于明明 王振光
·综述·
创伤性脑损伤PET显像研究进展
于明明 王振光
创伤性脑损伤(TBI)是由外伤引起的脑组织损害,有着较高的发生率及病死率。传统医学影像学技术难以做出诊断。PET作为一种定量测定脑糖代谢及脑血流量变化的显像技术,可以比较精确地显示TBI所致的脑功能变化。目前,18F-FDGPET显像通过评价脑内葡萄糖代谢及脑血流量变化对TBI做出诊断。笔者对TBI18F-FDGPET显像及脑血流灌注显像进行综述。
脑损伤;正电子发射断层显像术;氟脱氧葡萄糖F18;脑血流量
创伤性脑损伤(traumatic brain injury,TBI)是由外伤引起的脑组织损害。美国脑损伤协会(the Brain Injury Association of America,BIAA)将其定义为由外力导致的大脑功能的改变或其他脑病理性变化。TBI已成为日益严重的全球性公共卫生问题,据美国疾病控制与预防中心调查,在美国每年约有170万新发病例,约占所有创伤导致死亡的1/3,其中文献报道的TBI约75%为轻微脑损伤(mild traumatic brain injury,mTBI)[1]。TBI患者的健康状况不断下降已经引起关注,抑郁症、焦虑、自杀、药物及酒精滥用、人格障碍及其他一些精神症状在TBI患者中的发生率逐渐升高[2-5]。
临床常规应用CT和MRI来诊断颅内出血、脑损伤和颅骨骨折。然而,mTBI患者脑部解剖结构变化不明显,MRI或CT检查难以发现,而且部分患者颅内存在金属碎片并不适合进行MRI检查。很多mTBI患者在受伤后会出现头痛、头晕、乏力、抑郁、焦虑、睡眠障碍、畏光、健忘及不能集中注意力等症状,这些症状均不能通过CT或MRI评价[6]。PET显像是一种定量测定脑血流灌注及代谢的显像技术,可以在纳克水平显示体内小分子变化情况,与毫克或微克水平的MRI或CT相比,灵敏度更高。
1.1 mTBI的18F-FDGPET显像研究
mTBI常伴有认知障碍以及情绪紊乱等症状。认知障碍通常表现在注意力、记忆力及处理速度方面的改变[7]。情绪紊乱最长见的是抑郁症状,约26%的mTBI患者有重度抑郁症,另外20%患者在伤后1年内出现轻微的抑郁症状[8-9]。持续性认知障碍及情绪障碍可能会影响mTBI的远期疗效[9-10]。
mTBI患者脑部葡萄糖代谢水平在一定时间内通常会出现相应改变。多项18F-FDG PET临床研究发现,在mTBI后全脑或特定脑区域,如颞叶前部及中部、前扣带回、楔前叶、额叶、胼胝体、右上顶叶皮层、幕下小脑蚓部及脑桥葡萄糖代谢降低[11-12]。Byrnes等[13]进行了一项大样本研究,对年龄在11~69岁、遭受摔伤及爆炸伤的患者,在受伤后第2日至7年进行18F-FDG PET显像,研究结果显示,mTBI脑局部的18F-FDG摄取降低。Peskind等[12]对12例退伍军人行20min PET扫描评价全脑18F-FDG代谢水平,尽管这些患者受伤的程度(3~51次爆炸)和伤后评估时间(2至5年)有较大变化,但是均可观察到他们大脑的幕下结构(小脑、小脑蚓部和脑桥)和内侧颞叶皮层18F-FDG代谢降低。2013年,Mendez等[14]对24例退伍军人行18FFDGPET脑显像,比较因钝力和爆炸引起的mTBI的差异,研究结果发现,与钝器致伤组相比,爆炸伤组表现出右上顶叶18F-FDG摄取减少,而不是额颞区。在最近的研究中,Petrie等[15]对34名遭受1~100次爆炸伤的退伍军人和18名无爆炸伤的退伍军人行18F-FDGPET显像研究发现,前者在顶叶皮质、左侧躯体感觉皮层和右视觉皮层18F-FDG摄取降低,经受爆炸伤较多的退伍军人与经受爆炸伤较少的(少于20次)相比,海马旁回18F-FDG摄取较低。
Selwyn等[16]研究发现,在动物mTBI模型中,脑18F-FDG代谢暂时性降低,在24 h时降低最为明显,在伤后第9日通过免疫标记法分析发现,星形细胞活性与18F-FDG代谢降低呈正相关。研究提示,mTBI对葡萄糖摄取的变化可能与神经胶质细胞的活性有关。
1.2 中重度TBI18F-FDGPET显像研究
Diaz-Arrastia等[17]对TBI进行了分期,在1 d内为损伤急性期,1 d至1周为亚急性期,1周至6个月为急性后期,6个月以后为慢性期。目前,对中重度TBI的研究主要集中在亚急性期至慢性期,而对急性期的研究鲜有报道。对于亚急性期至慢性期中重度TBI,研究显示,18F-FDG摄取在丘脑、额叶、颞叶区域持续降低,在全脑或邻近脑内病灶区域呈现双相反应。
Bergsneider等[18]报道,TBI患者在伤后2~28 d行PET显像显示,全脑糖代谢率下降了84%,少部分TBI患者5 d内可见葡萄糖代谢增高,然后是持续数周至数月的降低。2010年Provenzano等[19]对22名拳击手的18F-FDG PET显像研究发现,额叶、扣带回、后顶叶及小脑糖代谢降低,这可能与持续性头部侧面撞击有关。Garcia-Panach等[20]对弥漫性TBI(急性后期至慢性期)相关研究发现,静息下18F-FDGPET扫描显示全脑、额叶前部、扣带回糖代谢明显降低,值得关注的是扣带回18F-FDG摄取可与注意力及智力有关,会对诊断结果造成一定混淆。
有关中重度TBI后大脑糖代谢降低机制尚不明确。Wu等[21]对19名正常志愿者及14例TBI患者进行18F-FDG PET显像研究发现,TBI患者脑灰质糖代谢降低,动力学分析显示TBI患者脑灰质己糖激酶活性降低。此结果提示可能是线粒体功能受损或蛋白质失调。Xu等[22]对32例患有中重度TBI的患者在伤后6个月行18F-FDGPET显像及MRI,结果发现,颞叶、额叶糖代谢降低,糖代谢水平降低与脑萎缩的程度呈正相关,提示葡萄糖水平代谢的降低可能与局部脑萎缩有关。Wu等[23]对8例TBI患者进行18F-FDGPET显像研究发现,在脑损伤区域糖代谢水平较低,该区域细胞分布较稀疏;在损伤区域周边糖代谢水平较高,该区域细胞分布较紧密。该结果提示糖代谢的变化与损伤区域细胞密度有关。
大脑缺血是TBI后常见的二次损伤,脑血流量(cerebral blood flow,CBF)可以反映大脑缺血的状况。Cunningham等[24]对14例TBI患者行PET脑血流灌注显像及脑生理学研究发现,患者的CBF减低,当CBF低于0.15ml·m l-1·min-1时会导致不可逆的脑组织损伤。Kawai等[25]对15例TBI伴有脑挫伤的患者行PET脑血流灌注显像发现,脑挫伤周边区域的CBF下降11%。Hattori等[26]对16例经CT证实的脑挫伤患者以及18名正常志愿者行PET脑血流灌注显像发现,与正常志愿者相比,TBI患者脑挫伤区域及其周围区域CBF明显降低,提示可能与脑挫伤及其周围区域脑水肿有关。Rostami等[27]对TBI患者PET脑血流灌注显像研究发现,TBI患者的CBF变化呈三相模式,在急性期(第1相)CBF下降50%;在TBI后最初的12 h内第2相开始,持续4~5 d,该相的CBF增加,接近或超过正常值;第3相CBF降低,持续2周左右。然而,TBI患者的CBF表现多种多样,有些患者CBF会持续降低,有些患者CBF没有明显改变。Hamilton等[28]对一组TBI伴重度抑郁症的患者进行PET脑血流灌注显像研究发现,CBF变化的部位通常位于前额叶区域,变化的程度与症状的严重程度相关。Nielsen等[29]对TBI的PET脑血流灌注显像及糖代谢显像研究发现,TBI患者CBF的变化与葡萄糖代谢的变化并不一致,通过脑血流灌注显像结合脑微透析技术发现,脑内乳酸/丙酮酸值升高,这提示葡萄糖代谢的降低是由线粒体功能紊乱导致的,与CBF的变化无关。
PET可以评价TBI患者脑内葡萄糖摄取以及脑血流灌注情况。在TBI糖代谢显像研究中,mTBI的18F-FDG代谢是降低的;对于中重度TBI,急性期研究较少,在亚急性期至慢性期18F-FDG摄取持续降低,部分病例在全脑或邻近脑内病灶区域呈现双相反应。在脑血流灌注显像研究中,CBF变化呈三相模式,即开始CBF降低,然后升高,最后又降低的变化趋势。多种因素可以影响最终结果,因此需要进一步优化TBI的PET显像协议,根据PET扫描时TBI分期、受伤的类型对数据进行分类,并进一步发展图像处理和分析技术。
[1]Huang MX,Nichols S,Baker DG,et al.Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patientswith mild traumatic brain injury[J].Neuroimage Clin,2014,5:109-119.
[2]Jeyaraj JA,Clendenning A,Bellemare-Lapierre V,et al.Clinicians’ perceptionsof factors contributing to complexity and intensity of care ofoutpatientswith traumatic brain injury[J].Brain Inj, 2013,27(12):1338-1347.
[3]Vasterling JJ,Brailey K,Proctor SP,etal.Neuropsychological outcomesofmild traumatic brain injury,post-traumatic stress disorder and depression in Iraq-deployed USArmy soldiers[J].Br JPsychiatry,2012,201(3):186-192.
[4]Ilie G,Boak A,Adlaf EM,etal.Prevalence and correlatesof traumatic brain injuriesamong adolescents[J].JAMA,2013,309(24):2550-2552.
[5]Rockhill CM,Jaffe K,Zhou C,et al.Health care costs associated with traumatic brain injury and psychiatric illness in adults[J].J Neurotrauma,2012,29(6):1038-1046.
[6]Taylor HG,Dietrich A,Nuss K,et al.Post-concussive symptoms inchildren with mild traumatic brain injury[J].Neuropsychology, 2010,24(2):148-159.
[7]Bigler ED.Neuroimagingbiomarkers inmild traumatic brain injury(mTBI)[J].NeuropsycholRev,2013,23(3):169-209.
[8]Bombardier CH,Fann JR,Temkin NR,et al.Rates ofmajor depressive disorder and clinical outcomes following traumatic brain injury[J].JAMA,2010,303(19):1938-1945.
[9]Hart T,Hoffman JM,Pretz C,et al.A longitudinal study ofmajor andminordepression following traumatic brain injury[J].Arch Phys Med Rehabil,2012,93(8):1343-1349.
[10]McMahon P,Hricik A,Yue JK,et al.Symptomatology and functional outcome in mild traumatic brain injury: results from the prospective TRACK-TBIstudy[J].JNeurotrauma,2014,31(1):26-33.
[11]Umile EM,Sandel ME,Alavi A,et al.Dynamic imaging in mild traumatic brain injury:support for the theory ofmedial temporal vulnerability[J].Arch Phys Med Rehabil,2002,83(11):1506-1513.
[12]Peskind ER,Petrie EC,Cross DJ,et al.Cerebrocerebellar hypometabolism associated with repetitive blas texposuremild traumatic brain injury in 12 Iraqwar Veteranswith persistentpost-concussivesymptoms[J].Neuroimage,2011,54Suppl1:S76-82.
[13]Byrnes KR,Wilson CM,Brabazon F,et al.FDG-PET imaging in mild traumatic brain injury:a critical review[J].FrontNeuroenergetics,2014,5:13.
[14]MendezMF,Owens EM,Reza BerenjiG,etal.Mild traumatic brain injury from primary blast vs.blunt forces:post-concussion consequences and functional neuroimaging[J].Neuro Rehabilitation, 2013,32(2):397-407.
[15]Petrie EC,Cross DJ,Yarnykh VL,et al.Neuroimaging,behavioral, and psychological sequelae of repetitive combined blast/impact mild traumatic brain injury in Iraq and Afghanistanwar veterans[J]. JNeurotrauma,2014,31(5):425-436.
[16]Selwyn R,Hockenbury N,Jaiswal S,etal.Mild traumatic brain injury results in depressed cerebral glucose uptake:an FDG PET study[J].JNeurotrauma,2013,30(23):1943-1953.
[17]Diaz-Arrastia R,Kochanek PM,Bergold P,et al.Pharmacotherapy of traumatic brain injury:state of the scienceand the road forward report of the department of defense neurotrauma pharmacology workgroup[J].JNeurotrauma,2014,31(2):135-158.
[18]BergsneiderM,Hovda DA,McArthur DL,etal.Metabolic recovery following human traumatic brain injury based on FDG-PET:time courseand relationship toneurologicaldisability[J].JHead Trauma Rehabil,2001,16(2):135-148.
[19]Provenzano FA,Jordan B,Tikofsky RS,etal.F-18 FDGPET imagingof chronic traumatic brain injury in boxers:a statistical parametric analysis[J].NuclMed Commun,2010,31(11):952-957.
[20]Garcia-Panach J,Lull N,Lull JJ,et al.A voxel-based analysis of FDG-PET in traumatic brain injury:regionalmetabolism and relationship between the thalamus and cortical areas[J].JNeurotrauma,2011,28(9):1707-1717.
[21]Wu HM,Huang SC,Hattori N,etal.Selectivemetabolic reduction in graymatter acutely following human traumatic brain injury[J].J Neurotrauma,2004,21(2):149-161.
[22]Xu Y,McArthur DL,Alger JR,et al.Early nonischemic oxidativemetabolic dysfunction leads to chronic brain atrophy in traumatic brain injury[J].JCereb Blood Flow Metab,2010,30(4):883-894.
[23]Wu HM,Huang SC,Vespa P,etal.Redefining the pericontusional penumbra following traumatic brain injury:evidence of deterioratingmetabolic derangementsbased on positron emission tomography[J].JNeurotrauma,2013,30(5):352-360.
[24]Cunningham AS,Salvador R,Coles JP,et al.Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury[J].Brain,2005,128(Pt8):1931-1942.
[25]Kawai N,Nakamura T,Tamiya T,et al.Metabolic disturbance withoutbrain ischemia in traumatic brain injury:a positron emission tomography study[J].Acta Neurochir Suppl,2008,102:241-245.
[26]HattoriN,Huang SC,Wu HM,etal.PET investigation ofpost-traumatic cerebral blood volume and blood flow[J].Acta Neurochir Suppl,2003,86:49-52.
[27]RostamiE,EngquistH,Enblad P.Imagingofcerebralblood flow in patients with severe traumatic brain injury in the neurointensive care[J].FrontNeurol,2014,5:114.
[28]Hamilton JP,Chen MC,Gotlib IH.Neural systems approaches to understanding major depressive disorder:an intrinsic functional organization perspective[J].NeurobiolDis,2013,52(1):4-11.
[29]Nielsen TH,Bindslev TT,Pedersen SM,et al.Cerebral energy metabolism during induced mitochondrial dysfunction[J].Acta Anaesthesiol Scand,2013,57(2):229-235.
Progress in PET imaging evaluating of traumatic brain injury
Yu Mingming,Wang Zhenguang.PET/CTCenter,the Affiliated Hospital of Qingdao University,Qingdao 266100,China
Wang Zhenguang,Email:qdpetct@yahoo.com
Traumatic brain injury(TBI)is the damage ofbrain tissue caused by external injuries and ithas a higher incidence of incidence rate and death rate.It is difficult to diagnose TBIwith classic medical imaging technology.PET is an imaging technology that canmeasure the cerebralglycometabolism and cerebralblood flow quantitatively.Itcan display the brain functional change caused by TBI.Currently,18F-FDG PET imaging can diagnose TBIby evaluating the cerebral glycometabolism and cerebral blood flow variation.This paper has comprehensively discussed the current conditions of18F-FDG PET imaging and cerebralblood flow perfusion PET imaging.
Brain injury;Positron emission tomography;Fluorodeoxyglucose F18;Cerebral blood flow
2014-06-27)
10.3760/cma.j.issn.1673-4114.2015.02.012
266100,青岛大学附属医院PET/CT中心
王振光(Email:qdpetct@yahoo.com)