可见光诱导的光氧化还原催化的键氧化反应

2015-03-21 08:31安晓蕾彭博文肖文精
关键词:芳基华中师范大学羰基

安晓蕾, 彭博文, 肖文精

(1.华中师范大学 化学学院, 武汉 430079; 2.华中师范大学 物理科学与技术学院, 武汉 430079)



安晓蕾1*, 彭博文2, 肖文精1

(1.华中师范大学 化学学院, 武汉 430079; 2.华中师范大学 物理科学与技术学院, 武汉 430079)

图1 可见光诱导的烯基硼酸的键氧化反应Fig.1 Visible-light induced bond oxidation of vinyl boronic acid

1 实验部分

1.1 仪器与试剂

核磁共振氢谱、碳谱由Varian-Mercury 400 MHz 或Varian-Mercury 600 MHz 型超导核磁共振仪测得,TMS做内标,质谱由Finnigan Trace质谱仪上用电喷雾离子源测定,高分辨质谱由 API 2000 LC/MS/MS (ESI-MS)质谱仪测得.所有试剂均为分析纯或化学纯,若未作特殊说明,其他商品化化学药品直接使用.反应使用的有机溶剂使用前均经过标准纯化处理.

1.2 烯基硼酸1的制备

根据已知文献的报道[30-32],从商业可得的取代苄溴出发得到季膦盐后,再与取代的苯甲醛发生Wittig反应,即可以以中等的收率得到cis-二芳基乙烯3.cis-二芳基乙烯再在碱的作用下与硼酸三异丙酯反应,即可以得到芳基取代的烯基硼酸1,如图2所示.

图2 烯基硼酸1的制备Fig.2 Preparation of vinyl boronic acid 1

(E)-(1,2-bis(2-methoxyphenyl)vinyl)boronic acid (1c):12% yield.1H NMR (400 MHz, DMSO-d6)δ:7.45 (d,J=7.6 Hz, 1H), 7.35~7.33 (m, 1H), 7.23 (t,J=7.0 Hz, 2H), 7.13 (s, 1H), 6.97 (d,J=8.8 Hz, 3H), 6.88 (t,J=7.4 Hz, 1H), 3.78 (s, 3H), 3.73 (s, 3H);13C NMR (100 MHz, DMSO-d6)δ: 156.9, 156.6, 137.5, 133.7, 130.2, 128.4, 128.4, 128.0, 127.9, 127.6, 121.0, 119.87, 111.5, 110.6, 55.5, 55.1. MS (EI)m/z: 284 (rel intensity) (M+). HRMS (ESI), Calcd for C6H17BNaO4[M+Na]: 307.1112; Found: 307.1115.

1.3.1 酮化合物的合成 在室温下将烯基硼酸1 (0.5 mmol)和可见光催化剂6 (0.015 mmol, 3 mol%) 溶于新蒸的THF(5.0 mL)中,接着加入iPr2NEt (1.0 mmol, 2.0 eq.),再将反应体系敞口置于光照条件下搅拌,TLC跟踪至反应完全,脱溶浓缩,直接用石油醚/乙酸乙酯(30∶1~15∶1)柱层析提纯,得到相应的羰基化合物2.

1,2-diphenylethanone (2a):83% yield.1H NMR (400 MHz, CDCl3)δ: 8.02 (d,J=8.0 Hz, 2H), 7.56 (t,J=7.0 Hz, 1H), 7.46 (t,J=7.6 Hz, 2H), 7.34 (t,J=8.0 Hz, 2H), 7.27 (d,J=8.8 Hz, 3H), 4.30 (s, 2H);13C NMR (150 MHz, CDCl3)δ: 197.6, 136.4, 134.4, 133.1, 129.4, 128.6, 128.6, 128.5, 126.8, 45.4. MS (EI)m/z:196 (rel intensity) (M+). HRMS (ESI),Calcd for C14H12NaO [M+Na]: 219.0781; Found: 219.0780.

1-(2-methoxyphenyl)-2-phenylethanone (2b):65% yield.1H NMR (400 MHz, CDCl3)δ: 7.67~7.64 (m, 1H), 7.44~7.39 (m, 1H), 7.27 (d,J=6.8 Hz, 2H), 7.21 (d,J=7.6 Hz, 3H), 6.97~6.91 (m, 2H), 4.29 (s, 2H), 3.86 (s, 3H);13C NMR (100 MHz, CDCl3)δ: 200.0, 158.3, 135.1, 133.4, 130.5, 129.6, 128.2, 128.0, 126.4, 120.6, 111.4, 55.3, 50.0. MS (EI)m/z:226 (rel intensity) (M+). HRMS (ESI): Calcd for C15H15NO2[M+H]: 227.1067; Found: 227.1070.

1,2-bis(2-methoxyphenyl)ethanone (2c):67% yield.1H NMR (400 MHz, CDCl3)δ: 7.68~7.65 (m, 1H), 7.41~7.37 (m, 1H), 7.20 (t,J=7.8 Hz, 1H), 7.14 (d,J=7.2 Hz, 1H), 6.96 (t,J=7.6 Hz, 1H), 6.91~6.87 (m, 2H), 6.81 (d,J=8.4 Hz, 1H), 4.24 (s, 2H), 3.85 (s, 3H), 3.70 (s, 3H);13C NMR (100 MHz, CDCl3)δ: 200.3, 158.1, 157.4, 132.9, 131.1, 130.1, 128.6, 128.0, 124.5, 120.4, 120.2, 111.2, 110.2, 55.3, 55.1, 45.3. MS (EI)m/z:256 (rel intensity) (M+). HRMS (ESI), Calcd for C16H17O3[M+H]: 257.1172; Found: 257.1179.

1,2-diphenylhexan-1-one (2d):68% yield.1H NMR (400 MHz, CDCl3)δ: 7.96 (d,J=7.6 Hz, 2H), 7.47 (t,J=7.2 Hz, 1H), 7.38 (t,J=7.4 Hz, 2H), 7.32~7.24 (m, 4H), 7.19 (t,J=6.8 Hz, 1H), 4.54 (t,J=7.2 Hz, 1H), 2.23~2.16 (m, 1H), 1.87~1.80 (m, 1H), 1.39~1.19 (m, 4H), 0.86 (t,J=6.8 Hz, 3H);13C NMR (100 MHz, CDCl3)δ: 200.1, 139.8, 137.0, 132.7, 128.8, 128.6, 128.5, 128.2, 126.9, 63.6, 33.8, 29.9, 22.7, 13.9. MS (EI)m/z:252 (rel intensity) (M+). HRMS (ESI), Calcd for C18H20NaO [M+Na]: 275.1406; Found: 275.1410.

1.3.2 腙化合物的合成 在室温下将烯基硼酸(酯)(0.5 mmol)和可见光催化剂6 (0.015 or 0.025 mmol, 3 or 5 mol%) 溶于新蒸的THF (5.0 mL)中,接着加入iPr2NEt (1.0 mmol,2.0 eq.),再将反应体系敞口置于光照条件下搅拌,TLC跟踪至反应完全.体系加入5 mL乙醚稀释后,再依次加入10%盐酸溶液以及2,4-二硝基苯肼7 (0.6 mmol, 1.2 eq.),加热至回流.TLC跟踪至反应完全.加少量水搅拌,二氯甲烷萃取,干燥.脱溶浓缩后,直接用石油醚/乙酸乙酯(10∶1~5∶1)柱层析提纯,得到相应的腙类化合物.

1-(2,4-dinitrophenyl)-2-(2-phenylethylidene)hydrazine (9):54% yield.1H NMR (400 MHz, CDCl3)δ: 10.91 (s, 1H), 8.98 (d,J=5.2 Hz, 1H), 8.25~8.23 (m, 1H), 7.73 (d,J=4.8 Hz, 1H), 7.65~7.63 (m, 1H), 7.34~7.32 (m, 2H), 7.18~7.15 (m, 2H), 7.19 (t,J=6.8 Hz, 1H), 4.54 (t,J=7.2 Hz, 1H), 2.23~2.16 (m, 1H), 1.87~1.80 (s, 1H), 1.39~1.19 (m, 4H), 3.47 (d,J=4.4 Hz, 2H);13C NMR (100 MHz, CDCl3)δ: 147.4, 144.2, 136.3, 135.8, 132.4, 131.9, 130.6, 128.7, 128.1, 115.4, 114.8, 35.7. MS (EI)m/z: 300 (rel intensity) (M+). HRMS (ESI), Calcd for C14H13N4O4[M+H]: 301.0923; Found: 301.0859.

1-(2-(4-chlorophenyl)ethylidene)-2-(2,4-dinitrophenyl)hydrazine (11):49% yield.1H NMR (400 MHz, CDCl3)δ: 11.07 (s, 1H), 9.13 (d,J=4.0 Hz, 1H), 8.34~8.32 (m, 1H), 7.94 (d,J=4.0 Hz, 1H), 7.58~7.55 (m, 1H), 7.35~7.32 (m, 2H), 7.21~7.19 (m, 2H), 3.74 (d,J=4.0 Hz, 2H);13C NMR (100 MHz, CDCl3)δ: 149.6, 145.2, 134.0, 133.5, 130.5, 130.3, 129.6, 129.3, 128.9, 116.7, 38.6. MS (EI)m/z: 334 (rel intensity) (M+). HRMS (ESI), Calcd for C14H12ClN4O4[M+H]: 335.0542; Found: 335.0536.

1-(2,4-dinitrophenyl)-2-(2-(4-methoxyphenyl)ethylidene)hydrazine (13):68% yield.1H NMR (400 MHz, CDCl3)δ: 11.32 (s, 1H), 9.24 (d,J=6.0 Hz, 1H), 8.26~8.25 (m, 2H), 7.87 (d,J=4.8Hz, 1H), 7.48 (t,J=7.6 Hz, 1H), 7.32~7.21 (m, 1H), 7.04~6.97 (m, 2H), 3.96 (s, 3H), 3.79 (d,J=6.8 Hz, 2H);13C NMR (100 MHz, CDCl3)δ:148.5, 145.0, 135.1, 134.8, 133.5, 132.4, 11.6, 130.8, 128.9, 128.6, 115.7, 54.7, 40.2. MS (EI)m/z: 330 (rel intensity) (M+). HRMS (ESI),Calcd for C15H14N4NaO5[M+Na]: 353.0856; Found: 353.0862.

1-(2,4-dinitrophenyl)-2-(1-phenylethylidene)hydrazine (15):85% yield.1H NMR (400 MHz, DMSO-d6)δ: 11.20 (s, 1H), 8.80 (d,J=10.4 Hz, 1H), 8.13 (t,J=9.2 Hz, 2H), 7.91 (t,J=6.4 Hz, 1H), 7.63 (d,J=8.0 Hz, 2H), 7.35 (t,J=8.4 Hz, 2H), 2.23~2.16 (m, 1H), 1.87~1.80 (s, 1H), 1.39~1.19 (m, 4H), 2.04 (s, 3H);13C NMR (100 MHz, CDCl3)δ: 157.3, 151.4, 149.1, 144.6, 137.2, 136.3, 129.6, 128.3, 126.7, 122.9, 116.2, 18.6. MS (EI)m/z: 300 (rel intensity) (M+). HRMS (ESI), Calcd for C14H13N4O5[M+H]: 301.0931; Found: 301.0928.

1-(2,4-dinitrophenyl)-2-(1-(4-fluorophenyl)ethylidene)hydrazine (17):95% yield.1H NMR (400 MHz, CDCl3)δ:11.37 (s, 1H), 9.18 (s, 1H), 8.38 (d,J=10.4 Hz, 1H), 8.11 (d,J=9.6 Hz, 1H), 7.88 (d,J=6.0 Hz, 2H), 7.16 (t,J=8.4 Hz, 2H), 2.46 (s, 3H);13C NMR (100 MHz, DMSO-d6)δ: 157.2, 151.3, 144.5, 137.3, 136.5, 136.2, 129.9, 129.5, 128.4, 128.2, 122.8, 116.1, 115.8, 18.5. MS (EI)m/z:318 (rel intensity) (M+). HRMS (ESI), Calcd for C14H12FN4O4[M+H]: 319.0837; Found: 319.0833.

1-(1-(4-chlorophenyl)ethylidene)-2-(2,4-dinitrophenyl)hydrazine (19):83% yield.1H NMR (400 MHz, DMSO-d6)δ:11.18 (s, 1H), 8.68 (d,J=10.0 Hz, 1H), 8.27~8.15 (m, 2H), 7.88 (t,J=5.4 Hz, 1H), 7.81 (t,J=7.8 Hz, 1H), 7.66 (t,J=8.2 Hz, 1H), 7.39 (d,J=7.6 Hz, 1H), 1.82 (s, 3H);13C NMR (100 MHz, DMSO-d6)δ: 151.4, 144.6, 136.6, 136.3, 130.0, 129.6, 128.6, 128.3, 122.9, 116.2, 115.9, 18.6. MS (EI)m/z:334 (rel intensity) (M+). HRMS (ESI), Calcd for C14H12ClN4O4[M+H]: 335.0542; Found: 335.0534.

1-(2,4-dinitrophenyl)-2-octylidenehydrazine (21):29% yield.1H NMR (400 MHz, DMSO-d6)δ: 10.45 (s, 1H), 7.95 (d,J=2.4 Hz, 1H), 7.45~7.42 (m, 1H), 6.94 (d,J=16.0 Hz, 1H), 1.50~1.45 (m, 2H), 0.70~0.65 (m, 2H), 0.44 (t,J=7.8 Hz, 3H);13C NMR (100 MHz, DMSO-d6)δ: 155.1, 144.7, 136.4, 129.7, 128.5, 122.9, 116.2, 32.1, 31.2, 28.5, 25.7, 22.1, 13.9. MS (EI)m/z: 308 (rel intensity) (M+). HRMS (ESI), Calcd for C14H21N4O4[M+H]: 309.1557; Found: 309.1552.

1-cyclopentylidene-2-(2,4-dinitrophenyl)hydrazine (23):61% yield.1H NMR (400 MHz, CDCl3)δ: 10.99 (s, 1H), 9.07 (d,J=2.8 Hz, 1H), 8.24 (t,J=4.4 Hz, 1H), 7.94~7.87 (m, 1H), 2.58 (t,J=7.0 Hz, 2H), 2.47 (t,J=7.2 Hz, 2H), 2.04~1.97 (m, 2H), 1.92~1.87 (m, 2H);13C NMR (100 MHz, CDCl3)δ: 168.5, 144.9, 137.4, 129.8, 123.4, 116.3, 116.1, 33.5, 28.1, 25.4, 24.8. MS (EI)m/z:264 (rel intensity) (M+). HRMS (ESI), Calcd for C11H13N4O4[M+H]: 265.0931; Found: 265.0929.

2 结果与讨论

图3 可见光催化剂Fig.3 Photocatalysts

EntryPhotocatalystAmineSolventTime/hYield/%b14iPr2NEtDMF245325iPr2NEtDMF344736iPr2NEtDMF237146iPr2NEtDMSO232356iPr2NEtMeOH235066iPr2NEtEtOH232576iPr2NEtCH3CN23 55686iPr2NEtH2O482396iPr2NEt1,4⁃dioxane3060106iPr2NEttoluene4862116iPr2NEtTHF2376126iPr2NEtEt2O4866136iPr2NEtCH2Cl22370146iPr2NEtDCE2371156iPr2NEtCHCl34863166Et3NTHF23561764⁃MeOPhNPh2THF23<518c6iPr2NEtTHF237919c,d6iPr2NEtTHF2383

a)Unless otherwise noted, all reactions were carried out with 1a (0.5 mmol), photocatalyst (5 mol%), amine (2.0 eq.) in solvent (5 mL) and under visible light irradiation at room temperature. b)Isolated yield. c)The reaction was conducted with 3 mol% of 6. d)The reaction was conducted with distd.iPr2NEt. DMF: Dimethylformamide; DMSO: Dimethyl sulfoxide; THF: Tetrahydrofuran; DCE : 1,2-Dichloroethane.

受到这些结果的鼓舞,同时也为了提高反应效率,笔者选择催化剂6为最佳催化剂、二异丙基乙基胺为添加剂对反应溶剂进行了筛选(表1,entries 4~15).首先,对在可见光催化剂中常用的5种溶剂(DMF、DMSO、MeOH、EtOH以及CH3CN)进行了尝试,发现大约1 d以后都能反应完全,以中等的收率获得目标羰基化合物2a.只有EtOH做溶剂时,反应体系中副产物较多,因此其收率只有25%(entry 6).考虑到绿色化学的要求,还考察了H2O作为反应介质对反应的影响,反应的收率仅为23%.也考察了另一个大极性溶剂1,4-二氧六环的影响,此时可以以中等的收率得到目标产物.此外还尝试了有机反应中常用的有机溶剂,包括芳香类(entry 10)、醚类(entries 11~12)、含卤素原子的溶剂(entries 13~15)等均能较好的应用于这一氧化体系中,并且THF给出了最好的结果(23 h, 76%)(entry 11).接着考察了胺添加剂的影响,三乙胺为添加剂时,收率有所降低(entry 16);但是当使用三芳基苯胺时,几乎不发生反应(entry 17).当催化剂用量降低至3 mol%时,收率略有提高,可以以79%的收率得到目标产物2a(entry 18).最后还发现当使用新纯化的二异丙基乙基胺作为添加剂时,收率可以提高到83%(entry 19).

最终得到的最优条件为:以铱复合物6为反应催化剂,新纯化的iPr2NEt为还原试剂,THF为反应溶剂.

得到最优化的反应条件之后,首先考察了苯环上的取代基对该反应的影响.发现当R为H、R2为2-MeO时,R1可以为H (1b)、2-MeO (1c),反应48 h之后,均可以以中等的收率得到相应的酮类化合物(收率:65%~67%)(表2,entries 2~3).当烯基硼酸为四取代烯烃1d时,52 h之后,可以以68%的收率获得三取代的酮化合物2d(表2,entry 4).

因为硼酸酯的稳定性要比硼酸强,因此在考察了烯基硼酸之后,也尝试将烯基硼酸酯1e引入到这一氧化反应体系中,1d之后以81%的收率分离得到了目标产物1,2-二苯基乙酮2a(Eq. 1).

表2 CB键氧化反应的底物范围——合成酮a

Entry12Time/hYield/%b12383248653486745268

a)Unless otherwise noted, all reactions were carried out with 1 (0.5 mmol), 6 (3 mol%),iPr2NEt (distd. 2.0 eq.) in THF (5 mL) and under visible light irradiation at room temperature. b)Isolated yield.

同时还将这一方法学成功应用于挥发性较强的羰基化合物的合成中,使用的策略是将羰基化合物原位与2,4-二硝基苯肼7反应得到较为稳定的苯腙(表3).从表3中可以看出,对于电中性的H、富电子MeO的和缺电子Cl的trans-2-芳基烯基硼酸

表3 CB键氧化反应的底物范围——合成腙a

EntrySubstrateProductTime/hYield/%b1445424849357684458555195656837882989661

a)Unless otherwise noted, all reactions were carried out with vinyl boronic acid/ester (0.5 mmol), 6 (3 or 5 mol%),iPr2NEt (distd. 2.0 eq.) in THF (5 mL) and under visible light irradiation at room temperature. After complete consumption of vinyl boronic acid/ester, 10% HCl aq. (5 mL), 7 (1.2 eq.) and Et2O (5 mL) were added to the reaction mixture at room temperature, then heated to reflux. b)Isolated yield. Ar=2,4-(NO2)2Ph.

3 结论

[1] Webb K S, Levy D A. Facile oxidation of Boronic acids and Boronic esters [J]. Tetrahedron Lett, 1995, 36: 5117-5118.

[2] Prakash G K S, Chacko S, Panja C, et al. Regioselective synthesis of phenols and halophenols from arylboronic acids using solid poly(N-vinylpyrrolidone)/hydrogen peroxide and poly(4-vinyl-pyridine)/hydrogen peroxide complexes [J]. Adv Synth Catal, 2009, 351: 1567-1574.

[3] Zhu C, Wang R, Falck J R. Mild and rapid hydroxylation of aryl/heteroaryl Boronic acids and Boronate esters with N-oxides [J]. Org Lett, 2012, 14: 3494-3497.

[4] Brown H C, Basavaiah D, Kulkarni S U, et al. Vinylic organoboranes. A general synthesis of (E)-disubstituted-alkenes or ketones via the (E)-(1-substituted-1-alkenyl)boronic esters [J]. J Org Chem, 1986, 51: 5270-5276.

[5] Ishida N, Miura T, Murakami M. Stereoselective synthesis of trisubstituted alkenylboranes by palladium-catalysed reaction of alkynyltriarylborates with aryl halides [J]. Chem Commun, 2007:4381-4383.

[6] Matteson D S, Ray R. Superoxide-ion oxidation of hydrophenazines, reduced flavins, hydroxylamine, and related substrates via hydrogen-atom transfer [J]. J Am Chem Soc, 1980, 102: 7591-7593.

[7] Hussain N, Hussain M M, Ziauddin M, et al. Stereoselective vinylation of aryl N-(2-pyridylsulfonyl) aldimines with 1-alkenyl-1,1-heterobimetallic reagents [J]. Org Lett, 2011, 13: 6464-6467.

[8] Zeitler K. Photoredox catalysis with visible light [J]. Angew Chem Int Ed, 2009, 48: 9785-9789.

[9] Narayanam J M R, Stephenson C R J. Visible light photoredox catalysis: Applications in organic synthesis [J]. Chem Soc Rev, 2011, 40: 102-113.

[10] Yoon T P, Ischay M A, Du J. Visible light photocatalysis as a greener approach to photochemical synthesis [J]. Nat Chem, 2010, 2: 527-532.

[11] Narayanam J M R, Stephenson C R J. Visible light photoredox catalysis: Applications in organic synthesis [J]. Chem Soc Rev, 2011, 40: 102-113.

[12] Xuan J, Xiao W J. Visible-light Photoredox catalysis [J]. Angew Chem Int Ed, 2012, 51: 6828-6838.

[13] Zen J M, Liou S L, Kumar A S, et al. An efficient and selective photocatalytic system for the oxidation of sulfides to sulfoxides [J]. Angew Chem Int Ed, 2003, 42: 577-579.

[14] Zhang P F, Wang Y, Li H R, et al. Metal-free oxidation of sulfides by carbon nitride with visible light illumination at room temperature [J]. Green Chem, 2012, 14: 1904-1908.

[15] Gu X Y, Li X, Chai Y H, et al. A simple metal-free catalytic sulfoxidation under visible light and air [J]. Green Chem, 2013, 15: 357-361.

[16] Lang X J, Hao W, Leow W R, et al. Tertiary amine mediated aerobic oxidation of sulfides into sulfoxides by visible-light photoredox catalysis on TiO2[J]. Chem Sci, 2015, 6: 5000-5005.

[17] Zhang M, Chen C C, Ma W H, et al. Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2and TEMPO [J]. Angew Chem Int Ed, 2008, 47: 9730-9733.

[18] Lang X J, Ji H W, Chen C C, et al. Selective formation of imines by aerobic photocatalytic oxidation of amines on TiO2[J]. Angew Chem Int Ed, 2011, 50: 3934-3937.

[19] Su F Z, Mathew S C, Lipner G, et al. mpg-C3N4-Catalyzed selective oxidation of alcohols using O2and visible light [J]. J Am Chem Soc, 2010, 132: 16299-16301.

[20] Su F Z, Mathew S C, Mhlmann L, et al. Siegfried Blechert. Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light [J]. Angew Chem Int Ed, 2011, 50: 657-660.

[21] Gazi S, Ananthakrishnan R. Bromodimethylsulfonium bromide as a potential candidate for photocatalytic selective oxidation of benzylic alcohols using oxygen and visible light [J]. RSC Adv, 2012, 2: 7781-7787.

[22] Ohzu S, Ishizuka T, Hirai Y, et al. Photocatalytic oxidation of organic compounds in water by using Ruthenium(II)-pyridylamine complexes as catalysts with high efficiency and selectivity [J]. Chem Eur J, 2013, 19: 1563-1567.

[23] Su Y J, Zhang L R, Jiao N. Utilization of natural sunlight and air in the aerobic oxidation of benzyl halides [J]. Org Lett, 2011, 13: 2168-2171.

[24] Rueping M, Vila C, Szadkowska A, et al. Photoredox catalysis as an efficient tool for the aerobic oxidation of amines and alcohols: Bioinspired demethylations and condensations[J]. ACS Catal, 2012, 2: 2810-2815.

[25] Sun H N, Yang C, Gao F, et al. Oxidative C-C bond cleavage of aldehydes via visible-light photoredox catalysis[J]. Org Lett, 2013, 15: 624-627.

[26] Stahl S S. Palladium oxidase catalysis: Selective oxidation of organic chemicals by direct dioxygen-coupled turnover[J]. Angew Chem Int Ed, 2004, 43: 3400-3420.

[27] Punniyamurthy T, Velusamy S, Iqbal J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen [J]. Chem Rev, 2005, 105: 2329-2364.

[28] Zou Y Q, Lu L Q, Fu L, et al. Visible-light-induced oxidation/[3+2] cycloaddition/oxidative aromatization sequence: A photocatalytic strategy to construct pyrrolo[2,1-a]isoquinolines [J]. Angew Chem Int Ed, 2011, 50: 7171-7175.

[29] Zou Y Q, Chen J R, Liu X P, et al. Highly efficient aerobic oxidative hydroxylation of arylboronic acids: Photoredox catalysis using visible light [J]. Angew Chem Int Ed, 2012, 51: 784-788.

[30] Yamataka H, Nagareda K, Ando K, et al. Relative reactivity and stereo-selectivity in the wittig reactions of substituted benzaldehydes with benzylidenetriphenylphosphorane [J]. J Org Chem, 1992, 57: 2865-2869.

[31] Cotter J, Hogan A M L, O’Shea D F. Development and application of a direct vinyl lithiation of cis-stilbene and a directed vinyl lithiation of an unsymmetrical cis-stilbene [J]. Org Lett, 2007, 9: 1493-1496.

[32] Tricotet T, Fleming P, Cotter J, et al. Selective vinyl C-H lithiation of cis-stilbenes [J]. J Am Chem Soc, 2009, 131: 3142-3143.

AN Xiaolei1, PENG Bowen2, XIAO Wenjing1

(1.College of Chemistry, Central China Normal University, Wuhan 430079;2.College of Physical Science and Technology, Central China Normal University, Wuhan 430079)

2015-06-28.

国家自然科学基金项目(21232003).

1000-1190(2015)05-0722-08

O626

A

*通讯联系人. E-mail: anxiaolei2013@mail.ccnu.edu.cn.

猜你喜欢
芳基华中师范大学羰基
Copper(II)-mediated cascade cyanomethylation of arylacrylamides to access cyano substituted quinoline-2,4-diones
手性磷酰胺类化合物不对称催化合成α-芳基丙醇类化合物
SiO2包覆羰基铁粉及其涂层的耐腐蚀性能
华中师范大学“五创并举”学党史,喜迎中国共产党百年华诞
羰基铁吸波材料性能提升研究进展
Rapid synthesis and characterization of bridged (bis-, tri- and tetra-) aryl carboxylic acid derivatives at room temperature by ultrasonic irradiation
学术战"役",华中师范大学砥砺前行
Linguistic Interpretation of Internet Catchwords of 2017
浅谈α—羰基金卡宾的分子间反应研究
3-芳基苯并呋喃酮类化合物的合成