魏述永
(西南大学荣昌校区动物医学系,重庆 402460)
葛根及葛根素脑保护作用的研究进展
魏述永
(西南大学荣昌校区动物医学系,重庆 402460)
葛根为我国传统的药食两用植物,葛根素为其主要药效成分之一。依据中医药理论,葛根具有解表退热、生津止渴的功效。现代药理学研究表明,葛根及葛根素均具有显著的脑保护活性,对阿尔茨海默病、帕金森病及脑卒中等模型动物或细胞产生保护作用,其机制与调节GSK-3β/Nrf2、PI3K/Akt、cAMP/PKA等神经细胞凋亡信号转导通路有关。提示葛根具备开发为抗神经系统疾病保健食品的潜在价值。
葛根;葛根素;脑保护;保健食品
葛根为我国传统药食两用植物,采挖自豆科植物野葛(Pueraria lobata(Willd.)Ohwi(Fabaceae))的干燥根,产地遍布我国南北各地,现已人工栽培。依据传统理论,葛根具有解表退热、生津止渴之功效,其药效成分主要为葛根素、大豆苷、大豆苷元等[1]。现代药理学研究发现,葛根及葛根素对阿尔茨海默病(Alzheimer’s disease,AD)、帕金森病(Parkinson’s disease,PD)及脑卒中等动物及细胞模型具有显著保护作用,给上述神经系统“疑难杂症”的治疗带来了福音。近年来,葛根及葛根素的各种制剂在国内已经被广泛应用于神经系统疾病的临床治疗,但由于临床实验设计及样本的局限性,其疗效仍存在争议[2-6],而作为传统的药食两用物品,葛根作为脑保护保健食材的开发尚未引起足够重视。本文综述了葛根及葛根素脑保护作用的研究进展,为相关保健食品的开发提供参考。
葛根含有丰富的活性成分,主要包括异黄酮及其苷元、三萜类、香豆素类等,其中异黄酮及其苷元为主要活性成分,主要以葛根素、大豆苷、大豆苷元为主,因产地、品种、采收季节和生长年限不同含量各异[7];三萜类包括以葛根皂醇A、B、C命名的新型齐墩果烷型皂角精醇、大豆皂醇、槐二醇、大豆苷醇等;香豆素类主要包括6,7-二甲氧基香豆素及葛根香豆素[7-8]。另外,因为含有挥发油成分,葛根具有轻微的甜味及酒味,挥发油中棕榈酸甲酯占42.2%,硬脂酸甲酯占5.2%,2-乙酸甲氧乙酯占4.8%,乙酰甲醇占4.5%,正丁酸占4.1%[9]。葛根中还含有大量的微量组分,包括氯化胆碱、乙酰胆碱、D-甘露醇、花生酸、棕榈酸、二丙酮胺及右旋松醇等[10-12]。
葛根素属异黄酮类化合物,自20世纪50年代被分离鉴定以来[1],其药理活性已被广泛研究。研究发现,葛根及葛根素具有脑保护、心血管保护、降糖、抗炎、抗骨质疏松、保肝等广泛的药理活性[13-14],其中,其脑保护机制与对抗AD、PD及脑卒中所引起的神经细胞凋亡有关。鉴于上述疾病临床治疗较为困难,故对它们的预防就显得尤为重要,然而其保健食品的开发在国内目前尚属空白。葛根作为传统的药食两用食材,具有显著的脑保护活性,因此其在脑保健食品开发上具有潜在价值。
2.1抗AD作用
AD是一种与年龄相关的神经退行性疾病,海马区神经元线粒体损伤及氧化应激所引起的三磷酸腺苷(adenosine triphosphate,ATP)合成障碍和细胞凋亡在AD的早期病变中起到重要作用[15-16],以认知和记忆功能不断衰退为特征,其治疗主要以保护神经细胞缓和病情为主[17-18]。
2.1.1动物实验
研究发现,葛根提取物对D-半乳糖诱导的AD小鼠学习记忆能力障碍具有改善作用,可显著提高模型动物自发性活动及学习、记忆能力,其机制与提高脑组织超氧化物歧化酶(superoxide dismutase,SOD)活性而减轻氧化应激损伤等有关[19]。另外,葛根素可改善去势雌性小鼠的学习与记忆能力,其机制为改善谷氨酸/γ-氨基丁酸(glutamic acid/gamma amino acid butyric acid,Glu/GABA)比率[20],改善海马神经元突触重构、增加突触后蛋白(postsynaptic protein,PSD)-95表达及天冬氨酸受体亚单位(nmda receptor 2b,NR2B)的磷酸化[21],而在全脑缺血-再灌注损伤大鼠模型中,葛根素改善学习记忆力的作用与上调B淋巴细胞瘤(B-cell lymphoma,Bcl)-2基因从而抑制细胞凋亡有关[22]。
2.1.2细胞实验
2.1.2.1β-淀粉样蛋白诱导的细胞凋亡
β-淀粉样蛋白(amyloid pepitide,Aβ)在AD的发病机制中起到重要作用,其沉积可导致神经元死亡[23]。葛根提取物及葛根素可通过降低凋亡蛋白酶(caspase)-9的活性、激活丝氨酸/苏氨酸激酶(serine/ threonine kinase,Akt)及增加Bcl-x1/Bcl-2相关死亡启动子(Bcl-x1/Bcl-2 related death promoter,Bad)的磷酸化而减少Aβ诱导的大鼠海马神经元的凋亡[24],也可以通过清除自由基及抑制脂质过氧化而减少原代培养大鼠海马神经元细胞的氧化应激,其机制为诱导糖原合成酶激酶-3β(GSK-3β)9位丝氨酸的磷酸化而抑制GSK-3β/ NF-E2相关因子2(NF-E2-related factor 2,Nrf2)信号通路[25],该作用可被GSK-3β抑制剂氯化锂阻断。进一步研究表明,葛根素可激活蛋白激酶B(protein kinase B,PKB)/Akt,其为GSK-3β上游的重要激酶,从而引起GSK-3β的抑制作用[26]。通过增加p-Akt、Bcl-2和p-Bad的表达,降低Bcl-2相关X蛋白(Bcl-2 associated X protein,Bax)表达及细胞色素C的释放,葛根素对Aβ诱导的PC12细胞凋亡产生保护作用,该作用可被磷脂酰肌醇3激酶(phosphatidyl inositol 3-kinase,PI3K)磷酸化作用抑制剂渥曼青霉素阻断,提示其机制与PI3K信号通路有关[27]。
2.1.2.2其他细胞模型
在过氧化氢(H2O2)诱导的PC12细胞模型中,葛根素可激活PI3K/Akt信号通路[28]。在活性氧(reactive oxygen species,ROS)超表达的线粒体转基因神经元杂交细胞模型中,葛根素可通过抑制Caspase-3、p38及Jun N末端激酶(jun N-terminal kinase,JNK)的活性并降低Bax/Bcl-2比率而减少线粒体氧化应激引起的细胞凋亡[29]。在原代培养海马神经元细胞氧糖剥夺模型中,葛根素可降低细胞凋亡及坏死数量,其机制为减少谷氨酰胺释放、细胞内Ca2+浓度及NO合成引起的氧化应激[30]。进一步研究证实,在原代培养大鼠海马神经元细胞中,葛根素对细胞内基础Ca2+浓度没有影响,但可通过雌激素受体增强KCl诱发的Ca2+释放,雌激素受体拮抗剂ICI 182780、他莫西芬,蛋白激酶A(proteinkinase A,PKA)拮抗剂H89等均可阻断该作用,提示其与环磷酸腺苷(cyclic adenosine monophosphate,cAMP)/PKA信号通路有关[31]。
2.2抗PD作用
PD以黑质多巴胺能神经元减少并退化成非多巴胺能神经元为特征[32],细胞凋亡是其重要的病理过程[33-34]。
2.2.1动物实验
在去势雌性大鼠黑质神经元中,葛根提取物及葛根素可提高细胞酪氨酸羟化酶(tyrosine hydroxylase,TH)阳性率并降低凋亡细胞数量,提示其保护作用与抗细胞凋亡有关[35]。在6-羟多巴胺(6-hydroxy dopamine,6-OHDA)诱导的大鼠黑质损伤模型中,腹腔注射葛根素(0.12 mg/(kg·d))10 d后可降低Bax水平,恢复多巴胺及其代谢物含量,提高细胞TH阳性率及神经胶质细胞源性神经营养因子(neurotrophic factor,NTF)水平,因此推测其神经细胞保护作用与抗凋亡及提高NTF水平有关[36]。
2.2.2细胞实验
在6-OHDA诱导的神经生长因子差异化的嗜铬细胞瘤PC12细胞模型中,葛根提取物及葛根素可抑制Caspase-8并部分抑制Caspase-3活性从而抑制细胞凋亡[37]。葛根素也可保护1-甲基-4-苯基碘化吡啶(1-methyl-4-phenyl iodide pyridine,MPP+)诱导的PC12细胞的凋亡,其机制为降低丝裂原活化蛋白激酶激酶(mitogen-activated protein kinase kinase,MKK)7、JNK、c-Jun的磷酸化及细胞色素C的水平进而抑制JNK信号通路[38]及线粒体依赖性Caspase级联反应[39]。在MPP+诱导的人神经母细胞瘤SH-SY5Y株凋亡模型中,葛根素可激活PI3K/Akt信号通路、抑制细胞核p53蓄积及伴随的Caspase-3依赖性细胞凋亡[40],减少泛素结合蛋白的蓄积、增加Bcl-2/Bax比率以调节泛素蛋白酶系统[41]。
2.3抗脑缺血再灌注损伤
脑缺血后常引起严重的组织损伤,其病理过程与兴奋性毒性、炎症反应、自由基释放等因素密切相关[42],再灌注后,随着ROS及NO的释放,脑组织损伤加重[43],因此,减少兴奋性氨基酸、炎症反应及自由基释放引起的氧化应激反应可对脑组织产生保护作用[44]。葛根及葛根素对缺血再灌注损伤的保护作用主要体现在上述三方面。
2.3.1减轻兴奋性毒性
葛根及葛根素对大脑中动脉栓塞模型(middle cerebral artery occlusion,MCAO)大鼠缺血再灌注损伤具有保护作用,其机制与减轻Glu过度释放引起的兴奋性毒性有关。造模前腹腔注射葛根素(100 mg/kg),缺血60 min后再灌注24 h,可降低纹状体Glu/GABA比率,并降低Glu诱导的海马神经元细胞的凋亡和坏死[45]。
2.3.2抗炎
大脑中动脉栓塞前10 min,腹腔注射葛根素(50 mg/kg)可降低缺血组织梗死区面积,缺氧诱导因子(hypoxia inducible factor,HIF)-1α、肿瘤坏死因子(tumor necrosis factor,TNF)-α表达,并抑制诱导型一氧化氮合酶(inducible nitric oxide synthases,iNOS)、中性粒细胞及Caspase-3活性,从而减轻炎症反应及细胞凋亡[46-47],也可通过降低MCAO大鼠脑组织白细胞介素(interleukin,IL)-1β水平而产生抗炎作用[48]。
2.3.3抗氧化应激
葛根提取物及葛根素可降低MCAO大鼠缺血组织丙二醛(malonaldehyde,MDA)、NO含量,增加超氧化物歧化酶(superoxide dismutase,SOD)[48]、促红细胞生成素(erythropoietin,EPO)[49]活性及突触素水平[48],改善局灶性脑缺血再灌注损伤大鼠热休克蛋白(heat shock protein,HSP)70含量并降低凋亡相关因子(factor associated suicide,Fas)水平[50]。葛根素也可以减轻新西兰A大白兔[51]和大鼠[6]短暂性脊髓缺血损伤,其机制可能与增加氧硫还原蛋白转录及抑制凋亡有关。
2.4其他脑保护作用
葛根素对Glu、天冬氨酸及红藻氨酸诱导的神经损伤具有保护作用[52],可降低酸中毒引起的海马神经元酸敏感离子通道电流[53],减轻背根神经节P2X3受体介导的偏头痛[54],抑制Ca2+内流及周期蛋白依赖性激酶(cyclin dependent kinase,Cdk)5活性而保护Glu诱导的神经丝轴突转运损害[55],通过糖基化修饰作用抑制脂多糖(lipopolysaccharide,LPS)诱导的小胶质细胞iNOS及伴随的NO、ROS表达[56],并具有促进神经生长作用[57]。
葛根在我国食用的历史悠久,并未发现其严重的不良反应,但随着葛根素特别是其注射剂在临床上的广泛使用,其引起的发热、过敏性休克、溶血、肝肾损害等不良反应日益引起广泛关注,也极大制约了该制剂的临床价值[58],而将葛根开发为脑保护保健食品,在有效利用其药理活性的同时,可以避免葛根素制剂的各种不良反应,可谓一举两得。
3.1对实验动物的毒性作用
动物实验表明,葛根的毒副作用较低。葛根醇提物5 g/(kg·d)(相当于葛根素500 mg/(kg·d))灌胃大鼠21 d,与正常对照组相比,肝、肾、胰腺及脾脏组织未见病变,肌酐、肌酐激酶、丙氨酸氨基转移酶(alanine aminotransferase,ALT)、天冬氨酸氨基转移酶(aspartic transaminase,AST)及γ-谷氨酰转移酶等血清生化指标未见异常[59]。葛根总黄酮肌内注射对大鼠的半数致死量(median lethal dose,LD50)为5.97 g/kg,葛根素静脉注射对小鼠的LD50为700~800 mg/kg[60]。大鼠肌内或静脉注射葛根素50 mg/(kg·d)持续50 d及犬肌内或静脉注射葛根素10 mg/(kg·d)持续30 d未引起重要组织器官形态及功能改变[5]。
3.2临床治疗中的毒副作用
口服500 mg葛根提取物(含葛根素19%,大豆苷4%)每天3次持续7 d,在治疗期间及其后4周内肝功能、血液学及尿液分析等生命体征无显著变化[61]。另有报道显示,持续给予100名患者葛根及丹参水提物(7∶3,m/m)3 g/d 24周,日常血液学及生化检验未见显著影响,8名患者(其中6名为安慰剂组,2名为治疗组)出现胸痛、坐骨神经痛、胃肠道出血等副作用[62]。在临床治疗中,葛根素注射剂可能出现发热、头痛、头晕、过敏性休克、皮疹、咽喉肿痛、溶血性贫血、肝肾损伤等副作用,其毒理学机制研究尚待深入进行[58]。
日本较早地将葛根的活性成分葛根黄素、葛根黄苷等类黄酮物质用作治疗心血管病的药物及加工为保健食品,如葛根口服液、葛根罐头、葛根饮料等,以满足特殊人群的需要,产品十分畅销,几乎成为老人和产妇必备的食品[63]。美国在葛根素的提取、药效方面研究较多,尤其注重葛根黄酮的抗氧化性和雌激素效应的研究[64],致力于开发出抗衰老、调节女性更年期不适症的保健食品,生产出葛根与咖啡、芦笋、芦荟配制而成的饮料,并有葛根冻罐头、葛根混合晶、葛根口服液、葛粉红肠等新产品,深受消费者喜爱[63]。
虽然我国为葛根资源产地,但大多数地区对于葛根的生产加工仍处于较粗放状态,如简单加工成葛根粉、葛根粒等,经济效益较低。近10a来,随着人们对保健食品的日益重视,国内葛根保健食品的开发也得以较快发展,目前已经研制出防治高血压、高血脂、冠心病、糖尿病等的葛根变性淀粉、葛根挂面、葛根果晶、葛根软糖、葛根饮料、葛根低聚糖、葛根麦芽糊精、葛奶、葛根保健糊等初级和深加工产品[63],但尚少见葛根脑保健食品的相关报道。
葛根用于卒中等脑部疾病的治疗在我国已有1 000多年的历史,如唐代《千金方》中所载“独活汤”用于治疗卒中、痹症。现代药理学研究也表明,葛根及葛根素具有显著的神经保护活性,其机制与调节PKB/Akt、GSK-3β/Nrf2[25-26]、PI3K/Akt[27-28,40]、JNK[29,38]、cAMP/PKA[31]等细胞凋亡信号转导通路有关。鉴于脑部疾病如AD、PD、卒中等治疗难度极大、疗效欠佳,加强疾病预防就显得尤为重要,因而相关保健食品的开发前景巨大。
虽然目前葛根保健食品的种类众多,但尚少见脑保护相关的保健食品,且葛根保健食品的开发仍存在诸多问题,如:1)食品的保健功能尚无客观、准确的评价标准,相关产品的质量良莠不齐,影响了其市场认可度。2)产品的保健功能界定不清或盲目扩大,缺乏针对各种疾病特点的特色产品的开发。3)产品生产中,缺乏针对各种成分特点的工艺设计,缺乏有效成分含量的严格标准。因此葛根保健食品特别是脑保健食品的开发特别是质量标准的制定与完善仍需要深入研究。
[1] SHIBATA S, MURAKAMI T, NISHKAWA Y, et al. The constituents of Pueraria root[J]. Chemical and Pharmaceutical Bulletin, 1959, 79∶ 134.
[2] TAN Yan, LIU Ming, WU Bo. Puerarin for acute ischaemic stroke[DB/OL]. Cochrane Database of Systematic Reviews, 2008(1)∶CD004955. doi∶ 10.1002/14651858.CD004955.pub2.
[3] PRASAIN J K, CARLSON S H, WYSS J M. Flavonoids and agerelated disease∶ risk, benefits and critical windows[J]. Maturitas, 2010, 66(2)∶ 163-171.
[4] SONG Juxian, SZE S C W, NG T B, et al. Anti-Parkinsonian drug discovery from herbal medicines∶ what have we got from neurotoxic models?[J]. Journal of Ethnopharmacology, 2012, 139(3)∶ 698-711.
[5] WONG K H, LI G Q, LI K M, et al. Kudzu root∶ traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases[J]. Journal of Ethnopharmacology, 2011, 134(3)∶ 584-607.
[6] TIAN Feng, XU Lihui, ZHAO Wei, et al. The optimal therapeutic timing and mechanism of puerarin treatment of spinal cord ischemiareperfusion injury in rats[J]. Journal of Ethnopharmacology, 2011, 134(3)∶ 892-896.
[7] PRICE K R, FENWICK G R. Naturally occurring oestrogens in foods-a review[J]. Food Additive s and Contaminants, 1985, 2(2)∶ 73-106.
[8] ZHOU Yanxi, ZHANG Hong, PENG Cheng. Puerarin∶ a review of pharmacological effects[J]. Phytotherapy Research, 2014, 28(7)∶ 961-975.
[9] ZHANG Zhen, LAM T N, ZUO Zhong. Radix Puerariae∶ an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use[J]. The Journal of Clinical Pharmacology, 2013, 53(8)∶787-811.
[10] LIN C C, WU C I, SHEU S J. Determination of 12 pueraria components by high-performance liquid chromatography-mass spectrometry[J]. Journal of Separation Science, 2005, 28(14)∶ 1785-1795.
[11] WANG Y Z, FENG W S, SHI R B, et al. A new chemical component of Pueraria lobata (Willd.) Ohwi[J]. Acta Pharmaceutical Sinica, 2007, 42(9)∶ 964-967.
[12] NAKAMOTO H, MIYAMURA S, INADA K, et al. The study of the aqueous extract of Puerariae radix. I. The preparation and the components of the active extract[J]. Yakugaku Zasshi, 1975, 95(9)∶1123-1127.
[13] MAJI A K, PANDIT S, BANERJI P, et al. Pueraria tuberosa∶ a review on its phytochemical and therapeutic potential[J]. Natural Products Research, 2014, 28(23)∶ 2111-2127.
[14] WEI Shuyong, CHEN Yi, XU Xiaoyu. Progress on the pharmacological research of puerarin∶ a review[J]. Chinese Journal of Natural Medicine, 2014, 12(6)∶ 407-414.
[15] HAUPTMANN S, KEIL U, SCHERPING I, et al. Mitochondrial dysfunction in sporadic and genetic Alzheimer’s disease[J]. Experimental Gerontology, 2006, 41(7)∶ 668-673.
[16] MOREIRA P I, CARVALHO C, ZHU X, et al. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology[J]. Biochimica et Biophysica Acta, 2010, 1802(1)∶ 2-10.
[17] MOHAJERI M H, LEUBA G. Prevention of age-associated dementia[J]. Brain Research Bulletin, 2009, 80(4/5)∶ 315-325.
[18] SAVIOZ A, LEUBA G, VALLET P G, et al. Contribution of neural networks to Alzheimer disease’s progression[J]. Brain Research Bulletin, 2009, 80(4/5)∶ 309-314.
[19] XU Xiaohong, ZHAO Tieqiao. Effects of puerarin on D-galactoseinduced memory deficits in mice[J]. Acta Pharmacologica Sinica, 2002, 23(7)∶ 587-590.
[20] XU Xiaohong, HU Yanyue, RUAN Qin. Effects of puerarin on learning-memory and amino acid transmitters of brain in ovariectomized mice[J]. Planta Medica, 2004, 70(7)∶ 627-631.
[21] XU Xiaohong, ZHANG Zigui. Effects of puerarin on synaptic structural modification in hippocampus of ovariectomized mice[J]. Planta Medica, 2007, 73(10)∶ 1047-1053.
[22] WU Haiqin, GUO Hena, WANG Huqing, et al. Protective effects and mechanism of puerarin on learning-memory disorder after global cerebral ischemia-reperfusion injury in rats[J]. Chinese Journal of Integrative Medicine, 2009, 15(1)∶ 54-59.
[23] PARK H J, KIM S S, KANG S, et al. Intracellular Abeta and C99 aggregates induce mitochondria-dependent cell death in human neuroglioma H4 cells through recruitment of the 20S proteasome subunits[J]. Brain Ressearch, 2009, 1273∶ 1-8.
[24] LI Jiaming, WANG Gang, LIU Jicheng, et al. Puerarin attenuates amyloid-beta-induced cognitive impairment through suppression of apoptosis in rat hippocampus in vivo[J]. European Journal of Pharmacology, 2010, 649(1/3)∶ 195-201.
[25] ZOU Y, HONG B, FAN L, et al. Protective effect of puerarin against beta-amyloid-induced oxidative stress in neuronal cultures from rat hippocampus∶ involvement of the GSK-3β/Nrf2 signaling pathway[J]. Free Radical Research, 2013, 47(1)∶ 55-63.
[26] LIN F, XIE B, CAI F, et al. Protective effect of puerarin on β-amyloid-induced neurotoxicity in rat hippocampal neurons[J]. Arzneimittelforschung, 2012, 62(4)∶ 187-193.
[27] XING Guihua, DONG Miaoxian, LI Xiaoming, et al. Neuroprotective effects of puerarin against beta-amyloid-induced neurotoxicity in PC12cells via a PI3K-dependent signaling pathway[J]. Brain Research Bulletin, 2011, 85(3/4)∶ 212-218.
[28] ZHANG Qin, HUANG Weidong, L☒ Xueying, et al. Puerarin protects differentiated PC12 cells from H2O2-induced apoptosis through the PI3K/Akt signalling pathway[J]. Cell Biology International, 2012, 36(5)∶ 419-426.
[29] ZHANG Haiying, LIU Yiheng, LAO Meili, et al. Puerarin protects Alzheimer’s disease neuronal cybrids from oxidant-stress induced apoptosis by inhibiting pro-death signaling pathways[J]. Experimental Gerontology, 2011, 46(1)∶ 30-37.
[30] XU Xiaohong, ZHENG Xiaoxiang. Potential involvement of calcium and nitric oxide in protective effects of puerarin on oxygenglucose deprivation in cultured hippocampal neurons[J]. Journal of Ethnopharmacology, 2007, 113(3)∶ 421-426.
[31] LIN Fankai, XIN Yan, WANG Jianghua, et al. Puerarin facilitates Ca2+-induced Ca2+release triggered by KCl-depolarization in primary cultured rat hippocampal neurons[J]. European Journal of Pharmacology, 2007, 570(1/3)∶ 43-49.
[32] LOU J S. Physical and mental fatigue in Parkinson’s disease∶epidemiology, pathophysiology and treatment[J]. Drugs Aging, 2009, 26(3)∶ 195-208.
[33] MEISSNER W G, FRASIER M, GASSER T, et al. Priorities in Parkinson’s disease research[J]. Natural Reviews, Drug Discovery, 2011, 10(5)∶ 377-393.
[34] LI X L, CHENG W D, LI J, et al. Protective effect of estrogen on apoptosis in a cell culture model of Parkinson’s disease[J]. Clinical and Investigative Medicine, 2008, 31(5)∶ E258-264.
[35] LI Xueli, SUN Shenggang, TONG Etang. Experimental study on the protective effect of puerarin to Parkinson disease[J]. Journal of Huazhong University of Science and Technology Medical Science, 2003, 23(2)∶ 148-150.
[36] ZHU Guoqi, WANG Xuncui, CHEN Yuefa, et al. Puerarin protects dopaminergic neurons against 6-hydroxydopamine neurotoxicity via inhibiting apoptosis and upregulating glial cell line-derived neurotrophic factor in a rat model of Parkinson’s disease[J]. Planta Medica, 2010, 76(16)∶ 1820-1826.
[37] LIN C, LIN R D, CHEN S T, et al. Neurocytoprotective effects of the bioactive constituents of Pueraria thomsonii in 6-hydroxydopamine (6-OHDA)-treated nerve growth factor (NGF)-differentiated PC12 cells[J]. Phytochemistry, 2010, 71(17/18)∶ 2147-2156.
[38] WANG Gang, LI Zhou, ZHANG Yingbo, et al. Implication of the c-Jun-NH2-terminal kinase pathway in the neuroprotective effect of puerarin against 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis in PC-12 cells[J]. Neuroscience Letters, 2011, 487(1)∶ 88-93.
[39] JIANG Bo, BAO Yongming, LI Zhigang, et al. Protection by puerarin against MPP+-induced neurotoxicity in PC12 cells mediated by inhibiting mitochondrial dysfunction and caspase-3-like activation[J]. Neuroscience Research, 2005, 53(2)∶ 183-188.
[40] ZHU Guoqi, WANG Xuncui, WU Shengbing, et al. Involvement of activation of PI3K/Akt pathway in the protective effects of puerarin against death[J]. Neurochemistry International, 2012, 60(4)∶ 400-408.
[41] CHENG Yuefa, ZHU Guoqi, WANG Mei, et al. Involvement of ubiquitin proteasome system in protective mechanisms of Puerarin to MPP+-elicited apoptosis[J]. Neuroscience Research, 2009, 63(1)∶52-58.
[42] KURODA S, SIESJ☒ B K. Reperfusion damage following focal ischemia∶ pathophysiology and therapeutic windows[J]. Clinical Neuroscience, 1997, 4(4)∶199-212.
[43] IADECOLA C, ZHANG F, CASEY R, et al. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia[J]. Stroke, 1996, 27(8)∶1373-1380.
[44] HSIAO G, LEE J J, CHEN Y C, et al. Neuroprotective effects of PMC, a potent alpha-tocopherol derivative, in brain ischemia-reperfusion∶reduced neutrophil activation and anti-oxidant actions[J]. Biochemical Pharmacology, 2007, 73(5)∶ 682-693.
[45] XU Xiaohong, ZHENG Xiaoxiang, ZHOU Qiong, et al. Inhibition of excitatory amino acid efflux contributes to protective effects of puerarin against cerebral ischemia in rats[J]. Biomedical and Environmental Sciences, 2007, 20(4)∶ 336-342.
[46] CHANG Yi, HSIEH C Y, PENG Zida, et al. Neuroprotective mechanisms of puerarin in middle cerebral artery occlusion-induced brain infarction in rats[J]. Journal of Biomedical Science, 2009, 16(1)∶9-22.
[47] XU Xiaohong, ZHANG Shaomin, ZHANG Lei, et al. The Neuroprotection of puerarin against cerebral ischemia is associated with the prevention of apoptosis in rats[J]. Planta Medica, 2005, 71(7)∶585-591.
[48] WAN Haitong, ZHU Huiyuan, TIAN Mei, et al. Protective effect of chuanxiongzine-puerarin in a rat model of transient middle cerebral artery occlusion-induced focal cerebral ischemia[J]. Nuclear Medicine Communications, 2008, 29(12)∶ 1113-1122.
[49] GAO Li, JI Xunming, SONG Juexian, et al. Puerarin protects against ischemic brain injury in a rat model of transient focal ischemia[J]. Neurological Research, 2009, 31(4)∶ 402-406.
[50] PAN Hongping, LI Gao. Protecting mechanism of puerarin on the brain neurocyte of rat in acute local ischemia brain injury and local cerebral ischemia-reperfusion injury[J]. Yakugaku Zasshi, 2008, 128(11)∶ 1689-1698.
[51] SANG Hanfei, MEI Qibing, XU Lixian, et al. Effect of puerarin on neural function and histopathological damages after transient spinal cord ischemia in rabbits[J]. Chinese Journal of Traumatology, 2004, 7(3)∶ 143-147.
[52] DONG Liping, WANG Tianyou. Effects of puerarin against glutamate excitotoxicity on cultured mouse cerebral cortical neurons[J]. Acta Pharmacologica Sinica, 1998, 19(4)∶ 339-342.
[53] GU Ling, YANG Yi, SUN Yiguo, et al. Puerarin inhibits acid-sensing ion channels and protects against neuron death induced by acidosis[J]. Planta Medica, 2010, 76(6)∶ 583-588.
[54] XU Changshui, XU Wenyuan, XU Hong, et al. Role of puerarin in the signalling of neuropathic pain mediated by P2X3 receptor of dorsal root ganglion neurons[J]. Brain Research Bulletin, 2012, 87(1)∶ 37-43.
[55] ZHOU Jie, WANG Hongxing, XIONG Yufang, et al. Puerarin attenuates glutamate-induced neurofilament axonal transport impairment[J]. Journal of Ethnopharmacology, 2010, 132(1)∶ 150-156.
[56] ZHENG Gaoming, YU Chao, YANG Zhu. Puerarin suppresses production of nitric oxide and inducible nitric oxide synthase in lipopolysaccharide-induced N9 microglial cells through regulating MAPK phosphorylation, O-GlcNAcylation and NF-κB translocation[J]. International Journal of Oncology, 2012, 40(5)∶1610-1618.
[57] HSIANG S W, LEE H C, TSAI F J, et al. Puerarin accelerates peripheral nerve regeneration[J]. American Journal of Chinese Medicine, 2011, 39(6)∶ 1207-1217.
[58] 许丽佳, 刘婧, 邹亮. 葛根素注射剂的安全性研究进展[J]. 成都大学学报∶ 自然科学版, 2014, 33(3)∶ 208-210.
[59] BEBREVSKA L, FOUBERT K, HERMANS N, et al. in vivo antioxidative activity of a quantified Pueraria lobata root extract[J]. Journal of Ethnopharmacology, 2010, 127(1)∶ 112-117.
[60] 王庆端, 江金花, 孙文欣, 等. 葛根总黄酮的急性毒性及长期毒性实验[J]. 河南医科大学学报, 1999, 34(2)∶ 48-50.
[61] LUKAS S E, PENETAR D, BERKO J, et al. An extract of the Chinese herbal root kudzu reduces alcohol drinking by heavy drinkers in a naturalistic setting[J]. Alcoholism Clinical and Experimental Research, 2005, 29(5)∶756-762.
[62] TAM W Y, CHOOK P, QIAO M, et al. The efficacy and tolerability of adjunctive alternative herbal medicine (Salvia miltiorrhiza and Pueraria lobata) on vascular function and structure in coronary patients[J]. The Journal of Alternative and Complementary Medicine, 2009, 15(4)∶ 415-421.
[63] 唐春红, 陈琪. 国内外葛根营养保健功能的研究与开发利用[J]. 中国食品添加剂, 2002(6)∶ 56-58.
[64] BOUE S M, WIESE T E, NEHLS S. Evaluation of the estrogenic effects of legume extracts containing phytoestrogens[J]. Journal of Agricultural and Food Chemistry, 2003, 51(8)∶ 2193-2199.
Progress in Cerebral Protection of Pueraria lobata (Willd.) Ohwi (Fabaceae) and Puerarin
WEI Shuyong
(
Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, China)
Pueraria lobata(Willd.) Ohwi (Fabaceae), a traditional edible and medicinal plant in China, is used in in traditional Chinese medicine. Puerarin is one of its most important and effective components. According to the traditional Chinese medicinal theory, the roots ofPueraria lobata(Willd.) Ohwi (Fabaceae) have many functions such as relieving exterior syndrome, reducing fervescence, promoting the secretion of saliva or body fluid, and quenching thirst. Modern pharmacological research suggest that bothPueraria lobata(Willd.) Ohwi (Fabaceae) and puerarin exert cerebral protections in animal or cell models of Alzheimer’s disease, Parkinson’s disease and stroke, and the mechanisms involved may be associated with regulating the GSK-3β/Nrf2, PI3K/Akt and cAMP/PKA apoptosis signal pathways. These results indicate thatPueraria lobata(Willd.) Ohwi (Fabaceae) has the potential to be developed into health foods against nervous system diseases.
Pueraria lobata(Willd.) Ohwi (Fabaceae); puerarin; cerebral protection; health food
R285.5
1002-6630(2015)17-0259-05
10.7506/spkx1002-6630-201517048
2014-11-22
国家自然科学基金青年科学基金项目(31402237);重庆市基础与前沿研究计划项目(cstc2014jcyjA80023);中央高校基本科研业务费专项资金项目(XDJK2014C058)
魏述永(1980—),男,讲师,博士,研究方向为中药药理与新药研发。E-mail:shuyongwei013@163.com