Mn)Am压力图解(底图据Симонова,1979);(d)黑云母Ti-Mg/(Mg+Fe)温度图解(底图据Henry et al. ,2005)Fig.4 Estimated pressures and temperatures for the Guojialing granodiorites(a)Q-Ab-Or diagram for the Guojialing granodiorites in Jiaodong Peninsula (after Huang and Wyllie,1975),data from Zhang et al. (2010),Lu et al. (2011);(b,c)temperature diagram of Mg/(Ti+Mg+Fe+Mn)Bi vs. Mg/(Ti+Mg+Fe+Mn)Am,and pressure diagram of Al/(Ti+Mg+Fe+Mn)Bi vs. Mg/(Ti+Mg+Fe+Mn)Am for amphibole and biotite (after Симонова,1979;(d)Ti-Mg/(Mg +Fe)geothermometry diagram for biotite (after Henry et al. ,2005)
在角 闪 石-黑 云 母 压 力 与 温 度 图 解 中(Симонова,1979),获得二者平衡条件为4 ~4.4kbar,650 ~700℃(图4b,c),与黑云母Ti-Mg/(Mg +Fe)投图(Henry et al.,2005)获得的温度结果相近(图4d)。利用Putirka (2008)提出的二长石温度计,其方程式为:
所获得的平衡温度略低,仅为570 ~580℃。
郭家岭岩体中矿物组合多见石英+榍石+磁铁矿组合,而该组合可以用于计算矿物结晶时的氧逸度条件(Wones,1989),其公式为:logfO2= -30930/T +14.98 +0.142(P -1)/T。根据角闪石-斜长石温度计所获温度(717 ~657℃)及角闪石全铝压力计获得的压力结果(4.8 ±0.6kbar),代入公式获得的氧逸度为-18.3 ~-16.3。在云母氧缓冲剂图解中(Wones and Eugster,1965),黑云母投点落在NB 氧缓冲剂反应线附近(图5a),结合黑云母结晶温度,在不同缓冲剂的温度-氧逸度图解中(图5c),黑云母结晶时的氧逸度条件大约在-18 ~-17,该结果与黑云母的Fe3+/(Fe3++Fe2+)与氧逸度关系图中所获得的氧逸度条件相近(图5b)。根据角闪石-黑云母温压计估算结果,利用Wones(1989)氧逸度计算公式获得的氧逸度值为-18.5 ~-16.8,与上述两种方法所得结果一致。
图5 黑云母氧逸度及角闪石温压条件图解(a)黑云母组成与氧缓冲剂相关图(据Wones and Eugster,1965),MH,NB,FMQ 及WM 分别为磁铁矿-赤铁矿,自然镍-绿镍矿,铁橄榄石-磁铁矿-石英,方铁矿-磁铁矿缓冲剂组合;(b)黑云母100 ×Fe3+ /(Fe3+ +Fe2+)、结晶温度与氧逸度相关图(ΠeрчукЛЛ,1973);(c)不同氧缓冲剂温度-氧逸度关系图(Eugster and Wones,1962);(d)角闪石压力计及角闪石-斜长石温度计计算所获温压范围Fig.5 Oxygen fugacity of biotite and P-T conditions for amphibole(a)the correlative diagram between biotite composition and oxygen buffer-reagent (after Wones and Eugster,1965);(b)100 × Fe3+ /(Fe3+ +Fe2+)crystal temperature and oxygen fugacity of biotite (ΠeрчукЛЛ et al. ,1973);(c)the different oxygen buffer-reagent temperature-oxygen fugacity diagram (after Eugster and Wones,1962);(d)the result of amphibole barometer and amphibole-plagioclase thermometer calculation
花岗岩Q-Ab-Or 标准矿物结晶压力图解、角闪石全铝压力计及角闪石-黑云母压力计所获压力基本一致,结果表明岩体侵位压力在4 ~5kbar 之间;镜下观察到,岩石中发育大量自形的褐帘石和绿帘石(图2f),且无溶蚀现象,表明这些绿帘石及褐帘石为岩浆成因,它的出现暗示岩体侵位压力在3 ~5kbar(Schmidt and Thompson,1996)。综上所述,我们认为采用角闪石全铝压力计(Anderson et al.,1995)计算获得的平衡压力(4.8 ±0.6kbar)比较合理。按照上地壳平均比重(2.7g/cm3)和平均地压梯度2.7km/kbar 进行计算,郭家岭岩体侵位深度约13 ±1.6km。
郭家岭岩体的锆饱和温度约在755℃,代表其岩浆侵位温度。矿物平衡温度则反映结晶冷却过程。我们的结果表明,角闪石-斜长石平衡温度为657 ~717℃,角闪石-黑云母平衡温度为650 ~700℃,而二长石平衡温度在570 ~580℃之间,这与岩相学观察到的矿物结晶顺序一致(基质中矿物结晶顺序为角闪石-斜长石-黑云母-钾长石-石英)。基质中的钾长石尽管为晚期结晶矿物,但二长石记录的平衡温度明显较饱和水花岗岩固相线低了近70 ~100℃。这很可能与岩体侵位深度大,岩体固结冷却后与围岩温度相差不大而相互平衡有关。我们所测二长石均为基质中新鲜洁净颗粒,不存在后期蚀变改造可能。如果胶东地区早白垩世的地温梯度按照35℃/km 和40℃/km 分别计算,郭家岭岩体侵位固结后的围岩温度分别为455 ±56℃和520 ±64℃。后者与二长石570 ~580℃的平衡温度比较吻合。因此,我们将二长石平衡温度解释为岩体与围岩平衡的结果是合理的。另外,推算的本区早白垩世地温梯度在40℃/km 左右比较合理。当时的高地温梯度可能与其构造背景及区域岩浆作用关系密切。
郭家岭岩体锆石年龄为130 ~126Ma(关康等,1998;Wang et al.,1998;Yang et al.,2012,2014b),而角闪石和黑云母的40Ar-39Ar 年龄分别为130 ±2Ma 和124 ±1Ma,二者理论上的封闭温度分别在500 ~400℃和300 ~200℃之间(Reiners and Brandon,2006;Li et al.,2003)。它们的封闭温度与矿物冷却速率、深部地质体隆升剥蚀速率关系密切,矿物冷却速率和地质体抬升速率越快,其封闭温度则越高(Reiners and Brandon,2006)。如果我们假设郭家岭岩体固结后发生快速冷却抬升,角闪石与黑云母封闭温度分别为最高的500℃和300℃。那么,岩体从130 ~126Ma(固结温度650℃)至124Ma 的300℃,平均冷却速率约60 ~175℃/Myr。假设角闪石冷却到500℃获得40Ar-39Ar 封闭年龄是130Ma,冷却到黑云母记录125 ~123Ma 时的封闭温度为300℃,则岩体的平均冷却速率为40 ~70℃/Myr。
角闪石与黑云母40Ar-39Ar 开始冷却封闭的温度不代表岩体当时所处深度上围岩温度。但是,对于深成岩体根据地温梯度可以估算矿物40Ar-39Ar 封闭时的最大深度。因此根据地温梯度(40℃/km)计算,郭家岭岩体与围岩温度平衡后经历了快速隆升过程。黑云母40Ar-39Ar 体系封闭温度在300~200℃,对应的最大深度约7.5 ~5km。由于郭家岭岩体黑云母化学成分上显示为再平衡结果,岩石学特征上也显示大量黑云母经历过剪切变形作用。所以,我们认为黑云母40Ar-39Ar冷却封闭年龄很可能是区域韧性剪切作用后的冷却年龄,即韧性剪切时代发生在126 ~124Ma,前人测得郭家岭韧性剪切带糜棱岩中角闪石和黑云母的40Ar-39Ar 年龄分别为124 ±1.8Ma、123 ±1.5Ma(Charles et al.,2013),也能说明这一点。韧性剪切作用发生的深度至少在10km 左右。这意味着韧性剪切作用之后,郭家岭岩体发生了快速隆升剥蚀。侵入郭家岭岩体的艾山岩体锆石年龄显示为116 ±2Ma(Goss et al.,2010),侵位压力在1kbar 左右(孙丰月等,1995),即深度仅2.7km 左右。所以,郭家岭岩体黑云母40Ar-39Ar 记录124 ±1Ma 时的合理深度约7.5 ~2.7km。本区金矿流体包裹体研究显示金矿成矿压力变化在1 ~3kbar,深度相当于2.7~8.1km(Fan et al.,2003)。根据地温梯度计算,成矿深度范围内地壳的温度在100 ~320℃之间。这与郭家岭岩体黑云母40Ar-39Ar 记录124Ma 的封闭温度吻合。
综上,郭家岭岩体在130Ma 形成后到艾山岩体侵位(116Ma),地壳总体隆升剥蚀达10 ±1.6km 左右,其冷却和隆升路径见图6。大量同位素年龄揭示出胶东金矿集中爆发在120 ±5Ma(Yang and Zhou,2000,2001;陈衍景等,2004;Li et al.,2008;于学峰等,2012;Guo et al.,2013;Hu et al.,2013),岩体快速隆升剥蚀发生在韧性剪切作用之后,约124 ~116Ma 之间。这说明,成矿作用发生在韧性剪切作用后的地壳快速隆升剥蚀过程中。从时间和郭家岭隆升剥蚀过程判断,郭家岭岩体在金矿爆发期间的快速隆升与金矿作用相关的岩浆-构造热事件紧密相关。
图6 郭家岭岩体抬升轨迹图其中TZr 为锆饱和温度(数据引自Zhang et al.,2010;陆丽娜等,2011);方法据Watson and Harrison (1983);压力计算方法据花岗岩Q-Ab-Or 标准矿物结晶压力图解(数据引自杨进辉等,2003;Zhang et al.,2010;陆丽娜等,2011). TAm-Pl为角闪石-斜长石平衡温压,计算方法据Holland and Blundy (1994)及Anderson and Smith (1995).TAm-Bi为角闪石-黑云母平衡温压,计算方法据Симонова(1979).TPl-Kf为二长平衡石温度,计算方法据Putirka(2008). 角闪石40 Ar-39 Ar 年龄及封闭温度引自Reiners and Brandon (2006). 黑云母40 Ar-39 Ar 年龄及封闭温度引自Li et al. (2003)及Reiners and Brandon(2006);侵位深度按2.7km/kbar 的地压梯度计算;艾山岩体侵位时的锆石年龄及侵位压力分别引自Goss et al. (2010)、孙丰月等(1995),对应的郭家岭岩体此时的温度根据1kbar 的侵位压力和2.7km/kbar 的地压梯度计算,深度约在2.7km,以40℃/km 的地温梯度计算,得到郭家岭岩体与围岩平衡温度约100℃. 饱和水花岗岩固相线引自Luth et al. (1964). 岩体冷却隆升路径沿A-B-C 为理想结果,即岩体抬升过程中总是处于与围岩温度均衡状态下,依据地温梯度和矿物封闭温度获得的温压变化路径;A-B’-C 则是极端的情况下,岩体韧性剪切作用后快速隆升到艾山岩体侵位时的1kbar 深度后,快速冷却路径. 因此,A-B-B’-C 组成的三角形区域内为郭家岭岩体冷却抬升剥蚀的可能路径区域Fig.6 Cooling and exhumation for the Guojialing granodiorites
不同深度上形成的矿体目前处于同一地壳层次上不仅说明成矿作用是多阶段的,同时也进一步佐证了成矿期间地壳发生过快速的隆升剥蚀作用。吕古贤(1997)曾对本区玲珑和焦家金矿成矿深度和阶段进行过详细研究,结果显示本区金矿存在多阶段且深度不同的矿体。尽管其采用的压力校正方法获得了相对较浅的成矿深度(约3.5 ~0.7km),但不同成矿阶段的成矿深度存在明显差距的特征有力的说明了成矿期地壳发生过快速隆升剥蚀。
郭家岭岩体在10Myr 内发生了大规模的隆升剥蚀(平均隆升剥蚀速率约1 ±0.1km/Myr),其机制可能与华北东部中生代岩石圈减薄导致的地壳浅部隆升、伸展及拆离有关(周新华等,2002;Zhai et al.,2002;Yang et al.,2003;Li and Santosh,2014)。胶西北金矿田多发育脆性断裂带中,其中赋存大量金矿体。它们的形成与地壳拆离和成矿流体上升并沿着这些脆性断裂带发生成矿作用紧密相关(范宏瑞等,2005;Yang et al.,2014a)。在伸展背景下,地壳的大规模水平拆离作用能够造成上地壳岩石在极短的时间内发生快速位移,并造成下覆地质体快速减压隆升和剥蚀作用。
另外,本文对郭家岭岩体的氧逸度估算结果显示,氧逸度值-18 ~-16 之间,而氧逸度的高低是控制Au 沉淀的重要因素,氧逸度的降低更有利于Au 的沉淀(Williams-Jones et al.,2009;Li et al.,2013)。金矿沉淀大致发生在-30 ~-23 之间(Gibert et al.,1998;Li et al.,2013)。因此,我们推测,在郭家岭岩体固结晚期,排出的流体如果含矿则会在上覆地层中发生沉淀成矿。
(1)郭家岭岩体在约130Ma 侵位,侵位温度在726 ~800℃,固结温度650 ~700℃,就位压力在4 ~5kbar;固结后岩体冷却至570 ~580℃,此时二长石温度与围岩温度达到平衡;之后温度降至500 ±50℃,随后岩体冷却到124Ma 的300±30℃左右;
(2)郭家岭岩体在126 ~116Ma 期间发生了快速隆升剥蚀,隆升剥蚀量在10km 左右;其发生时间与中国东部中生代岩石圈减薄的峰期时限耦合,暗示胶东西部地壳快速隆升剥蚀是深部地质过程的浅部响应。
致谢 感谢中国地质科学院地质力学研究所吕古贤研究员和中国科学院地质与地球物理所刘玄博士提出的修改建议;电子探针测试分析在中国地质科学院电子探针实验室完成,对陈振宇老师的大力帮助和指导,表示感谢。
Abdel-Rahman AFM. 1994. Nature of biotites from alkaline,calcalkaline,and peraluminous magmas. Journal of Petrology,35(2):525 -541
Anderson JL and Smith DR. 1995. The effects of temperature and fO2on the Al-in-hornblende barometer. American Mineralogist,80:549-559
Anderson JL. 1996. Status of thermobarometry in granitic batholiths.Geological Society of America Special Papers,315:125 -138
Charles N,Augier R,Gumiaux C,Monié P,Chen Y,Faure M and Zhu RX. 2013. Timing,duration and role of magmatism in wide rift systems:Insights from the Jiaodong Peninsula (China,East Asia).Gondwana Research,24(1):412 -428
Chen G,Ding C,Xu LM,Zhang HR,Hu YX,Yang F,Li N,Mao XN and Li Y. 2013. Analysis on the thermal history and uplift process of Zijinshan intrusive complex in the eastern Ordos basin. Chinese Journal of Geophysics,56(1):78 -90
Chen GY,Sun DS,Zhou XR,Shao W,Gong RT and Shao Y. 1993.Genetic Mineralogy and Gold Mineralization of Guojialing Granodiorite in Jiaodong Region. Wuhan: Chinese University Geosciences Press,8 -219 (in Chinese)
Chen YJ,Pirajno F,Lai Y and Li C. 2004. Metallogenic time and tectonic setting of the Jiaodong gold province,eastern China. Acta Petrologica Sinica,20(4):907 - 922 (in Chinese with English abstract)
Deng J,Xu SL,Fang Y,Zhou XQ and Wai L. 1996. The Tectonic Systems and Gold Metallogenic Dynamics in the Northwestern Jiaodong,China. Beijing:Geological Publishing House,1 -98 (in Chinese)
Deng J,Zhai YS,Yang LQ,Xiao RG and Sun ZS. 1999. Tectonic evolution and dynamics of metallogenic system-an example from the gold ore deposits-concentrated area in Jiaodong,Shandong,China.Earth Science Frontiers,6(2):315 -323 (in Chinese with English abstract)
Dodson MH. 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology,40(3):259 -274
Eugster HP and Wones DR. 1962. Stability relations of the ferruginous biotite,annite. Journal of Petrology,3(1):82 -125
Fan HR,Zhai MG,Xie YH and Yang JH. 2003. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit,Jiaodong gold province,China. Mineralium Deposita,38(6):739 -750
Fan HR,Hu FF,Yang JH,Shen K and Zhai MG. 2005. Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the eastern Shandong province. Acta Petrologica Sinica,21(5):1317 -1328 (in Chinese with English abstract)
Fan HR,Hu FF,Yang KF,Wen BJ and Liu X. 2014. Ore-forming fluids and ore genesis in the world-class Mesozoic gold province,Jiaodong Peninsula,eastern China. Acta Geologica Sinica,88(Suppl.2):1089 -1091
Foster MD. 1960. Interpretation of the Composition of Trioctahedral Micas. New York:US Government Printing Office,11 -39
Gibert F,Pascal ML and Pichavant M. 1998. Gold solubility and speciation in hydrothermal solutions:Experimental study of the stability of hydrosulphide complex of gold (AuHS)at 350 to 450℃and 500bars. Geochimica et Cosmochimica Acta,62(17):2931-2947
Goss SC,Wilde SA,Wu FY and Yang JH. 2010. The age,isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane,Shandong Province,North China Craton. Lithos,120(3 -4):309 -326
Guan K,Luo ZK,Miao LC and Huang JZ. 1998. SHRIMP in zircon chronology for Guojialing suite granite in Zhaoye,Jiaodong district.Scientia Geologica Sinica,33(3):318 - 328 (in Chinese with English abstract)
Guo P,Santosh M and Li SR. 2013. Geodynamics of gold metallogeny in the Shandong Province,NE China:An integrated geological,geophysical and geochemical perspective. Gondwana Research,24(3 -4):1172 -1202
Hart SR. 1964. The petrology and isotopic-mineral age relations of a contact zone in the Front Range,Colorado. The Journal of Geology,72(5):493 -525
Helmy HM,Ahmed AF,El Mahallawi MM and Ail SM. 2004. Pressure,temperature and oxygen fugacity conditions of calc-alkaline granitoids,Eastern Desert of Egypt,and tectonic implications.Journal of African Earth Sciences,38(3):255 -268
Henry DJ,Guidotti CV and Thomson JA. 2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites:Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist,90(2 -3):316 -328
Holland T and Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry.Contributions to Mineralogy and Petrology,116(4):433 -447
Hou ML,Jiang YH,Jiang SY,Ling HF and Zhao KD. 2007. Contrasting origins of Late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula,East China:Implications for crustal thickening to delamination. Geological Magazine,144(4):619 -631
Hu FF,Fan HR,Jiang XH,Li XC,Yang KF and Mernagh T. 2013.Fluid inclusions at different depths in the Sanshandao gold deposit,Jiaodong Peninsula,China. Geofluids,13(4):528 -541
Huang WL and Wyllie PJ. 1975. Melting reactions in the system to 35 kilobars,dry and with excess water. The Journal of Geology,83(6):737 -748
Jiang N,Chen JZ,Guo JH and Chang GH. 2012. In situ zircon U-Pb,oxygen and hafnium isotopic compositions of Jurassic granites from the North China craton:Evidence for Triassic subduction of continental crust and subsequent metamorphism-related18O depletion. Lithos,142 -143:84 -94
Leake BE,Woolley AR,Arps CES et al. 1997. Nomenclature of amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. The Canadian Mineralogist,35:219 -246
Li GM,Cao MJ,Qin KZ,Evans JN,McInnes BIA and Liu YS. 2014.Thermal-tectonic history of the Baogutu porphyry Cu deposit,West Junggar as constrained from zircon U-Pb,biotite Ar/Ar and zircon/apatite (U-Th)/He dating. Journal of Asian Earth Sciences,79:741 -758
Li JW,Vasconcelos PM,Zhang J,Zhou MF,Zhang XJ and Yang FH.2003.40Ar/39Ar constraints on a temporal link between gold mineralization,magmatism,and continental margin transtension in the Jiaodong gold province,eastern China. The Journal of Geology,111(6):741 -751
Li QL,Chen FK,Yang JH and Fan HR. 2008. Single grain pyrite Rb-Sr dating of the Linglong gold deposit,eastern China. Ore Geology Reviews,34(3):263 -270
Li SR and Santosh M. 2014. Metallogeny and craton destruction:Records from the North China Craton. Ore Geology Reviews,56:376 -414 Li XC,Fan HR,Santosh M,Hu FF,Yang KF and Lan TG. 2013.Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit,Jiaodong Gold Province,China. Ore Geology Reviews,53:403 -421
Lin W,Monié P,Faure M,Schärer U,Shi YH,Breton NL and Wang QC. 2011. Cooling paths of the NE China crust during the Mesozoic extensional tectonics:Example from the south-Liaodong peninsula metamorphic core complex. Journal of Asian Earth Sciences,42(5):1048 -1065
Lin WW and Yin XL. 1998. The forming physicochemical conditions of Linglong granitic complex and its geological significance. Acta Geoscientia Sinica,19(1):40 - 49 (in Chinese with English abstract)
Liu X,Fan HR,Evans NJ,Batt GE,McInnes BIA,Yang KF and Qin KZ. 2014. Cooling and exhumation of the Mid-Jurassic porphyry copper systems in Dexing City,SE China:Insights from geo-and thermochronology. Mineralium Deposita,49(7):809 -819
Liu ZJ,Wang JP,Zheng DW,Liu JJ,Liu J and Fu C. 2010.Exploration prospect and post-ore denudation in the northwestern Jiaodong Gold Province,China:Evidence from apatite fission track thermochronology. Acta Petrologica Sinica,26(12):3597 -3611(in Chinese with English abstract)
Lu LN,Fan HR,Hu FF,Yang KF and Lan TG. 2011. Emplacement depth of the Guojialing granodiorites from the northwestern Jiaodong Peninsula, eastern China: Evidences from hornblende thermobarometry and fluid inclusions. Acta Petrologica Sinica,27(5):1521 -1532 (in Chinese with English abstract)
Luth WC,Jahns RH and Tuttle OF. 1964. The granite system at pressures of 4 to 10 kilobars. Journal of Geophysical Research,69(4):759 -773
Lü GX. 1997. Study and estimate of depths of the formation of the Linglong and Jiaojia gold deposits,Shandong. Science China(Series D),27(4):337 -342 (in Chinese)
Lü GX,Guo T,Shu B,Shen YK,Liu DJ and Zhou GF. 2006.Geological characteristics of rock-controlling and ore-controlling structures in the Jiaodong gold ore concentration area. Acta Geoscientica Sinica,27(5):471 -478 (in Chinese with English abstract)
Ma CQ,Yang KG,Tang ZH,Long Y,Ehlers C and Lindroos A. 1995.Formation and differential rock uplift-exhumation of high-pressure metamorphic terrane in Dabie mountains,central China:Evidence from igneous rocks. Earth Science,20(5):515 -520 (in Chinese with English abstract)
Nachit H,Ibhi A,Abia EH and Ohoud MB. 2005. Discrimination between primary magmatic biotites,reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience,337(16):1415 -1420
Putirka KD. 2008. Thermometers and barometers for volcanic systems.Reviews in Mineralogy and Geochemistry,69(1):61 -120
Qiu YM,Groves DI,McNaughton NJ,Wang LG and Zhou TH. 2002.Nature,age,and tectonic setting of granitoid-hosted,orogenic gold deposits of the Jiaodong Peninsula,eastern North China craton,China. Mineralium Deposita,37(3 -4):283 -305
Qu XM and Wang HN. 1997. Dynamic study on the crustal-mantle magma mixing and emplacement mechanism of Guojialing granite.Scientia Geologica Sinica,32(4):445 - 454 (in Chinese with English abstract)
Reiners PW and Brandon MT. 2006. Using thermochronology to understand orogenic erosion. Annual Review Earth Planetary Sciences,34:419 -466
Schmit MW. 1992. Amphibole composition in tonalite as a function of pressure:An experimental calibration of the Al-in-hornblende barometer. Contribution to Mineralogy and Petrology,110(2 -3):304 -310
Schmidt MW and Thompson AB. 1996. Epidote in calc-alkaline magmas:An experimental study of stability,phase relationships,and the role of epidote in magmatic evolution. American Mineralogist,81:462 -474
Sial AN,Toselli AJ,Saavedra J,Parada MA and Ferreira VP. 1999.Emplacement,petrological and magnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazil,Argentina and Chile. Lithos,46(3):367 -392
Song MC,Xu JX and Wang PC. 2009. Tectonic Framework and Tectonic Evolution of the Shandong Province. Beijing:Geological Publishing House,1 -272 (in Chinese)
Song MC,Li SZ,Santosh M et al. 2015. Types,characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula,Eastern North China Craton. Ore Geology Reviews,65:612 -625
Sun FY,Shi ZL and Feng BZ. 1995. Gold Ore Geology,Lithogenesis and Mantle-Derived C-H-O Fluids in Jiaodong Penisula,Eastern China. Changchun:Jilin People’s Press,32 -56 (in Chinese)
Wang LG,Qiu YM,McNaughton NJ,Groves DI,Luo ZK,Huang JZ,Miao LC and Liu YK. 1998. Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula,China,from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews,13(1 -5):275 -291
Wang ZL,Yang LQ,Deng J et al. 2014. Gold-hosting high Ba-Sr granitoids in the Xincheng gold deposit,Jiaodong Peninsula,East China:Petrogenesis and tectonic setting. Journal of Asian Earth Sciences,95:274 -299
Watson EB and Harrison TM. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters,64(2):295 -304
Wen BJ,Fan HR,Santosh M,Hu FF,Pirajno F and Yang KF. 2014.Genesis of two different types of gold mineralization in the Linglong gold field,China:Constrains from geology,fluid inclusions and stable isotope. Ore Geology Reviews,65(3):643 -658
Whitney DL and Evans BW. 2010. Abbreviations for names of rockforming minerals. American Mineralogist,95(1):185 -187
Williams-Jones AE,Bowell RJ and Migdisov AA. 2009. Gold in solution. Elements,5(5):281 -287
Wones DR and Eugster HP. 1965. Stability of biotite:Experiment,theory,and application. American Mineralogist,50 (9):1228-1272
Wones DR. 1989. Significance of the assemblage titanite + magnetite +quartz in granitic rocks. American Mineralogist,74(7 -8):744-749
Xu JF and Shen BY. 1989. On the granitoid related to gold mineralization in Jiaodong block. Geology of Shandong,5(2):1 - 125 (in Chinese with English abstract)
Yang JH and Zhou XH. 2000. The Rb-Sr isochron of ore and pyrite subsamples from Linglong gold deposit,Jiaodong Peninsula,eastern China and their geological significance. Chinese Science Bulletin,45(24):2272 -2277
Yang JH and Zhou XH. 2001. Rb-Sr,Sm-Nd,and Pb isotope systematics of pyrite:Implications for the age and genesis of lode gold deposits. Geology,29(8):711 -714
Yang JH,Wu FY and Wilde SA. 2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton:An association with lithospheric thinning. Ore Geology Reviews,23(3 -4):125 -152
Yang JH,Zhu MF,Liu W and Zhai MG. 2003. Geochemistry and petrogenesis of Guojialing granodiorites from the northwestern Jiaodong Peninsula,eastern China. Acta Petrologica Sinica,19(4):692 -700 (in Chinese with English abstract)
Yang JH,Wu FY,Shao JA,Wide SA,Xie LW and Liu XM. 2006.Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt,North China. Earth and Planetary Science Letters,246(3):336 -352
Yang KF,Fan HR,Santosh M,Hu FF,Wilde SA,Lan TG,Lu LN and Liu YS. 2012. Reactivation of the Archean lower crust:Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of Late Mesozoic granitoids from northwestern Jiaodong Terrane,the North China Craton. Lithos,146 -147:112 -127 Yang LQ,Deng J,Goldfarb RJ,Zhang J,Gao BF and Wang ZL. 2014a.40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit:New implications for timing and duration of hydrothermal activity in the Jiaodong gold province,China. Gondwana Research,25(4):1469 -1483
Yang LQ,Deng J,Wang ZL,Zhang L,Guo LN,Song MC and Zheng XL. 2014. Mesozoic gold metallogenic system of the Jiaodong gold province,eastern China. Acta Petrologica Sinica,30(9):2447 -2467 (in Chinese with English abstract)
Yang QY,Santosh M,Shen JF and Li SR. 2014b. Juvenile vs. recycled crust in NE China:Zircon U-Pb geochronology,Hf isotopes and an integrated model for Mesozoic gold mineralization in the Jiaodong Peninsula. Gondwana Research,25(4):1445 -1468
Yang WT,Yang JH,Wang XF and Du YS. 2014c. Uplift-denudation history of the Qinling orogen:Constrained from the detrital-zircon UPb geochronology. Journal of Asian Earth Sciences,89:54 -65
Yu XF,Li HK and Shan W. 2012. Study on coupling between Yanshannian tectonic thermal events and gold mineralization in Jiaodong ore concentrating area in Shandong Province. Acta Geologica Sinica,86(12):1946 -1956 (in Chinese with English abstract)
Zhai MG,Cong BL,Guo JH,Liu WJ,Li YG and Wang QC. 2000. Sm-Nd geochronology and petrography of garnet pyroxene granulites in the northern Sulu region of China and their geotectonic implication.Lithos,52(1):23 -33
Zhai MG,Yang JH,Fan HR,Miao LC and Li YG. 2002. A large-scale cluster of gold deposits and metallogenesis in the eastern North China Craton. International Geology Review,44(5):458 -476
Zhang J,Zhao ZF,Zheng YF and Deng MN. 2010. Postcollisional magmatism:Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen,China. Lithos,119(3):512 -536
Zhang SH,Zhao Y and Song B. 2006. Hornblende thermobarometry of the Carboniferous granitoids from the Inner Mongolia Paleo-uplift:Implications for the tectonic evolution of the northern margin of North China block. Mineralogy and Petrology,87(1 -2):123 -141
Zhao GC,Wilde SA,Cawood PA and Lu LZ. 1999. Thermal evolution of two types of mafic granulites from the North China Craton:Implications for both mantle plume and collisional tectonics.Geological Magazine,136(3):223 -240
Zhou XH,Yang JH and Zhang LC. 2003. Metallogenesis of superlarge gold deposits in Jiaodong region and deep processes of subcontinental lithosphere beneath North China Craton in Mesozoic. Science in China (Series D),46(Suppl.1):14 -25
Симонова Л И. 1979. Темноцветные минералы-индикаторы глубины кристаллизации гранитоидов (на примере интрузивов Кураминской зоны,Средняя Азия). Геохимия,(9):1307-1322
ΠeрчукЛЛ HykM. 1973. Tepmoдинамигeckий peжимг Убиного петрогенезиса. Hayka
附中文参考文献
陈光远,孙岱生,周珣若,邵伟,宫润潭,邵岳. 1993. 胶东郭家岭花岗闪长岩成因矿物学与金矿化. 武汉:中国地质大学出版社,8 -219
陈衍景,Pirajno F,赖勇,李超. 2004. 胶东矿集区大规模成矿时间和构造环境. 岩石学报,20(4):907 -922
邓军,徐守礼,方云,周显强,万丽. 1996. 胶东西北部构造体系及金成矿动力学. 北京:地质出版社,1 -98
邓军,翟裕生,杨立强,肖荣阁,孙忠实. 1999. 构造演化与成矿系统动力学——以胶东金矿集中区为例. 地学前缘,6(2):315-323
范宏瑞,胡芳芳,杨进辉,沈昆,翟明国. 2005. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿. 岩石学报,21(5):1317 -1328
关康,罗镇宽,苗来成,黄佳展. 1998. 胶东招掖郭家岭型花岗岩锆石SHRIMP 年代学研究. 地质科学,33(3):318 -328
林文蔚,殷秀兰. 1998. 玲珑花岗质杂岩体形成的物理化学条件及其地质意义. 地球学报,19(1):40 -49
柳振江,王建平,郑德文,刘家军,刘俊,付超. 2010. 胶东西北部金矿剥蚀程度及找矿潜力和方向——来自磷灰石裂变径迹热年代学的证据. 岩石学报,26(12):3597 -3611
陆丽娜,范宏瑞,胡芳芳,杨奎锋,蓝廷广. 2011. 胶西北郭家岭花岗闪长岩侵位深度:来自角闪石温压计和流体包裹体的证据.岩石学报,27(5):1521 -1532
吕古贤. 1997. 山东玲珑金矿田和焦家金矿田成矿深度的测算与研究方法. 中国科学(D 辑),27(4):337 -342
吕古贤,郭涛,舒斌,申玉科,刘杜鹃,周国发. 2006. 胶东金矿集中区构造控岩控矿地质特征研究. 地球学报,27(5):471 -478
马昌前,杨坤光,唐仲华,龙昱,Ehlers C,Lindroos A. 1995. 华中大别山高压变质地体的形成和差异岩石隆升-剥蚀:来自火成岩的证据. 地球科学,20(5):515 -520
曲晓明,王鹤年. 1997. 郭家岭岩体壳慢岩浆混合作用与侵位机制的动力学研究. 地质科学,32(4):445 -454
宋明春,徐军祥,王沛成. 2009. 山东省大地构造格局和地质构造演化. 北京:地质出版社,1 -272
孙丰月,石准立,冯本智. 1995. 胶东金矿地质及幔源C-H-O 流体分异成岩成矿. 长春:吉林人民出版社,32 -56
徐金方,沈步云. 1989. 胶北地块与金矿有关的花岗岩类的研究. 山东地质,5(2):1 -125
杨进辉,朱美妃,刘伟,翟明国. 2003. 胶东地区郭家岭花岗闪长岩的地球化学特征及成因. 岩石学报,19(4):692 -700
杨立强,邓军,王中亮,张良,郭林楠,宋明春,郑小礼. 2014. 胶东中生代金成矿系统. 岩石学报,30(9):2447 -2467
于学峰,李洪奎,单伟. 2012. 山东胶东矿集区燕山期构造热事件与金矿成矿耦合探讨. 地质学报,86(12):1946 -1956
周新华,杨进辉,张连昌. 2002. 胶东大型金矿的形成与中生代华北大陆岩石圈深部过程. 中国科学(D 辑),32(增刊):11 -20