干湿交替对土壤磷素迁移转化影响的研究综述

2015-03-17 15:44任文畅王沛芳任凌霄
长江科学院院报 2015年5期
关键词:磷素土壤影响

任文畅,王沛芳,b,钱 进,b,任凌霄

(河海大学 a.浅水湖泊综合治理与资源开发教育部重点实验室;b.环境学院,南京 210098)

干湿交替对土壤磷素迁移转化影响的研究综述

任文畅a,王沛芳a,b,钱 进a,b,任凌霄a

(河海大学 a.浅水湖泊综合治理与资源开发教育部重点实验室;b.环境学院,南京 210098)

土壤磷素的丰缺制约着生态系统初级生产力的生长状况。土壤的结构与理化性质长期受到干湿交替的周期性扰动,而干湿交替又显著影响着土壤磷素的迁移转化途径。系统总结了近年来国内外对干湿交替作用下土壤的水分含量、吸附特性以及微生物对土壤磷素迁移转化影响的研究及报道。研究成果表明:①不同水分条件改变了土壤空隙与传输通道,且不同程度地刺激了有机残体的矿化分解以及氧化还原强度,进而影响土壤磷素的迁移与形态转化;②干湿交替改变了土壤颗粒粒径、土壤吸附点位以及金属化合物形态,进而影响了土壤磷的吸附性能;③土壤微生物磷在干湿交替过程中成为土壤磷素的主要来源之一,微生物对干湿交替的不同响应影响着土壤磷素。并对今后的研究进行了展望。

土壤;土壤磷素;干湿交替;迁移转化;生态系统

1 研究背景

干湿交替是土壤经历的最广泛的非生物胁迫形式之一[1-2],是大自然存在的一种普遍现象。早在1925年,就有学者开始研究干湿交替对土壤产生的影响[3]。引发干湿交替的因素有很多,降雨不足以及降雨的不均匀性[4]、经常性的暖干气候等[5],都导致土壤频繁出现干湿交替现象;江河、湖泊等水体周期性的水位涨落同样会造成河湖滨水带的干湿交替现象[6]。干湿交替作用下,土壤产生了物理、化学、生物等变化[7],主要表现为对土壤结构的形成、有机质的分解矿化、土壤微生物群落的数量与结构等的改变[8],进而牵动着土壤理化性质的变化,从而对土壤生态系统的结构和功能产生重大影响。近年来,干湿交替过程作为土壤生态系统养分循环的主要驱动因子之一,使那些不易分解的营养物质转化为易分解的简单的营养物质,从而有助于营养物质矿化作用以及溶解作用在短时间的增强[9],进而影响着土壤营养元素的生物地球化学循环过程。另外,磷作为一种重要的土壤营养元素,是植物发育生长不可或缺的养分之一[10]。土壤磷的缺失会导致植物生长迟缓等不良结果,而过多的土壤磷素会通过地表径流、侵烛和淋溶(泄漏或地下径流)等方式进入地表水体和地下水中[11-12],导致水体富营养化。

干湿交替不仅使得土壤磷素之间各种磷形态发生改变及转换,而且也影响着土壤磷素的滞留或流失,而这些迁移转化最终取决于干湿交替在物理、化学、生物方面对土壤磷的影响程度。目前,通过研究土壤含水率、土壤吸附以及土壤微生物在干湿交替条件下对土壤磷素迁移转化的影响,探讨土壤磷在干湿交替条件下的迁移转化过程,认知土壤磷素的生物地球化学循环过程在干湿交替过程中的变化,已成为国内外学者研究的热点问题[7, 13-17]。

2 土壤含水率的影响

土壤水分是调节养分流失及利用性的重要因素[2],是土壤中可溶态磷在水平和垂直方向上迁移流失的载体[18]。干湿交替显著影响着土壤水分状况,进而改变土壤理化性质,最终影响土壤营养元素的迁移与转化。

Butterly等[19]在“保持田间持水量、均匀间隔干湿交替、长短结合间隔干湿交替、风干”4种水分管理下,对2种农田土壤进行了培育,研究结果表明:活性磷(树脂可提取磷)浓度不受上述土壤水分管理的影响。尹金来等[20]选用室内恒温培育试验,研究了水分含量对石灰性土壤磷形态转化的影响。研究表明:淹水促进石灰性土壤磷向Fe-P和O-P(为蒋柏藩提取法中的磷酸铁盐和闭蓄态磷酸盐)转化,拟旱(使土壤水分维持在饱和持水量的50%~70%)使土壤Ca2-P和Ca8-P (为蒋柏藩提取法中磷酸钙盐中的磷酸二钙型和磷酸八钙型)较高;淹水—回旱后Ca2-P和Ca8-P较高,拟旱—淹水后Fe-P和O-P较高。杨连飞[21]研究了水层灌溉、轻干湿交替灌溉、重干湿交替灌溉3种水分管理模式下秸秆还田对土壤性质的影响,研究结果表明:土壤有效磷在干湿交替条件下更高,其中在灌浆期(指水稻灌浆期,具体是指水稻通过光合作用产生淀粉、蛋白质和积累的有机质通过同化作用将他们储存在籽粒里的阶段)轻干湿交替条件下有效磷更高,在收获期重干湿交替条件下有效磷更高。彭娜等[22]研究了不同水分条件下稻草还田对有效磷的影响,结果表明:施加稻草能提高土壤有效磷含量,且连续淹水处理升高的幅度显著高于干湿交替处理。徐燕花[23]对含水量分别为13.39%,61.05%,63.27%的狗牙根草地、南荻洲滩地、苔草洲滩地土壤进行了研究,结果表明:树脂磷和NaHCO3-P(用0.5M碳酸氢钠提取的土壤磷)在狗牙根草地最高;总有效磷狗牙根草地<苔草洲滩地<南荻洲滩地,说明水分含量适中有利于提高有效磷含量,过湿过干都会降低有效磷含量;经相关分析表明湿地土壤低水分情况下水分含量能显著影响各种形态P的含量。Blackwell等[24]研究了干土(0.9%含水量)和湿土(24.2%含水量)在不同复水(加水使干土湿润的过程)速率下渗滤液中磷浓度和形态的研究,结果表明:在各种复水速率下干土渗滤液中总磷量明显比湿土高,颗粒态磷无明显差异,溶解态磷干土明显高于湿土,并且渗滤液中有机磷所占比例远高于无机磷。

干湿交替变化中,土壤经历着从干到湿,从湿到干的循环,从而引起土壤含水率的变化,对土壤结构体、营养元素的迁移转化、土壤化合物的转变产生深远影响,进而影响着磷的迁移转化。由于潮湿土对土壤间质孔隙间的间隙水有更牢的固持力,相比之下干化土在复水湿润后水分能更均匀的分散,使得湿润干化土的水可能接触更多的土壤表面,因而能溶解转化更多土壤磷素[24]。然而,风干土壤快速潮湿时,大团聚体会水化成小团聚体,部分不稳定的小团聚体以云状物的形式散布在聚集体周围,阻塞水的传送和储水孔隙,对土壤结构产生不利影响,形成土壤板结等[25],影响土壤磷素的迁移转化。此外,土壤中留有大量植物残体,土壤水分条件影响其矿化分解过程[26],不同水分条件不同程度地刺激植物残体的破碎分解,产生有机酸促进土壤磷的溶解和活化[22];淹水条件下可致使铁铝化合物还原,随着水分的增加和还原作用的加强,使吸附在其表面甚至部分蓄闭态磷得以释放[23,27],实现磷形态之间的转化。

3 土壤吸附的影响

土壤吸附是一种重要的土壤截磷机制[28],能将土壤中的有效磷转化为各种植物难利用的磷,而存留在土壤中[29]。黏土矿物、各种氧化物以及有机固相的表面是土壤磷吸附的主要场所[30]。酸性土壤的主要吸附载体是铁铝氧化物[31],物理性黏粒和碳酸钙是石灰性土壤的主要固磷基质[32]。此外,有机质、pH、氧化还原点位、温度等对土壤磷吸附作用的影响也很大[33-35]。干湿交替会引起土壤理化性质和功能结构的改变[36- 37],进而导致土壤磷吸附性能的改变,影响磷素在土壤中的迁移转化。

王里奥等[38]研究了三峡库区消落带土壤,运用Langumir等温吸附方程对磷的吸附行为进行了拟合分析,研究结果表明:淹水—落干后吸磷能力增强,最大吸附量增加,土壤磷的解吸率降低。Zhang等[39]在室内研究了2种水稻土在淹水和风干条件下的磷吸附、解吸及其有效磷的差异,结果表明:在淹水条件下,土壤磷吸附能力增加,解吸能力下降和有效磷减小;而在淹水—风干过程中,土壤磷吸附显著减少,磷解吸量和有效磷含量提高。Phillips[40]对红壤土、砂壤土、高有机质沼泽土,进行了土壤磷吸附性研究,模拟了干化、淹水及淹水—干化条件,结果表明:淹水对各种土壤磷吸附的影响不显著,淹水—干化对吸附等温线(指一定温度下溶质分子在两相界面上吸附平衡时,两相中浓度之间的关系曲线)无影响。此外,Pelovuori[41]测试了芬兰4种耕地土壤在湿润和风干情况下的吸附作用,用改进的Freundlich方程拟合数据,以Q/I表示土壤磷的吸附量(Q表示吸附(解吸)量,I表示吸附(解吸)时的浓度)。结果表明:样品的风干改变了Q/I值[弗伦德利希方程(Freundlich equation)中的参数。低磷浓度试验时,增加了土壤磷的释放;高磷浓度试验时,增加了土壤磷的吸附,以及提高了磷的最大缓冲值。Litaor等[42]研究了泥炭土的吸附特性,用Langumir模型拟合试验数据,结果表明:泥炭土的再湿润导致最大吸附量减小、最大缓冲量下降,但是EPC0(临界平衡浓度)增加,将导致磷的迁移性变强。周驰等[43]用改进的Langumir等温吸附方程,研究了巢湖湖滨带土壤和沉积物历经干湿交替后的磷吸附行为,研究表明:沉积物磷最大吸附量和吸附能常数在风干后分别显著降低和提高,但对磷平衡浓度影响不大,进而影响磷的吸附能力。

上述研究结果各不相同,干湿交替对土壤磷吸附作用的影响在不同试验研究中呈现出增强、减弱以及不变的结果,这可能与各自土壤的类型、性质及所处地层地质条件等不同有关[41]。风干能增加沼泽土壤和耕地土壤磷的吸附[44-45],但是对湿地及湖泊土壤/沉积物磷的吸附量减少[46-50]。从吸附机理出发分析,一方面,干湿交替使土壤熟化(压缩在潮湿时卷入的空气,而分解团聚体)和不同程度的膨胀导致大团聚体转变为小团聚体,产生小颗粒物(<50 μm)[17],增大了比表面积,以及使Fe-Al-有机化合物结合键断裂,形成新的吸附点位[51],从而增强了土壤磷的吸附能力。另一方面,团聚体的破坏,有机质的分解,使有机质中的富里酸聚等阴离子释放,与磷酸盐阴离子产生吸附竞争,减小了土壤磷的吸附能力,促进磷的释放[43, 52]。此外,干湿交替条件下,Fe2+氧化物与Fe3+氧化物及氢氧化物之间的转换,也影响着磷的吸附性能[40, 53-54]。总之,干湿交替下土壤成分构成、土壤理化性质以及各种环境因素的改变共同影响着土壤磷的吸附行为,这些因素的相互协同、相互制约,综合表现为干湿交替下土壤磷的滞留或流失现象。

4 土壤微生物的影响

生活在土壤中的细菌、真菌、放线菌、藻类统称为土壤微生物,一般细菌所占比例最大。

土壤微生物是土壤亚生态系统中最为活跃的成员,对改善土壤理化性质、形成和维持土壤团聚体等土壤结构以及提高土壤肥力等有着极其重要的决定性作用[55],此外,还在土壤腐殖质形成、有机质分解等能量流动过程中和在养分动态平衡与转化等物质循环过程中起着重要的作用[56]。

Turner等[57]利用直接细菌细胞计数法,统计了2种澳大利亚牧场土壤水分以及焦磷酸四钠提取物中的细胞数量,发现几乎所有的可提取出的细胞都随着干泥的再湿润过程而溶解,溶解的微生物细胞中的磷酸盐含量与再湿润过程水体中的可提取态磷酸盐的增加有密切联系,这表明了细菌细胞溶解是释放磷酸盐的主要来源之一。Butterly等[58]研究了多重干湿交替对澳大利亚新南威尔士州土壤磷素脉冲和微生物量的影响,在第1次干湿交替后土壤微生物量骤减,但微生物量中磷仍然比潮湿条件下低;再湿润后,树脂交换磷释放超过了7 mg/kg,相当于有效磷增加了35%~40%,但是树脂磷的这种脉冲现象在7 d湿润培养后就消失了;与干湿交替下微生物磷减少不同,树脂磷在随后的干湿交替后增加,这说明树脂磷脉冲可能不是来源于微生物量;此外还指出,干湿交替减少了细菌但增加了革兰氏阳性细菌。总之干湿交替导致了磷素脉冲现象,但是这与微生物量改变无关。Mitchell等[59]研究了干化/氧化对澳大利亚Chaffey水库沉积物磷释放性能的影响,干化沉积物磷的厌氧释放低于湿沉积物;加有甲醛但未暴露于空气中的沉积物磷释放量减少了很多,说明厌氧磷释放可能是由微生物引起;未干化沉积物加碳源硫源后能提高磷释放量,说明C(碳)和S(硫)限制了沉积物中细菌的活动。研究结果表明:风干引起的磷释放减少是由微生物群落结构(尤其是活性硫酸盐还原细菌的减少)的改变、干化导致的碳限制造成的。Qiu等[60]研究了干湿交替下浮游生物和微生物量对西澳大利亚北湖沉积物磷释放的影响,干化前浮游生物刚杀死后释放的磷比风干后多;通过消毒杀菌对比表明细菌对干湿交替后磷释放量的贡献占很大比例;在可提取磷浓度相对低的时候(<1 000 μg/L)时,干湿交替引起的磷增加主要来源于死亡的微生物量。这与其他学者提出来的结论[61-63]一致。

干湿交替迫使大约58%以上的微生物死亡[64],但是不同微生物群落对干湿交替的反应不一,直接影响磷释放量[65-66],以及微生物合成磷的形态[67]。在干化时,有些微生物通过释放细胞液来抵抗干燥,这成为有机磷的一种可能来源[68];有些微生物直接破裂死亡溶解,释放有机磷[57]。在复水时,有些微生物细胞由于涌进大量的水而导致破裂溶解,有些会通过释放细胞液来维持合适的细胞压存活下来,随后快速矿化由死亡微生物释放化合物[69]。在周期性的干湿交替下,有些微生物可能已经适应生存下来[2],有些微生物在复水后因细胞修复而生还[65],而这些活着的微生物在一定程度上能调节及控制渗滤液中的磷浓度[24],重新吸收土壤中的溶解性无机磷,转化成有机磷。

5 研究展望

系统阐述了干湿交替作用下土壤含水率、吸附性能以及微生物3种主要影响因子对土壤磷素迁移转化的影响机理和研究进展。到目前为止,关于干湿交替作用下土壤磷素的迁移转化研究已取得一定成果,但是仍有诸多问题需进一步探讨和深化研究。

(1) 干湿交替作用下土壤磷素在流域尺度上的迁移转化研究很少。流域尺度上的土壤在共同遭受干湿交替的同时,由于其地貌地形、土壤结构和成分、水文情况、生物种类等的差异,使得土壤磷素的迁移转化具有多变性和复杂性。大部分学者的研究对象集中在农田、草地、湿地、林地等单一土壤类型,而缺乏对流域河岸带、湖滨带等土壤利用形式多变区域的研究。

(2) 研究土壤磷素迁移转化的技术和方法比较单一。目前,传统的化学试剂提取法在磷形态测定中占主导地位,缺乏31P(磷的原子量为31的同位素,半衰期稳定)核磁共振(NMK)技术、X射线近边结构光谱同步辐射(XANES)技术、同位素示踪技术等的应用;对磷吸附性能研究时,几乎都是针对无机磷酸盐的吸附,而对有机磷吸附试验非常缺乏;干湿交替的条件大多数是在室内模拟淹水—风干,这与野外的真实情况相差甚远,不能很好地反映野外干湿交替效果。

(3) 如何控制干湿交替引起的土壤磷流失的措施较为缺乏。现有的控磷技术大多未考虑干湿交替带来的影响,而干湿交替对土壤磷素的迁移转化的研究主要集中在机理和影响因素方面,缺乏治理和控制干湿交替引起的土壤磷流失的研究。

干湿交替不仅是一种常见的自然现象,也是一种可人为调节的管理方式。开展干湿交替对土壤磷素迁移转化的研究,有利于我们更清楚地认知干湿条件下磷在土壤中的迁移转化过程以及其影响因子,从而为土壤磷的有效管理、土壤环境质量的演变过程、生态环境的恢复、水体富营养化的分析与预防提供科学的基础数据和理论依据。

[1] SOULIDES D, ALLISON F. Effect of Drying and Freezing Soils on Carbon Dioxide Production, Available Mineral Nutrients, Aggregation, and Bacterial Population[J]. Soil Science, 1961, 91(5): 291-298.

[2] BLACKWELL M S, CARSWELL A M, BOL R. Variations in Concentrations of N and P Forms in Leachates from Dried Soils Rewetted at Different Rates[J]. Biology and Fertility of Soils, 2013, 49(1): 79-87.

[3] PURI A N, CROWTHER E M, KEEN B A. The Relation Between the Vapour Pressure and Water Content of Soils[J]. The Journal of Agricultural Science, 1925, 15(1): 68-88.

[4] 王 明. 干湿交替驱动下土壤微生物量及N2O变化规律[D].北京:中国农业科学院, 2013. (WANG Ming. Microbial Biomass and N2O Emission as Affected by the Soil Drying and Rewetting Events[D]. Beijing: Chinese Academyof Agricultural Sciences, 2013. (in Chinese))

[5] 张雪雯, 莫 熠, 张博雅,等.干湿交替及凋落物对若尔盖泥炭土可溶性有机碳的影响[J]. 湿地科学,2014, 12(2): 134-140.(ZHANG Xue-wen, MO Yi, ZHANG Bo-ya,etal. Effect of Wetting-drying Cycle and Litter on Dissolved Organic Carbon in Peat Soil in Zoigê Plateau[J]. Wetland Science,2014,12(2):134-140.(in Chinese))

[6] 杨红军. 五里湖湖滨带生态恢复和重建的基础研究[D].上海:上海交通大学, 2008.(YANG Hong-jun. Basic Study on the Ecological Restoration and Reconstruction in Wulihu Lake[D]. Shanghai: Shanghai Jiaotong University, 2008.(in Chinese))

[7] THANH NGUYEN B,MARSCHNER P.Effect of Drying and Rewetting on Phosphorus Transformations in Red Brown Soils with Different Soil Organic Matter Content[J]. Soil Biology and Biochemistry, 2005, 37(8): 1573-1576.

[8] 朴河春, 刘广深,洪业汤. 干湿交替和冻融作用对土壤肥力和生态环境的影响[J]. 生态学杂志, 1995, 14(6): 29-34. (PIAO He-chun, LIU Guang-shen,HONG Ye-tang. Effect of Alternative Drying-Rewetting and Freezing-Thawing on Soil Fertility and Ecological Environment[J]. Chinese Journal of Ecology, 1995, 14(6): 29-34. (in Chinese))

[9] SCHIMEL J, BALSER T C, WALLENSTEIN M. Microbial Stress-response Physiology and Its Implications for Ecosystem Function[J]. Ecology, 2007, 88(6): 1386-1394.

[10]郭彦军, 倪 郁, 韩建国. 农牧交错带人工种草对土壤磷素有效性的影响[J]. 草业学报, 2010, 19(2): 169-174.(GUO Yan-jun,NI Yu,HAN Jian-guo.Effects of Establishing Perennial Artificial Grasslands on the Availability of Soil Phosphorus in Agro-pastoral Transitional Zones, Northern China[J]. Acta Prataculturae Sinica, 2010,19(2): 169-174 .(in Chinese))

[11]HESKETH N, BROOKES P. Development of an Indicator for Risk of Phosphorus Leaching[J]. Journal of Environmental Quality, 2000, 29(1): 105-110.

[12]TUNNEY H, CARTON O, BROOKES P,etal. Phosphorus Loss from Soil to Water[M]. Oxon, UK: CAB International, 1997.

[13]马利民, 张 明, 滕衍行,等. 三峡库区消落区周期性干湿交替环境对土壤磷释放的影响[J]. 环境科学, 2008,29(4):1035-1039.(MA Li-min,ZHANG Ming,TENG Yan-hang,etal.Characteristics of Phosphorous Release from Soil in Periodic Alternately Waterlogged and Drained Environments at WFZ of the Three Gorges Reservoir[J]. Environmental Science,2008,29(4):1035-1039.(in Chinese))

[14]曹 琳, 吉芳英, 林 茂, 等. 三峡库区干湿交替消落区土壤磷形态[J]. 长江流域资源与环境, 2011, 20(1):101-106.(CAO Lin,JI Fang-ying,LIN Mao,etal.Soil Phosphorous from Analysis in Fluctuating (Dry-Wet Cycling) Zone of Three Gorges Reservoir Area[J]. Resources and Environment in the Yangtze Basin, 2011, 20(1): 101-106.(in Chinee))

[15]ZHANG B, FANG F, GUO J,etal. Phosphorus Fractions and Phosphate Sorption-release Characteristics Relevant to the Soil Composition of Water-level-fluctuating Zone of Three Gorges Reservoir[J]. Ecological Engineering, 2012, 40: 153-159.

[16]SCHÖNBRUNNER I M, PREINER S, HEIN T. Impact of Drying and Re-flooding of Sediment on Phosphorus Dynamics of River-floodplain Systems[J]. Science of the Total Environment, 2012, 432: 329-337.

[17]BÜNEMANN E, KELLER B, HOOP D,etal. Increased Availability of Phosphorus after Drying and Rewetting of a Grassland Soil: Processes and Plant Use[J]. Plant and Soil, 2013, 370(1/2): 511-526.

[18]单艳红, 杨林章, 颜廷梅, 等. 水田土壤溶液磷氮的动态变化及潜在的环境影响[J]. 生态学报, 2005, 25(1):115-121. (SHAN Yan-hong, YANG Lin-zhang, YAN Ting-mei,etal. The Variation of P&N Contents in Paddy Soil Water and Its Environment Effect[J]. Acta Ecologica Sinica, 2005, 25(1):115-121.(in Chinee))

[19]BUTTERLY C R, MCNEILL A M, BALDOCK J A,etal. Changes in Water Content of Two Agricultural Soils Does Not Alter Labile P and C Pools[J]. Plant and Soil, 2011, 348(1/2): 185-201.

[20]尹金来, 周春霖,洪立洲,等. 水分和秸秆对石灰性土壤磷素形态转化影响的研究[J]. 南京农业大学学报, 1994, 17(1): 65-70.(YIN Jin-lai, ZHOU Chun-lin, HONG Li-zhou,etal. Effect of Flooding and Drainage on the Morphological Transformation of Phosphates in Limy Soils[J]. Journal of Nanjing Agricultural University, 1994, 17(1): 65-70.(in Chinese))

[21]杨连飞. 不同水分管理模式下秸秆还田对土壤性质的影响研究[D].扬州:扬州大学, 2013. (YANG Lian-fei. The Effect of Returning Straw to Field on Soil Properties Under Different Water Management Model[D]. Yangzhou: Yangzhou University, 2013.(in Chinese))

[22]彭 娜, 王凯荣, BURESH R J, 等. 不同水分条件下施用稻草对土壤有机酸和有效磷的影响[J]. 土壤学报, 2006, 43(2): 347-351. (PENG Na, WANG Kai-rong, BURESH R J,etal. Effect of Rice Straw Incorporation on Concentration of Organic Acids and Available Phosphorus in Soil Under Different Water Regimes[J].Acta Pedologica Sinica, 2006, 43(2): 347-351.(in Chinese))

[23]徐燕花. 水分梯度下鄱阳湖典型湿地土壤有效 N, P 含量及其形态的季节变化[D].南昌:南昌大学, 2011.(XU Yan-hua. The Seasonal Changes of Soli Available N,P Contents and Their Forms Under Different Water Gradients in the Typical Wetland of Poyang Lake[D]. Nanchang: Nanchang University, 2011. (in Chinese))

[24]BLACKWELL M, BROOKES P, DE LA FUENTE-MARTINEZ N,etal. Effects of Soil Drying and Rate of Re-wetting on Concentrations and Forms of Phosphorus in Leachate[J]. Biology and Fertility of Soils, 2009, 45(6): 635-643.

[25]TISDALL J, OADES J M. Organic Matter and Water-stable Aggregates in Soils[J]. Journal of Soil Science, 1982, 33(2): 141-163.

[26]尧水红. 干湿交替强度对旱地土壤结构形成及水稻秸秆分解过程的相互作用的影响[D]. 南京:南京农业大学,2005. (YAO Shui-hong. Soil Biophysical Processes Involved in Decomposition of Rice Straw Incorporated in Upland and Soil Under Wetting and Drying Cycles for Stabilization of Soil Carbon Pools and Soil Structure[D]. Nanjing: Nanjing Agricultural University, 2005. (in Chinese))

[27]MILLER A J, SCHUUR E A, CHADWICK O A. Redox Control of Phosphorus Pools in Hawaiian Montane Forest Soils[J]. Geoderma, 2001, 102(3): 219-237.

[28]钱 进, 王 超, 王沛芳, 等. 河湖滨岸缓冲带净污机理及适宜宽度研究进展[J]. 水科学进展, 2009, 20(1): 139-144.(QIAN Jin,WANG Chao, WANG Pei-fang,etal. Research Progresses in Purification Mechanism and Fitting Width of Riparian Buffer Strip[J]. Advances in Water Science, 2009, 20(1): 139-144.(in Chinese))

[29]赵庆雷, 吴 修, 袁守江, 等. 长期不同施肥模式下稻田土壤磷吸附与解吸的动态研究[J]. 草业学报, 2014, 23(1): 113-122.(ZHAO Qing-lei, WU Xiu, YUAN Shou-jiang,etal. A Study on the Dynamics of Phosphorus Adsorption and Desorption Characteristics of Paddy Soil with Long-term Fertilization[J]. Acta Prataculturae Sinica, 2014, 23(1): 113-122.(in Chinese))

[30]罗 敏. 黄土高原土壤对磷素的吸附-解吸特征及其影响因素研究[D]. 西安: 西北农林科技大学, 2008.(LUO Min. Study on Adsorption and Desorption of Soil Phosphorus in Loess Plateau and the Influencing Factors[D]. Xi’an: Northwest Agricultural University, 2008. (in Chinese))

[31]ARAI Y, SPARKS D. Phosphate Reaction Dynamics in Soils and Soil Components: A Multiscale Approach[J]. Advances in Agronomy, 2007, 94: 135-179.

[32]吕家珑, 李祖荫. 石灰性土壤中固磷基质的探讨[J]. 西北农林科技大学学报 (自然科学版), 1991, 18(5):204-206. (LV Jia-long, LI Zu-yin. Discussions on Medium for Fixing Phosphorus in Calcareous Soils[J]. Journal of Northwest A & F University (Natural Science Edition), 1991, 18(5):204-206. (in Chinese))

[33]马 良, 徐仁扣. pH 和添加有机物料对 3 种酸性土壤中磷吸附-解吸的影响[J]. 生态与农村环境学报, 2010, 26(6): 596-599. (MA Liang, XU Ren-kou. Effects of Regulation of pH and Application of Organic Materil on Adsorption and Desorption of Phosphorus in Three Types of Acid Soils[J]. Journal of Ecology and Rural Environment, 2010, 26(6): 596-599.(in Chinese))

[34]王国平. 湿地磷的生物地球化学特性[J]. 水土保持学报, 2004, 18(4): 193-195.(WANG Guo-ping. Character of Phosphorus Biogeochemistry on Wetlands[J]. Journal of Soil and Water Conservation, 2004, 18(4): 193-195. (in Chinese))

[35]MOORE A, REDDY K. Role of Eh and pH on Phosphorus Geochemistry in Sediments of Lake Okeechobee, Florida[J]. Journal of Environmental Quality, 1994, 23(5): 955-964.

[36]吴 韩. 丹江口消落带表层土壤理化性质特征及水位影响研究[D]. 武汉:华中农业大学, 2012. (WU Han. Characteristic and Water Level Influence on Surface Soil Physical and Chemical Properties in Danjiangkou Reservoir Hydro-fluctuation Belt[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese))

[37]LI C H, LI Y, TANG L S. Comparison of Soil Properties and Microbial Activities between Air-dried and Rewetted Desert and Oasis Soils in Northwest China[J]. Communications in Soil Science and Plant Analysis, 2011, 42(15): 1833-1846.

[38]王里奥, 黄 川, 詹艳慧, 等. 三峡库区消落带淹水—落干过程土壤磷吸附—解吸及释放研究[J]. 长江流域资源与环境, 2006, 15(5): 593-597. (WANG Li-ao, HUANG Chuan, ZHAN Yan-hui,etal. Flooding and Subsequent Air-Drying on Adsorption, Desorption and Release of Phosphorus of Soil in Drawdown Areas in Three Gorges Reservoir[J]. Resources and Environment in the Yangtze Basin, 2006, 15(5): 593-597.(in Chinese))

[39]ZHANG Y, LIN X, NI W. Effects of Flooding and Subsequent Air-drying on Phosphorus Adsorption, Desorption and Available Phosphorus in the Paddy Soils[J]. Chinese Journal of Rice Science, 1998, 12(1): 40-44.

[40]PHILLIPS I. Phosphorus Availability and Sorption under Alternating Waterlogged and Drying Conditions[J]. Communications in Soil Science & Plant Analysis, 1998, 29(19/20): 3045-3059.

[41]PELTOVUORI T. Sorption of Phosphorus in Field-moist and Air-dried Samples from Four Weakly Developed Cultivated Soil Profiles[J]. European Journal of Soil Science, 2007, 58(1): 8-17.

[42]LITAOR M, REICHMANN O, HAIM A,etal. Sorption Characteristics of Phosphorus in Peat Soils of a Semiarid Altered Wetland[J]. Soil Science Society of America Journal, 2005, 69(5): 1658-1665.

[43]周 驰, 李 阳, 曹秀云, 等. 风干和淹水过程对巢湖流域土壤和沉积物磷吸附行为的影响[J]. 长江流域资源与环境, 2012,21(2):10-17. (ZHOU Chi, LI Yang, CAO Xiu-yun,etal. Effect of Air-Drying and Flooding on Phosphorus Sorption Behavior of Soils and Sediments along the Aquatic-Terrestrial Ecotone of Lake Chaohu[J]. Resources and Environment in the Yangtze Basin, 2012,21(2):10-17.(in Chinese))

[44]DE GROOT C J, VAN WIJCK C. The Impact of Desiccation of a Freshwater Marsh (Garcines Nord, Camargue, France) on Sediment-water-vegetation Interactions[J]. Hydrobiologia, 1993, 252(1): 83-94.

[45]PELTOVUORI T, SOINNE H. Phosphorus Solubility and Sorption in Frozen, Air-dried and Field-moist Soil[J]. European Journal of Soil Science, 2005, 56(6): 821-826.

[46]TWINCH A. Phosphate Exchange Characteristics of Wet and Dried Sediment Samples from a Hypertrophic Reservoir: Implications for the Measurements of Sediment Phosphorus Status[J]. Water Research, 1987, 21(10): 1225-1230.

[47]QIU S, MCCOMB A. Effects of Oxygen Concentration on Phosphorus Release from Reflooded Air-dried Wetland Sediments[J]. Marine and Freshwater Research, 1994, 45(7): 1319-1328.

[48]BALDWIN D S. Effects of Exposure to Air and Subsequent Drying on the Phosphate Sorption Characteristics of Sediments from a Eutrophic Reservoir[J]. Limnology and Oceanography, 1996, 41(8): 1725-1732.

[49]WATTS C. Seasonal Phosphorus Release from Exposed, Re-inundated Littoral Sediments of Two Australian Reservoirs[J]. Hydrobiologia, 2000, 431(1): 27-39.

[50]XIAO W J, SONG C L, CAO X Y,etal. Effects of Air-drying on Phosphorus Sorption in Shallow Lake Sediment, China[J]. Fresenius Environmental Bulletin, 2012, 21: 672-678.

[51]HAYNES R, SWIFT R. Effects of Air-drying on the Adsorption and Desorption of Phosphate and Levels of Extractable Phosphate in a Group of Acid Soils, New Zealand[J]. Geoderma, 1985, 35(2): 145-157.

[52]KASTELAN-MACAN M, PETROVIC M. The Role of Fulvic Acids in Phosphorus Sorption and Release from Mineral Particles[J]. Water Science and Technology, 1996, 34(7): 259-265.

[53]JUGSUJINDA A, KRAIRAPANOND A, PATRICK JR W. Influence of Extractable Iron, Aluminium, and Manganese on P-sorption in Flooded Acid Sulfate Soils[J]. Biology and Fertility of Soils, 1995, 20(2): 118-124.

[54]王桂风, 刘 凌, 田 娟. 淹水过程不同土层磷的释放研究[J]. 环境科学与技术, 2008, 31(12): 21-23. (WANG Gui-feng, LIU Ling, TIAN Juan. Phosphorus Release in Different Layers of Flooded Soils[J]. Environmental Science & Technology, 2008, 31(12): 21-23.(in Chinese))

[55]张 静. 扎龙湿地草甸土壤微生物与土壤昆虫群落及其相关性研究[D].哈尔滨:东北林业大学, 2013. (ZHANG Jing. Soil Insect Community and Soil Microorganism and Their Relativity in Meadow of Zhalong Wetland[D]. Harbin: Northeast Forestry University, 2013. (in Chinese))

[56]易 祎. 东北黑土区典型流域农耕地土壤微生物指标的空间变化特征研究[D].西安:西北农林科技大学, 2013. (YI Yi. A Study on the Spatial Distribution of Soil Microbial Indicators at the Typical Watershed of Black Soil Region[D]. Xi’an: Northwest Agriculture and Forestry University, 2013. (in Chinese))

[57]TURNER B L, DRIESSEN J P, HAYGARTH P M,etal. Potential Contribution of Lysed Bacterial Cells to Phosphorus Solubilisation in Two Rewetted Australian Pasture Soils[J]. Soil Biology and Biochemistry, 2003, 35(1): 187-189.

[58]BUTTERLY C, BÜNEMANN E, MCNEILL A M,etal. Carbon Pulses But Not Phosphorus Pulses are Related to Decreases in Microbial Biomass During Repeated Drying and Rewetting of Soils[J]. Soil Biology and Biochemistry, 2009, 41(7): 1406-1416.

[59]MITCHELL A, BALDWIN D S. Effects of Desiccation/oxidation on the Potential for Bacterially Mediated P Release from sediments[J]. Limnology and Oceanography, 1998, 43(3): 481-487.

[60]QIU S, MCCOMB A. Planktonic and Microbial Contributions to Phosphorus Release from Fresh and Air-dried Sediments[J]. Marine and Freshwater Research, 1995, 46(7): 1039-1045.

[61]GRIERSON P, COMERFORD N, JOKELA E. Phosphorus Mineralization Kinetics and Response of Microbial Phosphorus to Drying and Rewetting in a Florida Spodosol[J]. Soil Biology and Biochemistry, 1998, 30(10): 1323-1331.

[62]TURNER B L, HAYGARTH P M. Changes in Bicarbonate-extractable Inorganic and Organic Phosphorus by Drying Pasture Soils[J]. Soil Science Society of America Journal, 2003, 67(1): 344-350.

[63]TURNER B L, HAYGARTH P M. Biogeochemistry: Phosphorus Solubilization in Rewetted Soils[J]. Nature, 2001, 411(6835): 258.

[64]VAN GESTEL M, MERCKX R, VLASSAK K. Microbial Biomass Responses to Soil Drying and Rewetting: The Fate of Fast-and Slow-growing Microorganisms in Soils from Different Climates[J]. Soil Biology and Biochemistry, 1993, 25(1): 109-123.

[65]BUSHBY H, MARSHALL K. Desiccation-induced Damage to the Cell Envelope of Root-nodule Bacteria[J]. Soil Biology and Biochemistry, 1977, 9(3): 149-152.

[66]FIERER N, SCHIMEL J, HOLDEN P. Influence of Drying-rewetting Frequency on Soil Bacterial Community Structure[J]. Microbial Ecology, 2003, 45(1): 63-71.

[67]BÜNEMANN E, MARSCHNER P, SMERNIK R J,etal. Soil Organic Phosphorus and Microbial Community Composition as Affected by 26 Years of Different Management Strategies[J]. Biology and Fertility of Soils, 2008, 44(5): 717-726.

[68]HALVERSON L J, JONES T M, FIRESTONE M K. Release of Intracellular Solutes by Four Soil Bacteria Exposed to Dilution Stress[J]. Soil Science Society of America Journal, 2000, 64(5): 1630-1637.

[69]BIRCH H. The Effect of Soil Drying on Humus Decomposition and Nitrogen Availability[J]. Plant and Soil, 1958, 10(1): 9-31.

(编辑:姜小兰)

Review of the Effect of Drying-rewetting Alternation onthe Transportation and Transformation of Soil Phosphorus

REN Wen-chang1, WANG Pei-fang1,2, QIAN Jin1,2, REN Ling-xiao1

(1.Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China ; 2.College of Environment, Hohai University, Nanjing 210098, China)

The abundance of soil phosphorus controls the development of primary productivity of ecosystems. The structure and the physical-chemical properties of soil have been long-time affected by the periodical drying-rewetting alternation which has a significant impact on the transportation and transformation of soil phosphorus. In this review, we summarize recent researches on the process of phosphorus transport and transformation due to soil moisture content, soil adsorption characteristics and soil microbes in the presence of drying-rewetting alternations. The main results are: (1) moisture content changes soil porosity and its transmission path, stimulates the mineralization of organic matter and redox intensity to different extents, thus affecting the transportation and transformation of soil phosphorus; (2) drying-rewetting alternation changes soil particle size, adsorption sites and the forms of metallic compounds, thus affecting the soil adsorption properties of phosphorus; (3) microbiological phosphorus becomes a main source of soil phosphorus in the process of drying-rewetting alternations, and the physiology response of microorganisms is a key factor affecting the soil phosphorus. Further research prospects are also put forward in this review.

soil; phosphorus; drying-rewetting alternation; transportation and transformation; ecosystem

2014-05-28;

2014-07-30

国家自然科学基金项目(51379062);国家水体污染控制与治理科技重大专项(2012ZX07101)

任文畅(1989-),男,浙江宁波人,硕士研究生,主要从事水环境保护与生态修复研究,(电话)18751958627(电子信箱)hhurwc@sina.cn。

王沛芳(1973-),女,河北保定人,教授,主要从事水环境保护与生态修复研究,(电话)13701475568(电子信箱)pfwang2005@hhu.edu.cn。

10.3969/j.issn.1001-5485.2015.05.008

2015,32(05):41-47

X53

A

1001-5485(2015)05-0041-07

猜你喜欢
磷素土壤影响
磷素添加对土壤水分一维垂直入渗特性的影响
是什么影响了滑动摩擦力的大小
土壤
灵感的土壤
识破那些优美“摆拍”——铲除“四风”的土壤
没错,痛经有时也会影响怀孕
灵感的土壤
扩链剂联用对PETG扩链反应与流变性能的影响
基于Simulink的跟踪干扰对跳频通信的影响
作物高效利用土壤磷素的研究进展