橡胶热再生混合料低温性能与细观特征研究

2015-04-02 17:34汪海年等
湖南大学学报·自然科学版 2014年11期
关键词:沥青路面

摘要:以橡胶沥青再生混合料为研究对象,对冻融前后的小梁试件分别进行低温弯曲试验,研究不同胶粉掺量6.4%,9.2%和14.1%、不同胶粉细度20目,40目和80目和不同RAP掺量25%,35%和50%条件下的橡胶热再生沥青混合料的低温性能.基于工业CT无损检测技术,对冻融前后的橡胶热再生混合料试件分别进行扫描,并定量表征冻融前后试件体积指标的变化.研究结果表明:RAP掺量为25%,胶粉细度为80目,胶粉掺量为9.2%的橡胶热再生沥青混合料冻融后的低温性能下降幅度最小;相较于基质沥青热再生混合料,橡胶沥青热再生沥青混合料具有更好的耐久性及低温性能;通过对比工业CT扫描结果发现,冻融后的橡胶热再生沥青混合料试件闭口空隙率增大了20.3%,且在0~25 mm3体积范围内的空隙数量减少了13.8%,在25~50 mm3体积范围内的空隙数量则增加了62.9%.

关键词:沥青路面;再生沥青混合料;冻融循环;橡胶沥青;CT 扫描

中图分类号:U416.26 文献标识码:A

低温条件下的沥青路面破坏往往伴随着冻融过程,从而加速了沥青路面的裂缝产生.橡胶热再生沥青混合料就是将橡胶沥青与热再生技术相结合,从而在一定程度上增强沥青混合料的低温柔韧性,减少冻融现象,并具有环保作用.黄冲1通过室内试验对胶粉热再生沥青混合料的低温性能进行评价后发现,胶粉对于热再生沥青混合料的低温性能具有促进作用.郭朝阳2在常温及低温条件下研究了废胶粉在沥青中的改性机理,其结果表明,改性沥青中未溶解的胶粉颗粒可提高其低温抗裂性能并增强沥青的弹性恢复性能.Widyatmoko3采用力学经验法对RAP掺量分别为10%, 30%及50%时6种类型再生沥青混合料进行实验评估.新沥青的针入度为60~80,并未掺加再生剂.研究结果表明:再生沥青混合料与传统新拌沥青混合料具有相当的路用性能.Jeong4采用动态剪切试验DSR与色谱凝胶分析GPC方法对7种拌合反应时间、3种拌合温度、4种胶粉掺量的橡胶粉与沥青间的相互反应进行室内试验,研究表明,反应时间与反应温度对橡胶沥青的性能影响最为显著,胶粉掺量对橡胶沥青的流变参数G*与sinδ有着显著影响.由此可见,在再生混合料中使用橡胶沥青,已经得到日益广泛地研究与应用.然而,对于经冻融过程的橡胶热再生沥青混合料低温性能的研究则鲜有报道.

湖南大学学报自然科学版2014年

第11期汪海年等:橡胶热再生混合料低温性能与细观特征研究

沥青混合料自身材料特性及其内部细观结构特征对其宏观力学行为起着关键作用,同时对沥青混合料的低温抗裂性能也有着非常重要的影响5.纵观现行的众多沥青混合料低温性能评价方法,仍多限于表象法的室内试验,同时沥青混合料内部结构特征与其宏观力学性能之间的关系也较少涉及,且缺乏沥青混合料材料性能的细观特征描述,从而导致了统计指标诸如沥青用量、空隙率等相同而各试件力学性能有较大差异的情况6.

鉴于此,本研究对冻融前后的小梁试件分别进行低温弯曲试验,研究不同胶粉掺量6.4%,9.2%和14.1%、不同胶粉细度20目,40目和80目和不同RAP掺量25%,35%和50%条件下的橡胶热再生沥青混合料的低温性能.基于工业CT无损扫描技术,对冻融前后的试件分别进行扫描,并根据处理后的扫描图像来定量描述冻融前后试件体积指标的变化,从而更好地解释了橡胶热再生沥青混合料的低温抗裂机理,促进了橡胶热再生沥青材料配合比设计方法从模糊经验到理论实际的转化.

1原材料的技术性能

1.1RAP料

本研究所采用的RAP料来自于陕西某高速公路试验段的铣刨旧料,其中铣刨深度为4 cm左右,且尽量保证所取旧料为路面的上面层7.采用离心抽提法得到的旧沥青技术性质如表1所示.

1.3橡胶沥青

本研究采用湿法工艺制备橡胶沥青,以SK90#基质沥青作为调和沥青,改性温度定在180~200 ℃之间,改性时间为60 min.不同胶粉掺量的橡胶沥青性能如表5所示.

由此可知,胶粉的加入使基质沥青的高低温性能和弹性恢复性能都有了不同程度的改善8.

2低温性能研究

2.1试验方法

本文以橡胶沥青作为热再生沥青混合料的调和沥青,采用AC16级配,以最大弯拉应变作为控制指标,采用小梁低温弯曲试验研究不同胶粉掺量6.4%,9.2%和14.1%、不同胶粉细度20目,40目和80目和不同RAP掺量25%,35%和50%条件下经冻融过程的橡胶热再生沥青混合料的低温性能,并确定最佳的RAP掺量、胶粉掺量和胶粉细度.在试验过程中,需要制备两组平行试件,其中一组为经过16 h、18 ℃控温的冻融试件,另一组为未冻融的试件.将冻融试件在常温水中保温12 h后与未冻融试件分别进行小梁低温弯曲试验,并将结果进行对比分析

2.2不同胶粉掺量的橡胶热再生沥青混合料冻融

前后对比

本文选取胶粉掺量分别为6.4%,9.2%和14.1%的橡胶热再生沥青混合料来研究不同胶粉掺量的橡胶热再生沥青混合料冻融前后的低温性能.其中,RAP掺量为25%,胶粉细度为80目.此外,本试验还增加了一组RAP掺量为25%的基质沥青热再生沥青混合料以作对比.如图1所示,横坐标胶粉掺量为0则代表RAP掺量为25%的基质沥青热再生沥青混合料.下降比率则表示冻融后的最大弯拉应变相对于冻融前的下降程度下同.由图1可知,胶粉掺量为14.1%的橡胶沥青冻融后的低温性能下降幅度最大,为32.7%;而胶粉掺量为9.2%的橡胶沥青冻融后的低温性能下降幅度最小,为10.5%;相对于基质沥青热再生混合料来说,胶粉掺量为9.2%的橡胶热再生沥青混合料具有更好的抗低温性能.因此,考虑到实际路面受低温影响时往往伴随冻融的现象,结合以上实验结果可知,胶粉掺量并不一定是越大越好.其原因是沥青中的胶粉达到饱和后,多余的橡胶粒会聚集成团状,且胶粉团的内部基本没有粘结力,胶粉团的自身溶胀能力也随着温度的降低而降低,导致橡胶沥青的延性受阻,从而会对橡胶沥青的低温性能造成不利影响10-11.这个现象也说明了橡胶沥青在某些条件下会存在一个最佳胶粉掺量的问题,如本研究中所得出的橡胶热再生沥青混合料的最佳胶粉掺量为9.2%.

胶粉掺量%

2.3不同胶粉细度的橡胶热再生沥青混合料冻融

前后对比

本文选取胶粉细度分别为20目,40目和80目的橡胶热再生沥青混合料来研究不同胶粉细度的橡胶热再生沥青混合料冻融前后的低温性能.其中,RAP掺量为25%,胶粉掺量为9.2%.同样,本试验增加了一组RAP掺量为25%的基质沥青热再生沥青混合料以作对比.结果如图2所示,横坐标胶粉细度为0则代表RAP掺量为25%的基质沥青热再生混合料.由图2可知,掺40目胶粉的橡胶沥青冻融后的低温性能下降幅度最大,为18.7%;而掺80目胶粉的橡胶沥青冻融后的低温性能下降幅度最小,为10.4%;相对于基质沥青热再生混合料来说,掺80目胶粉的橡胶热再生沥青混合料具有更好的抗低温性能.

胶粉细度目

2.4不同RAP掺量的橡胶热再生沥青混合料冻融

前后对比

本文选取RAP掺量分别为25%,35%和50%的橡胶热再生沥青混合料来研究不同RAP掺量的橡胶热再生沥青混合料冻融前后的低温性能.其中,胶粉细度为80目,胶粉掺量为9.2%.此外,本试验以同样RAP掺量的基质沥青热再生混合料和橡胶热再生沥青混合料作对比试验.结果如图3和图4所示.

在图3中,横坐标RAP掺量为0%代表的是无RAP料的采用新集料基质沥青混合料.由图3可知,随着RAP掺量的增大,基质沥青热再生混合料冻融后的抗低温性能下降幅度逐渐增大.在图4中,横坐标RAP掺量为0%代表的是无RAP料的采用新集料橡胶沥青混合料.由图4可知,当RAP掺量为35%时,橡胶热再生沥青混合料冻融后的抗低温性能下降比率最大.

为了作一个定量的对比,将不同RAP掺量的基质沥青热再生混合料和橡胶热再生沥青混合料冻融后的抗低温性能下降比率进行汇总,如图5所示.

由图5可知,橡胶沥青热再生混合料相对基质沥青热再生沥青混合料有更优越的抗低温性能.尤其考虑到路面经受低温影响时往往伴随着冻融的现象,橡胶沥青热再生混合料经冻融后的低温性能下降较小,且相对基质沥青热再生混合料来说具有更好的耐久性及抗低温性能11.

RAP掺量%

3细观特征研究

基于工业CT无损扫描技术,对冻融前后的试件分别进行扫描,并以闭口空隙为控制指标来定量描述冻融前后试件的细观结构特征,从而更好地表征橡胶热再生沥青混合料的低温性能12.

3.1实验条件

根据以上的低温弯曲试验结果,确定最佳RAP掺量为25%,胶粉细度80目,胶粉掺量为9.2%,并在室内成型标准马歇尔试件,相关材料技术指标同上.采用YXLON Compact225型工业CT对成型后的标准马歇尔试件进行扫描,其中:扫描电压为200 kV,扫描电流为0.6 mA,投影数为1 080,积分时间为700 ms,扫描时间为16 min.

3.2结果分析

对比冻融前后的截面图,可发现冻融后的空隙率明显变大.为了做一个定量分析,本文采用该工业CT的专用图像分析软件VG Studio MAX以下简称VG对其闭口空隙率进行计算.由于VG软件包含CT扫描的所有原始数据,故其对闭口空隙率的计算并不影响其最终结果.以每25 mm3为一个体积区间,对VG软件的空隙率计算结果进行统计分析,可得冻融前后试件空隙体积范围分布如图7所示.由图7可知,冻融前的试件空隙主要分布在0~75 mm3范围内,采用VG软件计算其闭口空隙率为2.9%;冻融后的试件空隙体积也主要分布在0~75 mm3范围内,但是相对于冻融前的空隙分布,在0~25 mm3体积范围内的空隙数量减少了13.8%,而在25~50 mm3体积范围内的空隙数量则增加了62.9%. 再对冻融后的试件进行闭口空隙率计算,得其空隙率为3.49%,比冻融前增大了20.3%.

4结论

1 相对于基质沥青热再生混合料来说,胶粉掺量为9.2%,胶粉细度为80目,RAP掺量为25%的橡胶热再生沥青混合料具有更好地抗低温性能.尤其考虑到路面经受低温影响时往往伴随着冻融的现象,橡胶热再生沥青混合料经过冻融后的低温性能下降较小,相对基质沥青热再生混合料有更好地耐久性与低温抗裂性能.

2 基于工业CT无损扫描技术,分别对橡胶热再生沥青混合料冻融前后的试件进行了扫描,通过对比发现,冻融后试件的闭口空隙率增大了20.3%,且在0~25 mm3体积范围内的空隙数量减少了13.8%,在25~50 mm3体积范围内的空隙数量则增加了62.9%.

参考文献

1黄冲,黄绍龙,黄修林,等.废橡胶粉在再生沥青混合料中的性 能研究J.武汉理工大学学报,20094:125-128.

HUANG Chong, HUANG Shaolong, HUANG Xiulin, et al.Study on performance of rehabilitation asphalt mixture by the addition of waste rubber powder J.Journal of Wuhan University of Technology, 20094: 125-128. In Chinese

2郭朝阳.废胎胶粉橡胶沥青应用技术研究D.重庆:重庆交通大学土木建筑学院,2008:40-60.

GUO Chaoyang. Study on the application technology of ground tire asphalt rubberD.Chongqing: Civil and Architecture School, Chongqing Jiaotong University,2008:40-60. In Chinese

3WIDYATMOKO. Mechanisticempirical mixture design for hot mix asphalt pavement recyclingJ.Construction and Building Materials,2009,222:77-87.

4KIM W. Interaction effects of crumb rubber modified asphalt bindersJ. Construction and Building Materials, 2010, 245: 824-831.

5CARO S, MASAD E, BHASIN A, et al. Micromechanical modeling of the influence of material properties on moistureinduced damage in asphalt mixtureJ.Construction and Building Materials,2010,24: 1184-1192.

6ADHIKARI S, YOU Z. 3D discrete element models of the hollow cylindrical asphalt concrete specimens subject to the internal pressure J.International Journal of Pavement Engin eering, 2010, 115: 429-439.

7薛彦卿,黄晓明. 厂拌热再生沥青混合料在含LSPM路面结构中的应用及评价J.湖南大学学报:自然科学版,2011,3810:26-33.

XUE Yanqing, HUANG Xiaoming. Application and evaluation of asphalt mixture by central plant hot recycling in pavement structure with LSPM J.Journal of Hunan University: Natural Sciences, 2011,3810:26-33.In Chinese

8马晓燕.橡胶沥青及橡胶沥青混合料性能影响因素研究D.西安:长安大学材料科学与工程学院,2012: 50-58.

MA Xiaoyan. Study on the influence factors of crumb rubber asphalt and its asphalt mixtureD.Xi′an: School of Materials Science and Engineering, Changan University,2012:50-58. In Chinese

9司伟,马骉,汪海年,等. 沥青混合料在冻融循环作用下的弯拉特性J.吉林大学学报:工学版,2013,434:885-890.

SI Wei, MA Biao, WANG Hainian, et al. Flexural tensile characteristics of asphalt mixture under freezethaw cycllesJ.Journal of Jilin University: Engineering and Technology Edition, 2013,434:885-890. In Chinese

10马翔, 倪富健, 陈荣生, 等.沥青感温性能评价指标J. 交通运输工程学报,20081:31-35.

MA Xiang, NI Fujian, CHEN Rongsheng, et al. Evaluation index of temperature susceptibility for asphaltJ. Journal of Traffic and Transportation Engineering,20081: 31-35. In Chinese

11王元元, 董 强, 李昌洲. 废塑胶粉复合改性沥青及其混合料性能研究J.重庆交通大学学报:自然科学版,2012,31 5:979-981.

WANG Yuanyuan, DONG Qiang, LI Changzhou.Resear ch on properties of waste plasticcrumb rubber composite modified asphalt and its mixtureJ.Journal of Chongqing Jiaotong University: Natural Science, 2012,315:979-981. In Chinese

12吴文亮,王端宜,张肖宁,等. 基于工业CT技术的沥青混合料内部空隙分布特性J. 中南大学学报:自然科学版, 2012,436, 77-87.

WU Wenliang, WANG Duanyi, ZHANG Xiaoning, et al. Air voids distribution of asphalt mixtures based on ind ustrial computerized tomographyJ. Journal of Zhongnan University: Natural Science Edition, 2012,436, 77-87.In Chinese

猜你喜欢
沥青路面
雾封层技术在沥青路面养护中的应用
长寿命沥青路面结构研究
沥青路面就地热再生技术在高速公路养护中的应用研究
自融雪沥青路面抗凝冰剂的设计与施工探讨
透水沥青路面淤塞问题分析
重载交通沥青路面荷载图式探讨