薛茗月覃英凤李健叶高杰湛志华
(1. 广西师范大学化学与药学学院 药用资源化学与药物分子工程教育部重点实验室,桂林 541004;2. 桂林师范高等专科学校,桂林 541001)
基于信号放大技术的适体生物传感器研究进展
薛茗月1,2覃英凤1李健1叶高杰1湛志华2
(1. 广西师范大学化学与药学学院 药用资源化学与药物分子工程教育部重点实验室,桂林 541004;2. 桂林师范高等专科学校,桂林 541001)
信号放大技术因其能实现低浓度分子检测,灵敏度高而在多个研究领域发展非常迅速。而适体作为识别分子已成功应用于多种生物传感器平台,在医疗诊断、环境检测、生化分析中显示出良好的应用前景。近年来,以适体为识别元件的生物传感器越来越受到人们的关注。综述了近3年来基于信号放大技术的适体生物传感器研究新发展。
信号放大技术;适体;生物传感器
DIO: 10.13560/j.cnki.biotech.bull.1985.2015.01.010
随着生物学研究领域的不断拓展,常会遇到一些不能直接扩增的待测分子,但又由于其浓度较低而无法检测,因而信号放大技术对不能进行直接扩增的低浓度待测分子的检测显得尤为重要。核酸分子体外扩增是生物技术研究的重要手段。随着科学的发展和研究目的的不同,出现了越来越多的核酸分子体外扩增技术,如纳米材料放大技术,剪切酶放大技术、滚环扩增放大技术等[1-4]。这类信号技术在各类研究中起着重要的作用,广泛应用于生物技术分析和研究领域。
生物传感器是以将具有生物活性功能单元作为生物敏感元件,识别目标分子,通过换能器,将生物化学反应能转换成电信号的一种分析测试装置。生物传感器一般有两个主要组成部分:其一是生物分子识别元件(感受器),具有分子识别能力,如酶、抗体、组织切片、细胞、细胞膜、细胞器、核酸及有机物分子等;其二是信号转换器(换能器),主要有电化学、光学检测元件、热敏电阻、场效应晶体管、压电石英晶体及表面等离子共振器件等,它们可以将生物识别事件转换为可检测的信号。基于核酸适体作为生物识别元素的生物传感器被称为适体生物传感器,是一种能够连续和可逆地进行分子识别的装置,也可以视作信息采集和处理链中的一个逻辑元件。根据检测信号不同,适体生物传感器分为电化学适体生物传感器、光学适体生物传感器等。适体传感器已经在蛋白质组学、病毒检测、疾病诊断、环境检测方面得到了应用,与适体及其相对应的抗体传感器相比,适体传感器在灵敏性、稳定性、重复性均优于抗体传感器。本文从近3年的研究中阐述信号放大技术在适体生物传感器的应用。
核酸适体是新近发展起来的一类由指数富集配基系统进化技术(SELEX)筛选产生的单链DNA或RNA片段,能特异性地结合小分子、蛋白质、多肽、有机物、金属离子等各种配体[5],已广泛应用于多种生物传感器平台,在医疗诊断、环境检测、生化分析中显示出良好的应用前景。与抗体作为识别元件相比,核酸适体以下优点:(1)靶物质广泛。由于核酸适体不仅具有类似抗体对目标分子高亲和力和高特异性、结构简单、分子量小和易合成等优点,而且具有反应速度快、可反复使用和长期保存等优点,所以在十几年来得以迅速的发展,筛选出的核酸适体所识别的靶物质,从无机离子、氨基酸,到多肽、蛋白质,甚至整个细胞,涉及范围非常广泛。(2)高亲和性和高特异性。(3)稳定性好,可重复性。核酸适体不仅具有良好的稳定性,而且可在不同温度、盐浓度、变性剂等条件下反复变性和复性,进行重复利用。(4)体外筛选、化学合成。核酸适体的制备不依赖于动物或细胞,而是通过 SELEX 技术体外筛选出来的,筛选出的适体可以通过化学合成生产,纯度高、组成确定,几乎消除了适体制备的批间误差,较单抗制备更快速、更廉价。因此,基于核酸适体的生物传感器发展非常迅速[6,7]。
2.1 电化学适体生物传感器
电化学方法因其具有灵敏度高,测量仪器简单,测量费用低,响应快速等特点[8,9],而被广泛地应用于核酸适体传感器的开发。基于信号放大技术的适体电化学生物传感器主要用于金属离子[10]、小分子[11]、癌细胞[12,13]、凝血酶[14-16]等物质的检测。Pavlov和Willner 等[17]基于核酸适体功能化金纳米粒子的放大,制备了高灵敏检测凝血酶的核酸适体传感器。Rius研究组[18]通过用凝血酶适体修饰单壁碳纳米管的表面,利用固体接触电位适体传感也实现了凝血酶的检测,该方法所测得的检测限为80 nmol/L,检测范围为10-7-10-6mol/L之间。Jiang和Yuan等[19]设计了一个超灵敏的电化学适体传感器体系来检测凝血酶,他们利用高铁血红素/G-四链体、HRP-DNAzyme和用辣根过氧化物酶修饰FeTe纳米棒的三重信号放大技术和夹心法来进行凝血酶的超灵敏检测。实验所测得的检测限为0.5 pmol/L,检测范围为1 pmol/L-20 nmol/L之间。Dong和Chen等[20]将15个碱基的凝血酶适配体固定在玻璃表面,利用夹心式结构,将标记有硫化镉/碳球复合物的具有29个碱基的凝血酶适配体连接到玻璃片上,采用方波溶出伏安法检测镉离子的量对凝血酶进行高灵敏检测,测得的检测限为6.0×10-17mol/L,该信号放大方法克服了signal-on和signal-off法可能出现假阳性结果的不足,提高了检测的准确度。
2.2 光学适体生物传感器
根据不同的光学方法和检测材料,光学生物适体传感器可分成许多种类。光学适体生物传感器主要有光度适体生物传感器、化学发光适体生物传感器、荧光适体生物传感器、荧光偏振适体生物传感器等类型。
2.2.1 光度适体生物传感器 光度适体生物传感器是基于适体与靶分子结合作用前后吸光度的变化或最大吸收波长(颜色)的改变进行检测的适体生物传感器。基于信号放大技术的光度适体生物传感器主要是利用金纳米粒子(AuNPs)实现信号放大。AuNPs能够应用于光度适体生物传感器的主要依赖于其独特的表面等离子体共振[21]。近年来,基于其他放大技术或其与AuNPs与结合的光度适体生物传感器研究[22-25]已经有报道。光度适体生物传感器可用于金属离子[26-28]、小分子[29-31]、核酸[32]、蛋白质[33]、DNA[34]等物质的检测。
Yang等[35]利用比色传感器对赭曲霉毒素A(OTA)进行了测定。采用未修饰的AuNPs基于构象变化产生AuNPs的聚集,通过肉眼观察到AuNPs的颜色变化从红到蓝,从而实现了对OTA的测定,实验所得的检测限为20 nmol/L,检测范围为20-625 nmol/L 之间。 Zhou研究组[36]基于AuNPs的光度适体传感器实现了对As(III)的检测。利用适体与As(III)之间的特异性相互作用形成,阳离子聚合物即As(III)的适体复合物使得AuNPs聚集,出现显著的颜色变化,该方法具有高的选择性,测得的检测限为5.3 ppb。Erickson研究组[37]基于AuNPs与AgNPs的多种比色法实现了对卡波济氏肉瘤的检测。
2.2.2 化学发光适体生物传感器 化学发光分析法具有灵敏度高、线性范围宽、响应快、操作方便等优点,并与多学科相交叉,研究和应用领域越来越广泛。基于核酸适体作为生物识别元素的化学发光生物传感器被称为化学发光适体生物传感器。近年来,基于信号放大技术的化学发光(CL)及化学发光共振能量转移(CRET)已广泛用于研究的报道[38-41]屡见不鲜。化学发光适体生物传感器可用于DNA[42-44]、蛋白质[45]、金属离子[46]等其他物质如氨[47]、尿酸[48]的检测。
Zhang研究组[49]基于交联催化剂链置换反应(CC-SDR)指数扩增技术实现了对实际样品中microRNA(miRNA)的超灵敏检测。指数扩增过程中不需要聚合酶和切刻内切酶,所得到miRNA的检测限低至0.68 fmol/L。该方法具有良好的特异性并成功地应用于实际样品的分析,这是第一次将化学发光分析法用于miRNA检测,这给miRNA分析提供了一个新的超灵敏及信号放大的检测平台。Ronit和Willner等[50]报道了一系列基于CL适体传感器的平台用于血管内皮生长因子(VEGF)的分析。基于高铁血红素/G-四链体催化诱导VEGF的CL适体传感器检测VEGF,检测限为18 nmol/L;基于高铁血红素/ G-四链体催化两个适体亚基诱导VEGF的CL适体传感器检测VEGF,检测限为2.6 nmol/L;基于半导体纳米材料QDs-高铁血红素/G-四链体超分子结构诱导VEGF的CRET适体传感器检测VEGF,检测限为875 pmol/L。此外,基于Exo III循环放大信号技术他们还进行了VEGF分析的研究,所得检测限为5 pmol/L,此方法可用于人血清样品中VEGF的分析。
2.2.3 荧光适体生物传感器 荧光适体传感器是基于适体与目标分子作用前后荧光信号的变化来检测目标分子。基于荧光适体生物传感器的研究已广泛应用于蛋白质[51-54]、DNA[55,56]、金属离子[57,58]、MicroRNA[59]、高铁血红素[60]等物质的分析检测。He和Yu等[61]研究了基于SDA信号放大的荧光适体传感器检测可卡因的新方法。他们设计了有两个可卡因适体识别序列的新的发夹探针和单链探针,可检测低至2 nmol/L的可卡因,此方法与先前报道的可卡因适体传感器相比,具有灵敏度高、选择性好和成本低的优点。Ma和Shi等[62]报道了基于RCA信号放大的荧光适体传感器也对可卡因进行了检测。他们基于RCA信号放大与磁珠分离减小背景信号,最后得到可卡因的检测限为0.48 nmol/L 。此方法为许多蛋白质和小分子的高灵敏度检测提供一个新的平台。此外,Zhang和Sun研究组[63]、Zhu和Xu研究组[64]分别报道了基于荧光适体传感器检测凝血酶的新方法,得到的凝血酶的检测限均为100 pmol/L。
因发展简单、快速、低成本、灵敏度高、选择性好的基于信号放大技术的适体生物传感器在医疗诊断、环境监测等领域有着十分重要的意义。在近年来的发展中,基于信号放大技术的研究也已经取得了一定的成就,利用信号放大技术方法检测具有更高的灵敏度。根据目前研究现状可以预见,今后利用信号放大技术构建新的传感检测平台及探索新的检测机理的研究将会更多,通过多种信号放大技术相结合、以及开发新的信号放大技术,以实现更高灵敏度和多种目标的同时检测将成为趋势。因此,随着新材料新技术的发展,必将为信号放大技术的发展开辟更加广阔的应用前景。
[1]Yin BC, Liu YQ, Ye BC. One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification[J]. J Am Chem Soc, 2012, 134(11):5064- 5067.
[2]Liu YQ, Zhang M, Yin BC, Ye BC. Attomolar ultrasensitive microRNA detection by DNA-scaff olded silver-nanocluster probe based on isothermal ampli fication[J]. Anal Chem, 2012, 84:5165-5169.
[3]Zhao YX, Qi L, Chen F, et. al. Ultrasensitive and selective detection of nicotinamide adenine dinucleotide by target-triggered ligationrolling circle amplification[J]. Chem Commun, 2012, 48:3354-3356.
[4]Wen YQ, Xu Y, Mao X, et al. DNAzyme-based rolling-circle amplification DNA machine for ultrasensitive analysis of microRNA in Drosophila larva[J]. Anal Chem, 2012, 84:7664-7669.
[5]Taton TA, Mueie RC, Mirkin CA, et al. The DNA-mediated formation of supramolecular mono-and multilayered nanoparticle structures[J]J Am Chem Soc, 2000, 122:6305-6306.
[6]Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers[J]. Biosensors and Bioelectronics, 2005, 20:2424-2434.
[7]De-los-Santos-Alvarez N, Lobo-Castan MJ, Miranda-Oridieres AJ,et al. Aptamers as recognition elements for label-free analytical devices[J]. Trends in Analytical Chemistry, 2008, 27:437-446.
[8]Shen L, Chen Z, Li Y, et al. A chronocoulometric aptamer sensor for adenosine monophosp-hate[J]. Chemical Communications, 2007,21:2169-2171.
[9]Zhang SS, Xia JP, Li XM. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles[J]. Analytical Chemistry, 2008, 80(22):8382-8388.
[10]Tang SR, Tong P, Li H, et al. Ultrasensitive electrochemical detection of Pb2+based on rolling circle amplication and quantum dots tagging[J]. Biosensors and Bioelectronics, 2013, 42:608-611.
[11] Yang XH, Zhu JQ, Wang Q, et al. A label-free and sensitive supersandwich electrochemical biosensor for small molecule detection based on target-induced aptamer displacement[J]. Anal Methods,2012, 4:2221.
[12] Zhu Y, Chandra P, Shim YB. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine Au nanoparticle aptamer bioconjugate[J]. Anal Chem, 2013, 85:1058-1064.
[13] Chen JH, Zhang J, Guo Y, et al. An ultrasensitive electrochemical biosensor for detection of DNA species related to oral cancer based on nuclease-assisted target recycling and amplification of DNAzyme[J]. Chem Commun, 2011, 47:8004-8006.
[14] Bai LJ, Yuan R, Chai YQ, et al. Direct electrochemistry and electrocatalysis of aglucose oxidase-functionalized bioconjugate as a trace label for ultrasensitive detection of thrombin[J]. Chem Commun, 2012, 48:10972-10974.
[15]Liu XR, Li Y, Zheng JB, et al. Carbon nanotube-enhanced electrochemical aptasensor for the detection of thrombin[J]. Talanta, 2010, 81:1619-1624.
[16]Jiang LP, Yuan R, Chai YQ, et al. Aptamer-based highly sensitive electrochemical detection of thrombin via the amplification of graphene[J]. Analyst, 2012, 137:2415.
[17]Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin[J]. Journal of the American Chemical Society, 2004, 126(38):11768-11769.
[18]Duzgun A, Maroto A, Mairal T, et al. Solid-contact potentiometric aptasensor based on aptamer functionalized carbon nanotubes for the direct determination of proteins[J]. Analyst, 2010, 135:1037-1041.
[19]Jiang LP, Yuan R, Chai YQ, et al. An ultrasensitive electrochemical aptasensor for thrombin based on the triplex-amplification of hemin/ G-quadruplex horseradish peroxidase-mimicking DNAzyme and horseradish peroxidase decorated FeTe nanorods[J]. Analyst,2013, 138:1497-1503.
[20]Dong XY, Mi XN, Zhao WW, et al. CdS nanoparticles functionalized colloidal carbon particles:preparation, characterization and application for electrochemical detection of thrombin[J]. Biosens Bioelectron, 2011, 26:3654-3659.
[21]Zhao WA, Chiuman W, Brook MA, et al. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation[J]. Chem Bio Chem, 2007, 8:727-731.
[22]Xie XJ, Xu W, Liu XG. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification[J]. Accounts of Chenmical Research, 2011, 45(9):1511-1520.
[23]Cui L, Ke GL, Zhang WY, et al. A universal platform for sensitive and selective colorimetric DNA detection based on Exo III assisted signal amplification[J]. Biosens Bioelectron, 2011, 26:2796-2800.
[24]Tang LH, Liu Y, Ali MM, et al. Colorimetric and ultrasensitive bioassay based on a dual-amplication system using aptamer and DNAzyme[J]. Anal Chem, 2012, 84:4711- 4717.
[25]Waldeisen JR, Wang T, Ross BM, et al. Disassembly of a core satellite nanoassembled substrate for colorimetric biomolecular detection[J]. ACS Nano, 2011, 5(7):5383-5389.
[26]Wang Y, Yang F, Yang XR. Colorimetric biosensing of mercury(II)ion using unmodified gold nanoparticle probes and thrombinbinding aptamer[J]. Biosensors Bioelectronics, 2010, 25:1994-1998.
[27]Mazumdar D, Liu JW, Lu G, et al. Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle-DNAzyme conjugates[J]. Chem Commun, 2010, 46:1416-1418.
[28]Lin CY, Yu CJ, Lin YH, et al. Colorimetric sensing of silver(I)and mercury(II)ions based on an assembly of tween 20-stabilized gold nanoparticles[J]. Anal Chem, 2010, 82:6830-6837.
[29]Lin YH, Chen CE, Wang CY, et al. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Agcatechol interaction[J]. Chem Commun, 2011, 47:1181-1183.
[30]Liu DB, Wang Z, Jiang XY. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules[J]. Nanoscale, 2011, 3:1421-1433.
[31]Katiyar N, Selvakumar LS, Patra S, et al. Gold nanoparticles based colorimetric aptasensor for theophylline[J]. Anal Methods, 2013,5:653-659.
[32]Fu RZ, Li TH, Lee SS, et al. DNAzyme molecular beacon probes for target-induced signal-amplifying colorimetric detection of nucleic acids[J]. Anal Chem, 2011, 83:494-500.
[33]Li J, Fu HE, Wu LJ, et al. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe[J]. Anal Chem, 2012, 84:5309-5315.
[34]Jian JW, Huang CC. Colorimetric detection of DNA by modulation of thrombin activity on gold nanoparticles[J]. Chem Eur J, 2011,17:2374-2380.
[35]Yang C, Wang Y, Marty JL, Yang XR. Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator[J]. Biosens Bioelectron, 2011, 26:2724-2727.
[36]Wu YG, Zhan SS, Wang FZ, et al. Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III)in aqueous solution[J]. Chem Commun, 2012, 48:4459-4461.
[37] Mancuso M, Jiang L, Cesarman E, Erickson D. Multiplexed colorimetric detection of Kaposi’s sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles[J]. Nanoscale, 2013, 5:1678-1686.
[38] Liu XQ, Freeman R, Golub E, Willner I. Chemiluminescence and chemiluminescence resonance energy transfer(CRET)aptamer sensors using catalytic hemin/G-quadruplexes[J]. ACS Nano,2011, 5(9):7648-7655.
[39] Lee JS, Joung HA, Kim MG, Park CB. Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay[J]. ACS Nano, 2012, 6(4):2978-2983.
[40] Chen H, Li RB, Li HF, et al. Plasmon-assisted enhancement of the ultraweak chemiluminescence using Cu/Ni metal nanoparticles[J]. J Phys Chem C, 2012, 116:14796-14803.
[41] Huang Y, Zhao SL, Liu YM, et al. An amplified single-walled carbon nanotube-mediated chemiluminescence turn-on sensing platform for ultrasensitive DNA detection[J]. Chem Commun,2012, 48:9400-9402.
[42] Freeman R, Liu XQ, Willner I. Chemiluminescent and chemiluminescence resonance energy transfer(CRET)detection of DNA,metal ions, and aptamer substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots[J]. J Am Chem Soc,2011, 133:11597-11604.
[43] Huang Y, Zhao SL, Chen ZF, et al. An amplified chemiluminescence aptasensor based on bi-resonance energy transfer on gold nanoparticles and exonuclease III-catalyzed target recycling[J]. Chem Commun, 2012, 48:11877-11879.
[44] Luo M, Chen X, Zhou GH, et al. Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidasemimicking DNAzyme[J]. Chem Commun, 2012, 48:1126-1128.
[45] Qin GX, Zhao SL, Huang Y, et al. Magnetic bead-sensing-platformbased chemiluminescence resonance energy transfer and its immunoassay application[J]. Anal Chem, 2012, 84:2708 -2712.
[46] Li T, Wang EK, Dong SJ. Lead(II)-induced allosteric G-quadruplex DNA zyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+detection[J]. Anal Chem,2010, 82:1515-1520.
[47] Chen H, Li HF, Lin JM. Determination of ammonia in water basedon chemiluminescence resonance energy transfer between peroxymonocarbonate and branched NaYF4:Yb3+/Er3+nanoparticles[J]. Anal Chem, 2012, 84:8871-8879.
[48] Yu JH, Ge L, Huang JD, et al. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid[J]. Lab Chip, 2011, 11:1286-1291.
[49] Bi S, Zhang JL, Hao SY, et al. Exponential amplification for chemiluminescence resonance energy transfer detection of microrna in real samples based on a cross-catalyst strand-displacement network[J]. Anal Chem, 2011, 83:3696-3702.
[50] Freeman R, Girsh J, Jou AF, et al. Optical aptasensors for the analysis of the vascular endothelial growth factor(VEGF)[J]. Anal Chem, 2012, 84:6192-6198.
[51] Feng KJ, Kong RM, Wang H, et al. A universal amplified strategy for aptasensors:enhancing sensitivity through allosterytriggered enzymatic recycling amplification[J]. Biosensors and Bioelectronics, 2012, 38:121-125.
[52] Xue LY, Zhou XM, Xing D. Sensitive and homogeneous protein detection based on target-triggered aptamer hairpin switch and nicking enzyme assisted fluorescence signal amplification[J]. Anal Chem, 2012, 84:3507-3513.
[53] Zheng AX, Wang JR, Li J, et al. Nicking enzyme based homogeneous aptasensors for amplification detection of protein[J]. Chem Commun, 2012, 48:374-376.
[54] He Y, Lin Y, Tang HW, Pang DW. A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin[J]. Nanoscale, 2012, 4:2054-2059.
[55] Zhao XH, Ma QJ, Wu XX, Zhu X. Graphene oxide-based biosensor for sensitive fluorescence detection of DNA based on exonuclease III-aided signal amplification[J]. Analytica Chimica Acta, 2012,727:67-70.
[56] Xu LG, Zhu YY, Ma W, et al. Sensitive and specific DNA detection based on nicking endonuclease-assisted fluorescence resonance energy transfer amplification[J]. J Phys Chem C, 2011, 115:16315-16321.
[57] Zhao YX, Qi L, Yang WJ, et al. Amplified fluorescence detection of Pb2+using Pb2+- dependent DNAzyme combined with nicking enzyme-mediated enzymatic recycling amplification[J]. Chin J Anal Chem, 2012, 40(8):1236-1240.
[58] Sarkar S, Bose R, Jana S, et al. Doped semiconductor nanocrystals and organic dyes:an efficient and greener FRET system[J]. J Phys Chem Lett, 2010, 1:636-640.
[59] Tu YQ, Li W, Wu P, et al. Fluorescence quenching of graphene oxide integrating with the site-specific cleavage of the endonuclease for sensitive and selective microRNA detection[J]. Anal Chem,2013, 85:2536-2542.
[60] Shi Y, Huang WT, Luo HQ et al. A label-free DNA reduced graphene oxide-based fluorescent sensor for highly sensitive and selective detection of hemin[J]. Chem Commun, 2011, 47:4676-4678.
[61] He JL, Wu ZS, Zhou H, et al. Fluorescence aptameric sensor for strand displacement amplification detection of cocaine[J]. Anal Chem, 2010, 82:358-1364.
[62] Ma CP, Wang WS, Yang Q, et al. Cocaine detection via rolling circle amplification of short DNA strand separated by magnetic beads[J]. Biosensors and Bioelectronics, 2011, 26:3309-3312.
[63] Zhang YW, Sun XP. A novel fluorescent aptasensor for thrombin detection:using poly(m-phenylenediamine)rods as an effective sensing platform[J]. Chem Commun, 2011, 47:3927-3929.
[64] Zhu SY, Han S, Zhang L, et al. A novel fluorescent aptasensor based on single-walled carbon nanohorns[J]. Nanoscale, 2011, 3:4589-4592.
(责任编辑 狄艳红)
Advance Based on Signal Amplification Technology with Aptamer Biosensor
Xue Mingyue1,2Qin Yingfeng1Li Jian1Ye Gaojie1Zhan Zhihua2
(1. Key Laboratory for the Chemistry and Molecular Engineering of Medical Resources(Ministry of Education of China),College of Chemistry and Pharmaceutical Sciences,Guangxi Normal Univeisitv,Guilin 541004;2. Guilin Normal College,Guilin 541001)
Signal amplification technology has grown immensely in many fields because of its high accuracy and sensitivity at low concentrations. As a recognized molecule, aptamer has been used on many biosensors, and also has shown a good prospect in medical diagnosis,environmental monitoring and biological analysis. In recent years, biosensors with aptamer as recognized molecule has attracted more and more attention. The new research development of aptamer biosensors based on signal amplification technology in nearly three years was summarized especially.
signal amplification technology;aptamer;biosensor
2013-12-05
广西教育厅科研项目(2013YB285,2014JGA290),桂林师范高等专科学校项目(GLSZ201214)
薛茗月,女,博士研究生,研究方向:电分析及生化分析;E-mail:xmy818@163.com
湛志华,男,博士,副教授,研究方向:电分析化学;E-mail:zzhu302@sohu.com