王 曦,张元庆*,贺东昌,张喜忠,李 博,王栋才,靳 光,李福星,杨效民,徐 芳
(1.山西省农业科学院畜牧兽医研究所,太原 030032; 2.山西省运城市黄牛场,运城 044500)
晋南牛与部分地方黄牛之间遗传多样性分析
王 曦1,张元庆1*,贺东昌1,张喜忠1,李 博1,王栋才1,靳 光1,李福星2,杨效民1,徐 芳1
(1.山西省农业科学院畜牧兽医研究所,太原 030032; 2.山西省运城市黄牛场,运城 044500)
旨在利用微卫星技术检测晋南牛、郏县红牛、鲁西牛和秦川牛四大地方黄牛的牛群遗传多样样及遗传结构。采用16个微卫星DNA标记对4个牛群进行检测分析。16个微卫星DNA标记中,除HEL9位点在所有牛群中呈单态外,其他15个位点的有效等位基因数为2~8个,平均有效等位基因数为3.067 6个。BM1818为低度多态(PIC=0.083 0,PIC<0.25),其余位点均为高度多态(PIC>0.5),其中HUAT24多态性最大(PIC=0.727 5)。4个牛群共检测到80个等位基因,其中晋南牛为63个,郏县红牛为65个,鲁西牛65个,秦川牛68个。在IDVGA46位点,仅有晋南牛有B等位基因,而在TGLA44位点,仅有晋南牛没有B等位基因。4个牛群的平均表观杂合度为0.385 2,平均期望杂合度为0.640 3,平均杂合度为0.578 0。晋南牛在NJ树上单独聚为一支,与鲁西黄牛、郏县红牛及秦川牛的遗传距离分别为0.809 3、0.759 8、0.807 1。结果表明,晋南牛遗传资源独特,群体遗传多样性丰富,是一个生长进化上较为封闭的群体。
微卫星;遗传多样性;晋南牛
畜禽品种是畜牧业生产的基础,地方畜禽品种更是畜牧业的稀缺财富。我国养牛历史悠久,不仅积累了丰富的饲养管理经验,更选育出不少优良地方品种,其中,晋南牛、秦川牛、鲁西黄牛与郏县红牛等地方品种均为我国著名的黄牛品种。20世纪70年代以来,在国外肉牛品种与市场经济的冲击下,我国地方牛品种群体不断萎缩,质量下降甚至濒危灭绝,遗传资源遭受重大损失。
微卫星DNA标记具有多态性强,呈孟德尔共显性遗传,分布广泛等特征,常用作动物遗传多样性评价、群体遗传关系和分析生物系统进化等理想的遗传标记[1-2]。本研究使用微卫星技术,以晋南牛、秦川牛、鲁西黄牛和郏县红牛为研究对象,旨在阐明这几个地方牛品种的群体遗传结构和遗传多样性状况,并进行对比,为有效地选种、选育及保种提供依据和指导。
1.1 材料
1.1.1 试验对象 本试验材料分别从保种场的晋南牛、郏县红牛、鲁西黄牛和秦川牛保种场各取得耳组织样品100份。
1.1.2 耳组织样品的采集 用耳组织取样钳从牛耳前沿取样,加入到装有75%酒精的1.5 mL离心管中,置入冰壶中运回实验室。
1.1.3 引物来源及微卫星位点选择 微卫星位点应选取杂合度高、多态信息含量高、易扩增的位点。根据这些特点,在牛不同染色体上选16个多态性适中,扩增片段长度约200 bp的微卫星位点。本试验所用的16对引物是从国际互联网(http://sol.marc.usda.gov)检索获得,而后由华大基因合成。引物信息如表1所示。
1.1.4 PCR扩增 在200 μL EP管中加入:10×PCR缓冲液2.0 μL,2.5mmol·L-1dNTP 1.6 μL,TaqDNA聚合酶0.5 μL 1U,上下游引物各30 ng,基因组DNA约100 ng,加超纯水至总反应体积20 μL。反应程序:94 ℃预变性5 min,35个循环(94 ℃变性30 s,55 ℃退火45 s,72 ℃延伸90 s),72 ℃延伸10 min,4 ℃保存。
1.2 方法
1.2.1 DNA提取及微卫星检测 采用苯酚-氯仿抽提法进行基因组DNA提取,检测其浓度、纯度合格后,对基因组DNA适当稀释,进行PCR扩增,经检测PCR扩增产物为预计片段大小,再用聚丙烯酰胺凝胶电泳进行各微卫星位点的多态性检测。
1.2.2 统计分析 等位基因数及各基因频率,多态信息含量(Polymorphism information content,PIC),有效等位基因数,平均表观杂合度,平均期望杂合度,平均杂合度等参数采用Microsatellite Toolkit软件统计分析。群体间的Nei’sDA遗传距离用Dispan软件计算,并构建NJ树。
2.1 基因组DNA及各微卫星位点产物凝胶检测
将从牛耳组织中提取的全基因组DNA进行琼脂糖凝胶(浓度为0.8%)电泳(图1)。由图1中可以看出,基因组DNA条带清晰,点样孔干净,无拖尾现象,样品亮度均一,无蛋白污染,不存在降解,可用于后续试验。
M.DNA相对分子质量标准DL2000;1~7.基因组DNAM.DL2000 marker;1-7.Genomic DNA 图1 牛基因组DNA琼脂糖凝胶检测Fig.1 Agarose gel image of genomic DNA
微卫星PCR扩增产物琼脂糖凝胶(浓度为1.5%)检测结果如图2所示,上样PCR产物量为3 μL,DNA的量约为100 ng,结果显示,PCR产物条带整齐,特异性好,产物亮度表明PCR浓度较高,能够满足微卫星的基因型检测。
微卫星PCR产物聚丙烯酰胺凝胶(浓度为8%)检测(以微卫星位点ETH10为例)如图3所示,样品上样量为6 μL,图中虽然有影子带存在,但是不影响基因型判定。
表1 微卫星位点、引物序列和退火温度
Table 1 Microsatellite locus,sequences and annealing temperature
微卫星座位Loci染色体Chromosome引物序列(5'-3')Primersequences退火温度/℃AnnealingtemperatureILSTS00510F:GGAAGCAATGAAATCTATAGCCR:TGTTCTGTGAGTTTGTAAGC57.3BM21132F:GCTGCCTTCTACCAAATACCCR:CTTCCTGAGAGAAGCAACACC59.6IDVGA273F:GGTCAGTCACAGAGAAGCACAGR:GAAAGCCTGGTACTCATGGAATA57.3ETH2259F:GATCACCTTGCCACTATTTCCTR:ACATGACAGCCAGCTGCTACT61.1BM18241F:GAGCAAGGTGTTTTTCCAATCR:CATTCTCCAACTGCTTCCTT54.4HEL521F:GCAGGATCACTTGTTAGGGAR:AGACGTTAGTGTACATTAAC52.5HAUT2422F:GAAGTGACTTAGCAGCAGCAR:GCATGTCTGTAAGAATAGTAAG52.5TGLA442F:AACTGTATATTGAGAGCCTACCATGR:CACAACTTAGCGACTAAACCACCA59.6TGLA532F:GCTTTCAGAAATAGTTTGCATTCAR:ATCTTCACATGATATTACAGCAGA54.4ETH319F:GAACCTGCCTCTCCTGCATTR:GGAAGGGAAGACCAGGTGTG61.5HAUT2726F:GACTGGATTGTTTGCTTGTTGR:AGCCATCATTATCTTTACTCTG52.5BM181823F:AGCTGGGAATATAACCAAAGGR:AGTGCTCAAGGTCCATGC59.6IDVGA4619F:AAATCCTTTCAAGTATGTTTTCAR:ACTCACTCCAGTATTCTTGTCTG52.5BM122520F:TTTCTCAACAGAGGTGTCCACR:ACCCCTATCACCATGCTCTG59.6ETH105F:GTTCAGGACTGGCCCTGCTAACAR:CCTCCAGCCCACTTTCTCTTCTC50.8HEL914F:CCCATTCAGTCTTCAGAGGTR:CACATCCATGTTCTCACCAG57
F.正向引物;R.反向引物
F.Forward primer;R.Reverse primer
2.2 各位点的群体研究
2.2.1 各等位基因及频率 对晋南牛、郏县红牛、鲁西牛和秦川牛群16个微卫星位点不同等位基因的检测结果显示,除HEL9为单态位点,其余位点均表现为多态,等位基因及频率如表2~6所示,4个牛群共检测到80个等位基因,其中晋南牛为63个,郏县红牛为65个,鲁西牛65个,秦川牛68个。表2~6列出基因频率及等位基因。试验中检测出了在一些品种特有的等位基因,例如:在IDVGA46位点,仅有晋南牛有B等位基因;而在TGLA44位点,只有晋南牛没有B等位基因;其中ETH10与BM1225等位基因最多,为8个,ILSTS005等位基因最少,为2个。等位基因的大小主要集中于150~200 bp之间,如表6所示,其中BM1818位点的等位基因片段最大为226~246 bp,IDVGA27位点的片段最小为95~118 bp。
M.DNA相对分子质量标准DL2000;1~3.BM1225位点,PCR产物片段长度约为210 bp;4~6.BM1818位点,PCR产物片段长度约为250 bpM.DL2000 marker;1-3.PCR products of BM1225 locus about 210 bp;4-6.PCR products of BM1818 locus about 250 bp图2 微卫星位点BM1225和BM1818 PCR产物琼脂糖检测Fig.2 Agarose gel image of detecting PCR products of BM1225 and BM1818 loci
1,2,5,7.AD;3.BC;4,8.DD;6,9,13.AC;10,12,14.CD;11.BD;15.AB;M.Marker,from down to up were 100,200 and 300 bp,respectively图3 微卫星位点ETH10 PCR产物聚丙烯酰胺凝胶电泳结果Fig.3 PAGE image of PCR product of ETH10 locus
表2 4个群体等位基因频率
Table 2 Allele frequency of loci in 4 populations
位点Loci等位基因AlleleABCDEFGHETH100.09600.24750.02530.54040.07830.00760.00250.0025BM12250.01770.03790.60860.13380.09850.09090.00760.0051ETH2250.28280.52530.13640.02530.0303BM18180.01260.04040.11360.35350.46970.0101BM18240.13640.17680.38890.25000.0480BM21130.10610.22980.49240.1717HEL50.29800.26260.18430.19440.0606HUAT240.11110.38380.29800.19700.0101HUAT270.01770.06570.15400.27780.36870.1162IDGVA270.10100.46460.33840.0960IDUGA460.56310.30300.04800.05050.00510.02780.0025ILSTS0050.95450.0455TGLA440.05810.32320.38640.14140.0909TGLA530.09850.36620.29040.19950.0455ETH30.36110.32580.04040.23740.0354
2.2.2 各微卫星位点遗传特性分析 4个牛群中的多态信息含量结果如表7所示,BM1818为低度多态位点(PIC=0.083 0,PIC<0.25),其余位点均为高度多态(PIC>0.5),其中HUAT24多态信息含量值最大(PIC=0.727 5)。在晋南牛群中,BM1818为低度多态位点(PIC<0.25),BM2113、ETH、HEL5及TGLA44属于中度多态位点(0.5>PIC>0.25),其余位点为高度多态位点(PIC>0.5)。郏县红牛群中,BM1818为低度多态位点,ETH225、ETH3及HUAT27为中度多态位点,其余均为高度多态位点。鲁西黄牛中,BM1818为低度多态位点,BM1824为中度多态位点,其余为高度多态位点。秦川牛中,BM1818与ETH10为低度多态位点,BM2113、IDVGA27、ETH225及HUAT27等为中度多态位点,其余均为高度多态位点。
表3 晋南牛群体等位基因频率
Table 3 Allele frequency of loci in Jinnan cattle
位点Loci等位基因AlleleABCDEFGHETH100.04000.23000.56000.16000.0100BM12250.73000.06000.13000.0800ETH2250.35000.43000.15000.03000.0400BM18180.49000.5100BM18240.44000.31000.23000.0200BM21130.03000.14000.8300HEL50.31000.21000.26000.19000.0300HUAT240.20000.64000.1600HUAT270.03000.04000.21000.35000.32000.0500IDGVA270.16000.54000.3000IDUGA460.29000.51000.08000.08000.02000.01000.0100ILSTS0050.94000.0600TGLA440.24000.21000.39000.1600TGLA530.10000.24000.33000.27000.0600ETH30.29000.49000.06000.1600
表4 郏县红牛群体等位基因频率
Table 4 Allele frequency of loci in Jiaxian Red cattle
位点Loci等位基因AlleleABCDEFGETH100.15000.35000.5000BM12250.03000.04000.58000.23000.08000.0400ETH2250.26000.54000.11000.03000.0600BM18180.39000.57000.0400BM18240.10000.15000.25000.39000.1100BM21130.29000.30000.07000.3400HEL50.37000.24000.18000.18000.0300HUAT240.02000.07000.49000.38000.0400HUAT270.01000.10000.07000.33000.32000.1700IDGVA270.72000.2800IDUGA460.60000.28000.03000.0900ILSTS0050.94000.0600TGLA440.03000.10000.56000.11000.2000TGLA530.09000.49000.28000.09000.0500ETH30.16000.26000.08000.36000.1400
表5 鲁西牛群体等位基因频率
Table 5 Allele frequency of loci in Luxi cattle
位点Loci等位基因AlleleABCDEFGHIETH100.06120.29590.05100.50000.07140.01020.0102BM12250.04080.60200.12240.07140.14290.01020.0102ETH2250.21430.53060.20410.03060.0204BM18180.05100.16330.45920.28570.0408BM18240.02040.66330.27550.0408BM21130.08160.26530.52040.1327HEL50.27550.28570.14290.24490.0510HUAT240.07140.47960.34690.1020HUAT270.05100.18370.14290.50000.1224IDGVA270.26530.57140.1633IDUGA460.52040.40820.03060.0408ILSTS0050.95920.0408TGLA440.08160.51020.34690.0612TGLA530.11220.43880.20410.19390.0510ETH30.08160.47960.02040.4184
表6 秦川牛群体等位基因频率
Table 6 Allele frequency of loci in Qinchuan cattle
位点Loci等位基因AlleleABCDEFGHETH100.13270.11220.05100.60200.08160.0204BM12250.04080.07140.52040.12240.11220.10200.02040.0102ETH2250.30610.60200.08160.0102BM18180.24490.7551BM18240.22450.41840.31630.0408BM21130.02040.21430.55100.2143HEL50.23470.31630.15310.16330.1327HUAT240.15310.34690.19390.3061 HUAT270.03060.07140.15310.28570.33670.1224IDGVA270.14290.40820.36730.0816IDUGA460.84690.01020.05100.08160.0102ILSTS0050.97960.0204TGLA440.12240.44900.4286TGLA530.09180.29590.34690.24490.0204ETH30.91840.07140.0102
表7 4个群体中微卫星标记PCR扩增条件、片段大小、等位基因数及PIC值
Table 7PICvalue,length and the number of alleles of all SSRs loci in 4 populations
位点Loci产物长度/bpLength等位基因数Numberofallele多态信息含量PIC晋南牛Jinnan郏县红牛JiaxianRed鲁西黄牛Luxi秦川牛Qinchuan总体TotalILSTS005172~17820.55290.52690.59900.56010.5834BM2113123~14740.41110.54500.56330.48430.5126IDVGA2795~11840.60680.57270.57500.46290.5654ETH225141~16850.37490.42100.62380.30140.5741BM1824176~19850.58880.70140.41310.60890.6915HEL5143~16950.26230.64710.57960.54380.6136HUAT24148~17050.71230.69620.71800.74210.7275TGLA44185~20850.46900.53390.56770.67440.6613TGLA53108~14250.67830.70290.63900.72340.7053ETH3116~13650.52070.32190.50930.60980.5877HUAT27143~16660.58930.48820.46740.25960.5225BM1818226~24660.10640.10640.07520.03910.0830IDVGA46149~18270.67150.58170.53820.51410.6668BM1225205~23980.70350.61300.67100.67250.6839ETH10190~22480.58700.71170.50150.14250.6482
由表8~12所示,本试验所选15个微卫星多态位点在4个群体中平均有效等位基因数为3.067 6,晋南牛为2.682 5,郏县红牛为2.810 7,鲁西黄牛为2.665 2,秦川牛为2.668 5。4个群体中平均纯合度观测值为0.614 8,晋南牛为0.622 7,郏县红牛为0.562 7,鲁西黄牛为0.635 4,秦川牛为0.639 5。4个群体的平均杂合度观测值为0.385 2,晋南牛为0.377 3,郏县红牛为0.562 7,鲁西黄牛为0.364 6,秦川牛为0.360 5。4个群体中平均纯合度期望值为0.359 7,晋南牛为0.418 9,郏县红牛为0.394 2,鲁西黄牛为0.402 9,秦川牛为0.448 6。4个群体中平均杂合度期望值为0.640 3,晋南牛为0.581 1,郏县红牛为0.605 8,鲁西黄牛为0.597 1,秦川牛为0.551 4。4个群体中平均Nei氏期望杂合度值为0.638 7,晋南牛为0.575 3,郏县红牛为0.599 7,鲁西黄牛为0.591 0,秦川牛为0.545 8。4个群体中总平均杂合度值为0.578 0。
2.3 群体遗传分化
H.Takahashi等[3]和M.Nei[4]通过计算机模拟对各种遗传距离进行研究,证明在分析物种内群体间的遗传变异时,运用DA遗传距离是获得准确系统发生树的最有效的方法,且用UPGMA法优于NJ法。4个牛群之间的DA遗传距离见表13,晋南牛与鲁西黄牛、郏县红牛及秦川牛的遗传距离分别为:0.809 3、0.759 8、0.807 1。基于4个牛群间DA遗传距离构建的NJ遗传关系树,明显地聚为3大支:第一支为晋南牛,第二支为秦川牛,第三支为郏县红牛和鲁西牛(图4)。
图4 基于NJ法构建的4个牛群之间的遗传关系树Fig.4 Neighbour-joining (NJ) tree of 4 populations based on genetic distance
3.1 各等位基因与频率
微卫星座位上等位基因数目和频率的差异可以反映出家畜品种内和品种间的差异,近年来,使用微卫星DNA标记已经开展了一些地方牛群体遗传特征和群体遗传变异的工作。孙维斌等[5]利用TGLA227、ETH225、HEL9、CSSM66、TGLA1216等5个微卫星检测晋南牛遗传多态性,结果发现,位点均处于不平衡状态(P<0.01),平均有效等位基因数为10.163 6。毕伟伟[6]利用8个微卫星研究了鲁西牛群体的遗传多态性,共检测到34个等位基因,每个微卫星座位的等位基因数为3~6个,平均等位基因数为4.25个。王洪程[7]利用微卫星研究秦川牛群体的遗传多态性,在144头秦川牛的7个微卫星位点检测到164个等位基因,平均每个位点23.43个等位基因,在IDVGA2位点上检测到等位基因最多,为28个,在IDVGA27位点上检测到等位基因最少,为16个。李荣岭等[8]利用微卫星标记对12个中外牛品种群体遗传结构的研究表明,郏县红牛的平均等位基因数最多(10.58),其他地方品种牛都在8.4以上,而外国引进品种的等位基因数较少(7~7.8)。本研究中,15个微卫星在4个群体中总共检测到80个等位基因,其中晋南牛为63个,郏县红牛为65个,鲁西牛65个,秦川牛68个,等位基因多态性比较丰富。研究中检测发现在15个微卫星中,IDVGA46位点仅有晋南牛有B等位基因,为特有等位基因,而在TGLA44位点仅有晋南牛没有B等位基因,为共有等位基因。郏县红牛在ETH10位点缺少E等位基因,同时在BM1818有F等位基因,在HUAT24存在E等位基因,在ETH位点检测到C等位基因。这些特有等位基因,若在更多的品种中检测验证,则可作为代表品种的分子标记。
表8 4个群体微卫星位点遗传参数统计
Table 8 Genetic parameter statistics of all SSRs loci in 4 populations
位点Loci样品数Number有效等位基因数Effectivenumberofalleles纯合度观测值Obs.Hom杂合度观测值Obs.Het纯合度期望值*Exp.Hom杂合度期望值*Exp.HetNei氏期望杂合度**Nei’sExp.Het**平均杂合度Ave.HetBM12254002.70760.48480.51520.36770.63230.63070.6149ETH104002.45050.46460.53540.40660.59340.59190.5799ETH2254002.65930.52020.47980.37450.62550.62400.6146BM18184002.77460.53030.46970.35880.64120.63960.5169BM18244003.76110.80300.19700.26400.73600.73410.6382BM21134002.97600.59090.40910.33430.66570.66400.5587HEL54004.28760.70200.29800.23130.76870.76680.7579HUAT244003.47990.60100.39900.28560.71440.71260.6231HUAT274003.92260.41920.58080.25300.74700.74510.7274IDVGA274002.85870.95960.04040.34820.65180.65020.5610IDVGA464002.41200.74240.25760.41310.58690.58540.5070ILSTS0054001.09500.91920.08080.91300.08700.08680.0860TGLA444003.50400.63640.36360.28360.71640.71460.6382TGLA534003.70410.39390.60610.26810.73190.73000.7115ETH34003.38130.45450.54550.29400.70600.70430.5343Mean1003.06760.61480.38520.35970.64030.63870.5780St.Dev0.78710.17730.17730.16330.16330.16290.1554
*.期望杂合度和纯合度由Levene计算而来;**.Nei’s期望杂合度。表9~12同
*.Expected homozygosty and heterozygosity were computed using Levene (1949);**.Nei’s (1973) expected heterozygosity.The same as Table 9-12
表9 晋南牛微卫星位点遗传参数统计
Table 9 Genetic parameter statistics of all SSRs loci in Jinnan cattle
位点Loci样品数Number有效等位基因数Effectivenumberofalleles纯合度观测值Obs.Hom.杂合度观测值Obs.Het纯合度期望值*Exp.Hom杂合度期望值*Exp.HetNei氏期望杂合度**Nei’sExp.Het平均杂合度Ave.HetETH101001.78640.62000.38000.38770.61230.60620.6149BM12251002.53940.54000.46000.55540.44460.44020.5799ETH2251003.00840.52000.48000.32570.67430.66760.6146BM18181001.99920.58000.42000.49520.50480.49980.5169BM18241002.91550.80000.20000.33640.66360.65700.6382BM21131001.40960.66000.34000.70650.29350.29060.5587HEL51004.08500.66000.34000.23720.76280.75520.7579HUAT241002.10440.58000.42000.46990.53010.52480.6231HUAT271003.64960.54000.46000.26670.73330.72600.7274IDGVA271002.45581.00000.00000.40120.59880.59280.5610IDUGA461002.79640.70000.30000.35110.64890.64240.5070ILSTS0051001.12710.88000.12000.88610.11390.11280.0860TGLA441003.57910.50000.50000.27210.72790.72060.6382TGLA531003.95260.40000.60000.24550.75450.74700.7115ETH31002.82970.36000.64000.34690.65310.64660.5343Mean1002.68250.62270.37730.41890.58110.57530.5780St.Dev0.89560.17120.17120.18170.18170.17990.1554
表10 郏县红牛微卫星位点遗传参数统计
Table 10 Genetic parameter statistics of all SSRs loci in Jiaxian Red cattle
位点Loci样品数Number有效等位基因数Effectivenumberofalleles纯合度观测值Obs.Hom杂合度观测值Obs.Het纯合度期望值*Exp.Hom杂合度期望值*Exp.HetNe氏期望杂合度*Nei’sExp.Het平均杂合度Ave_HetETH101002.53160.46000.54000.38890.61110.60500.6149BM12251002.50130.40000.60000.39370.60630.60020.5799ETH2251002.66100.38000.62000.36950.63050.62420.6146BM18181002.08940.38000.62000.47330.52670.52140.5169BM18241003.85800.76000.24000.25170.74830.74080.6382BM21131003.39440.72000.28000.28750.71250.70540.5587HEL51003.84320.78000.22000.25270.74730.73980.7579HUAT241002.55490.76000.24000.38530.61470.60860.6231HUAT271003.91850.36000.64000.24770.75230.74480.7274IDGVA271001.67560.92000.08000.59270.40730.40320.5610IDUGA461002.23510.68000.32000.44180.55820.55260.5070ILSTS0051001.12710.88000.12000.88610.11390.11280.0860TGLA441002.65530.44000.56000.37030.62970.62340.6382TGLA531002.96560.34000.66000.33050.66950.66280.7115ETH31004.01930.18000.82000.24120.75880.75120.5343Mean1002.81070.56270.43730.39420.60580.59970.5780St.Dev0.86240.23110.23110.16730.16730.16560.1554
表11 鲁西黄牛微卫星位点遗传参数
Table 11 Genetic parameter statistics of all SSRs loci in Luxi cattle
位点Loci样品数Number有效等位基因数Effectivenumberofalleles纯合度观测值Obs.Hom杂合度观测值Obs.Het纯合度期望值*Exp.Hom杂合度期望值*Exp.HetNei氏期望杂合度**Nei’sExp.Het平均杂合度Ave.HetETH101002.86340.46940.53060.34250.65750.65080.6149BM12251002.47020.53060.46940.39870.60130.59520.5799ETH2251002.69930.59180.40820.36400.63600.62950.6146BM18181003.09210.44900.55100.31640.68360.67660.5169BM18241001.93080.91840.08160.51290.48710.48210.6382BM21131002.73620.46940.53060.35890.64110.63450.5587HEL51004.15760.85710.14290.23270.76730.75950.7579HUAT241002.73310.59180.40820.35940.64060.63410.6231HUAT271003.10810.30610.69390.31470.68530.67830.7274IDGVA271002.36091.00000.00000.41760.58240.57640.5610IDUGA461002.27260.81630.18370.43430.56570.56000.5070ILSTS0051001.08500.91840.08160.92090.07910.07830.0860TGLA441002.55700.77550.22450.38480.61520.60890.6382TGLA531003.48480.51020.48980.27960.72040.71300.7115ETH31002.42650.32650.67350.40610.59390.58790.5343Mean1002.66520.63540.36460.40290.59710.59100.5780St.Dev0.69270.22660.22660.15820.15820.15660.1554
表12 秦川牛微卫星位点遗传参数统计
Table 12 Genetic parameter statistics of all SSRs loci in Qincuan cattle
位点Loci样品数Number有效等位基因数Effectivenumberofalleles纯合度观测值Obs.Hom杂合度观测值Obs.Het纯合度期望值*Exp.Hom杂合度期望值*Exp.HetNei氏期望杂合度**Nei’sExp.Het平均杂合度Ave.HetETH101002.48550.38780.61220.39620.60380.59770.6149BM12251003.16340.38780.61220.30910.69090.68390.5799ETH2251002.16010.59180.40820.45740.54260.53710.6146BM18181001.58690.71430.28570.62630.37370.36980.5169BM18241003.05670.73470.26530.32020.67980.67280.6382BM21131002.52600.51020.48980.38960.61040.60410.5587HEL51004.48790.51020.48980.21480.78520.77720.7579HUAT241003.63510.46940.53060.26760.73240.72490.6231HUAT271004.17570.46940.53060.23160.76840.76050.7274IDGVA271003.04310.91840.08160.32170.67830.67140.5610IDUGA461001.37590.77550.22450.72400.27600.27320.5070ILSTS0051001.04161.00000.00000.95960.04040.04000.0860TGLA441002.49840.83670.16330.39410.60590.59980.6382TGLA531003.61320.32650.67350.26930.73070.72320.7115ETH31001.17840.95920.04080.84700.15300.15140.5343Mean1002.66850.63950.36050.44860.55140.54580.5780St.Dev1.06880.22360.22360.23230.23230.22990.1554
表13 4个牛品种间Nei’s 遗传距离(DA,对角线上方)和Nei's 标准遗传距离(DS,对角线下方)
Table 13 Nei’s genetic distance (above the diagonal) and Nei's standard genetic distance (below the diagonal) among 4 indigenous cattle breeds
牛群Population晋南牛Jinnancattle郏县红牛JiaxianRedcattle鲁西黄牛Luxicattle秦川牛Qinchuancattle晋南牛Jinnan****0.75980.80930.8071郏县红牛JiaxianRed0.2747****0.83820.8384鲁西黄牛Luxi0.21150.1765****0.8027秦川牛Qinchuan0.21430.17630.2197****
本研究所检测的微卫星位点中,等位基因数的范围是2~7个,由于群体的规模有限,所测的等位基因数目与文献报道有些差异,其中HEL9座位没有检测到多态,这与罗永生等的结果不同[9],ILSTS005位点等位基因数最少,仅检测到2个,ETH10和BM1225位点等位基因数最多,共检测到8个。也反映了微卫星位点在种间、群体间的差异,体现了其保守性。
从各微卫星的基因频率来看,等位基因分布并不均匀,每个位点中都有一个或几个优势等位基因存在,且群体中频率最高的等位基因是该物种中最为保守的,最为原始的,其他的等位基因则是由于该基因位点的突变引起的[10]。
3.2 位点遗传特性分析
多态信息含量(PIC)是衡量标记多态性较好的指标,D.Bostein等[11]提出了衡量基因变异程度高低的多态信息指标:当PIC>0.5时,为高度多态性;当0.25 孙维斌等[5]检测晋南牛TGLA1126位点杂合度、遗传距离及PIC值,分别为0.976 5、8.940 7、0.885 8。5个微卫星平均杂合度为0.980 9,平均多态信息含量为0.904 9。王洪程等[7]利用微卫星研究秦川牛群体的遗传多态性,7个微卫星位点在秦川牛群中表观杂合度最低值与最高值分别为0.563 9和0.985 5,平均值为0.763 4,期望杂合度最低值与最高值分别为0.886 5和0.951 2,其平均值为0.923 2。7个位点PIC>0.5,其平均值为0.914 1,均呈高度多态性。本研究中,4个群体的平均杂合度期望值为0.640 3,晋南牛为0.581 1,郏县红牛为0.605 8,鲁西黄牛为0.597 1,秦川牛为0.551 4。4个群体的平均Nei氏期望杂合度值为0.638 7,晋南牛为0.575 3,郏县红牛为0.599 7,鲁西黄牛为0.591 0,秦川牛为0.545 8。4个群体的总平均杂合度值为0.578 0。所以期望的多样性要高于观测的多样性,因此这4个种群可能存在选择与近交[12]。 多态信息含量、有效等位基因数等都是衡量群体内遗传变异大小的指标,这些数值在大小上均有一致性,多态信息含量大,有效等位基因数相对大[13-14]。这几个参数较大时说明群体在该位点的变异性高,有较大的选择潜力,即可利用该位点进行与生产性状相关的标记辅助选择[15]。 3.3 群体遗传分化 晋南牛与郏县红牛、鲁西黄牛、秦川牛的遗传距离DA分别为0.759 8、0.809 3和0.807 1,距离值不太远,可能是因为这4个品种在发展进化的过程中由于在地域上的封闭性及差异造成。晋南牛相对与其他3种牛比较独立,可能由于晋南牛在选育过程中较为封闭,与其他品种的牛血缘上还没有过多的交叉,具有典型的地域性,同时,由于郏县红牛与鲁西黄牛在近年来突破了地域的局限性,基因相互有些渗透,所以同属于共同的进化分支。M.A.Cronin 等利用微卫星标记研究美国平原野牛与森林野牛,结果表明,它们在群体遗传结构上存在有更多的同源性[16]。T.Keros等利用微卫星对克罗地亚本地灰牛群分类后在遗传结构上与美洲牛群比较,证明其更倾向于欧洲的牛群[17]。 本研究对晋南牛的遗传结构及遗传分化做了分子水平的研究,晋南牛在分子遗传关系树上独成一支,这与雷初朝等利用mtDNA研究牛的分类所得出结论相一致[18]。这种群体遗传特性上的独立性,从分子水平上证明了晋南牛为我国宝贵的遗传资源,因此对其的保种显得尤为重要。利用微卫星检测遗传结构,可指导牛群的分类及保种工作。L.D.Pham等利用微卫星标记研究越南地方牛的遗传多样性,对6个类群从遗传结构上进行分类分群,从而指导保种,大大节约了保种的费用,提高了效率[19]。Y.T.Utsunomiya 等利用AFLP遗传标记研究西亚与南亚的瘤牛、水牛及已经灭绝的欧洲野牛牛群的遗传结构,对牛群的保种起到积极的指导作用[20]。C.Acosta等对古巴5个牛群的遗传结构利用微卫星进行了研究,结果表明,5个牛群可以接近于分成两个牛群,对于牛群的保种有重要意义[21]。E.Armstrong等利用微卫星将乌拉圭牛与美洲牛群作对比,结果表明,遗传漂变等可能会引起群体的遗传变异,最终使得乌拉圭牛有别于美洲牛的遗传群体,因此对其的保种有着非常重要的意义[22]。 [1] 张云武,张亚平.微卫星及其应用[J].动物学研究,2011,22(4):315-320. ZHANG Y W,ZHANG Y P.Microsatellites and applications [J].ZoologicalResearch,2011,22(4):315-320.(in Chinese) [2] BRUORD M W,BRADLEY D G,LUIKART G D N.A marker reveals the complexity of livestock domestication [J].NatRevGenet,2003,4(11):900-910. [3] TAKAHASHI H,NIRASAWA K,NAGAMINE Y,et al.Genetic relationship among Japanese native breeds of chicken based on microsatellite DNA polymorphisms[J].JHeredity,1998,89(6):543-546. [4] NEI M.Estimation of average heterozygosity and genetic distance from a small number of individual[J].Genetics,1978,89:583-590. [5] 孙维斌,陈 宏,朴亨国,等.晋南牛5个微卫星卫点多态性的研究[C].杨凌:全国首届动物生物技术学术研讨会,2004:345-348. SUN W B,CHENG H,PU H G,et al.Analysis of polymorphism of five microsatellites in Jin-nan cattle [C].Yangling:Animal Biotechnology Bulletin,2004:345-348.(in Chinese) [6] 毕伟伟.鲁西牛微卫星标记和MHC多态性及其生长发育性状的关系[D].泰安:山东农业大学,2011. BI W W.Polymorphism of microsatellite markers and MHC and their relationships with growth traits in Lu-xi cattle[D].Taian:Shandong Agricultural University,2011.(in Chinese) [7] 王洪程.秦川牛微卫星、CDIPT基因多态及其生长性状的相关研究[D].杨凌:西北农林科技大学,2011. WANG H C.Polymorphism of microsatellites,CDIPT gene and their correlations with growth traits in Qinchuan cattle[D].Yangling:Northwest A&F University,2011.(in Chinese) [8] 李荣岭,张桂香,王志刚,等.微卫星标记对12个中外牛品种群体遗传结构的研究[J].遗传,2007,29(12):1463-1470. LI R L,ZHANG G X,WANG Z G,et al.Analysis of the genetic structure of 12 Chinese and foreign cattle breeds using DNA microsatellite markers[J].Hereditas,2001,29(12):1463-1470.(in Chinese) [9] 罗永生,王志刚,李加琪,等.采用微卫星标记分析13个中外牛品种的遗传变异和品种间的遗传关系[J].生物多样性,2006,14(6):498-507. LUO Y S,WANG Z G,LI J Q,et al.Genetic variation and genetic relationship among 13 Chinese and introduced cattle breeds using microsatellite DNA markers[J].BiodiversityScience,2006,14(6):498-507.(in Chinese) [10] CHAKRABORTY R,ZHONG Y,DEANDRADE M,et al.Linkage disequilibria among (CA)n polymorphism in the human dystrophin gene and their implications in carrier detection and prenatal diagnosis in duchenne and becker muscular dystrophies [J].Genomics,1994,21:567-570. [11] BOSTEIN D,WHITE R L,SKOLNICK M,et al.Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J].AmJHumGenet,1980,32:314-331. [12] YANG W J,KANG X L,YANG F Y,et al.Review on the development of genotyping methods for assessing farm animal diversity [J].JAnimSciBiotechnol,2013,4:1-6. [13] GOLDSTEIN D B.An evaluation of genetic distance for use with microsatellite loci [J].Genetics,1995,139:463-471. [14] EBLATE E M,LUGHANO K J,CHENYAMBUGA D,et al.Polymorphic microsatellite markers for genetic studies of African antelope species [J].AfricanJBiotechnol,2011,10(56):11817-11820. [15] 徐云碧.分子数量遗传学[M].北京:农业出版社,1994. XU Y B.Molecular Quantitative Genetics[M].Beijing:Agricultural Publishing House,1994.(in Chinese) [16] CRONIN M A,MACNEIL M D,VU N, et al.Genetic variation and differentiation of bison (Bison bison) subspecies and cattle (Bostaurus) breeds and subspecies[J].JHeredity,2013,104(4):500-509. [17] KEROS T,JEMERSIC L,PRPIC J, et al. Genetic variability of microsatellites in autochthonous Podolian cattle breeds in Croatia[J].ActaVeterinariaBrno,2013,82(2):135-140. [18] 雷初朝,陈 宏,杨公社,等.中国部分黄牛品种mtDNA遗传多样性研究[J].遗传学报,2004,31(1):43-50. LEI C C,CHEN H,YANG G S,et al.Genetic diversity of Mitochondrial DNA in chinese yellow cattle[J].JournalofGeneticsandGenomics,2004,31(1):43-50.(in Chinese) [19] PHAM L D,DO D N,BINH N T,et al.Assessment of genetic diversity and population structure of Vietnamese indigenous cattle populations by microsatellites[J].LivestSci,2013,155(1):17-22. [20] UTSUNOMIYA Y T,BOMBA L,LUCENTE G,et al.Revisiting AFLP fingerprinting for an unbiased assessment of genetic structure and differentiation of taurine and zebu cattle[J].BMCGenet,2014,15(1):47. [21] ACOSTA C,UFFO O.SANZ A,et al.Genetic diversity and differentiation of five Cuban cattle breeds using 30 microsatellite loci[J].JAnimBreedGenet,2013,130(1):79-86. [22] ARMSTRONG E,IRIARTE A,MARTINEZ A M,et al.Genetic diversity analysis of the Uruguayan Creole cattle breed using microsatellites and mtDNA markers[J].GenetMolRes,2013,12:1119-1131. (编辑 郭云雁) Analyses of Genetic Diversity among Jinnan Cattle and Three other Chinese Indigenous Cattle Breeds WANG Xi1,ZHANG Yuan-qing1*,HE Dong-chang1,ZHANG Xi-zhong1,LI Bo1,WANG Dong-cai1,JIN Guang1,LI Fu-xing2,YANG Xiao-min1,XU Fang1 (1.InstituteofAnimalScienceandVeterinaryMedicine,ShanxiAcademyofAgriculturalScience,Taiyuan030032China;2.YunchengYellowCattleFarm,Yuncheng044500,China) The genetic diversity and genetic structure of Jinnan cattle,Jiaxian Red cattle,Luxi cattle and Qinchuan cattle were detected by microsatellite technology.Allele frequencies and distribution of 16 microsatellite markers were detected in 4 cattle populations.Number of effective alleles of the other 15 loci was from 2 to 8 except HEL9 as a monomorphic loci in all individuals,and the average number of effective alleles was 3.067 6.BM1818 was low genetic polymorphisms (PIC=0.083 0,PIC<0.25),and the others were high genetic polymorphisms (PIC>0.5),with the highestPICvalue at HUAT24 locus (PIC=0.727 5).80 alleles were identified in 4 populations (63 alleles in Jinnan cattle,65 in Jiaxian Red cattle,65 in Luxi cattle and 68 in Qinchuan cattle,respectively).The allele B at IDVGA46 was detected only in Jinnan cattle,and the allele B at TGLA44 was only lack in Jinnan cattle.Mean observed heterozygosity,mean expected heterozygosity and mean heterozygosity were 0.385 2,0.640 3 and 0.578 0,respectively in 4 populations.Jinnan cattle was independently clustered in the NJ tree and the genetic distance (DA) with Luxi cattle,Jiaxian Red cattle and Qinchuan cattle were 0.809 3,0.759 8 and 0.807 1.There were special genetic characterics and sufficient genetic diversity in Jinnan cattle,and it was a relatively closed population in its evolutionary process. microsatellites;genetic diversity;Jinnan cattle 10.11843/j.issn.0366-6964.2015.06.006 2014-07-28 “十二五”国家高技术研究发展计划(863计划)子课题(2011AA100307-05);山西省科技攻关项目(20130311024-1;20120311021-1;20130311024-2;20140311018-1);山西省农业科学院育种工程项目(11yzgc017);山西省农业科学院博士基金(YBSJJ1402) 王 曦(1975-),男,山西岚县人,副研究员,博士,主要从事牛遗传育种与功能基因组研究,E-mail:wxphilip@aliyun.com *通信作者:张元庆,副研究员,E-mail:yuanqing_zhang@163.com S813.1;S823 A 0366-6964(2015)06-0911-13