钟顺时 韩荣苍,2 刘 静,3 孔令兵
(1.上海大学通信与信息工程学院,上海200072;2.临沂大学理学院物理与电子学系,山东 临沂276000;3.上海电力学院电子与信息工程学院,上海200090;4.上海航天电子通讯设备研究所,上海201109)
低损耗高Q值的介质谐振器(Dielectric Resonator,DR)在20世纪70年代已在微波毫米波集成电路与系统中获得大量应用[1].英国时代科技公司(ERA Technology)在1981年率先制成一副介质波导馈电的K波段介质谐振器天线阵[2].1983年,美国休斯敦大学的Long教授首次在理论上阐述了圆柱形介质谐振器天线的工作原理,并给出了实验验证[3].此后,在世界范围内展开了介质谐振器天线(Dielectric Resonator Antennas,DRA)的广泛研究与应用.
三十多年来,特别是近十年来,DRA技术发展迅速,取得了不少研究成果[4-9].1980至1990年的研究重点集中于用数值法分析DRA的输入阻抗、Q值、辐射特性以及馈电方法等.代表性的研究成果主要反映在Luk &Leung和Petosa的两本书[4-5]中,其中归纳了众多学者的研究工作;在此期间,Mongia已总结了多种基本形状DRA的谐振频率和带宽的经验公式[6].在20世纪末到21世纪初更多的研究工作是在宽带/超宽带、圆/双极化、高阶模/高增益和毫米波DRA等方面[7-9];电磁仿真软件的发展为研究特殊形状DRA提供了有利条件,一些新奇的形状开始应用于宽带和圆极化DRA的设计中.代表性研究机构有美国密西西比大学、加拿大通信研究中心和渥太华大学等,中国主要有香港城市大学、清华大学、电子科技大学、西安电子科技大学和上海大学等.然而,目前国内尚未见较详细地介绍DRA的中文文献.本文将围绕DRA的研究热点,介绍其发展现状和新进展,以抛砖引玉.
DRA是由低损耗的微波介质材料构成的辐射器,一般通过微带线、微带缝隙或探针等馈电结构对其馈电.一副层叠式宽带DRA的结构如图1所示[10].这里的圆柱形介质谐振器由不同介电常数的介质层来构成,以展宽频带.DRA的辐射类似于短的磁偶极子的辐射,单个DRA的基模辐射增益一般约为2~6dBi.
图1 层叠式宽带DRA[10]
介质谐振器天线具有以下特点[11]:
1)通过除地面以外的整个谐振器表面辐射,且没有导体和表面波损耗,因而具有较宽的阻抗带宽(例如取εr≈10,可获得约10%的阻抗带宽)和较高的辐射效率(≥95%);
2)通过选择不同介电常数的材料,天线尺寸和带宽可灵活控制;
3)谐振器形状和馈电方式灵活多样,并可激励起多种模式,便于实现宽带、多频或高增益设计;
4)加工简单且对公差敏感度较低并具有较高的温度稳定性.
基于上述特点,DRA用作小尺寸的低增益天线单元是很有吸引力的,特别是在毫米波波段.当频率高至毫米波时,由于DRA无导体损耗和表面波损耗,且公差要求较低,它与微带天线相比具有特殊的优势.而在低频段,由于DRA最大尺寸正比于λ0(εr)-1/2(λ0是其自由空间谐振波长,εr是介质谐振器的相对介电常数),而其辐射效率并不直接受εr影响,因而可采用高εr来明显降低天线尺寸,并且可将高度h做得很低.例如取80<εr<100,DRA高度h可低至0.025<h<0.035,而能保持约3.5%的阻抗带宽.注意,介质谐振器天线的阻抗带宽与εr基本上成反比关系,所以εr需适当选择,一般取4<εr<100.DRA的频率范围约为50MHz至100 GHz.
DRA是一种谐振式天线,其谐振频率取决于谐振器尺寸、形状和材料的介电常数,并与馈电结构等因素有关.分析介质谐振器的方法主要有解析法、近似法和数值法.解析法只对存在闭式格林函数的结构有效,置于导体面上的半球形DRA的谐振频率可通过解析法求解[12].有限长圆柱或矩形介质谐振器不存在严格闭式的格林函数,只能用近似法或数值法求解.近似法主要有Okaya-Barash提出的磁壁模型(Magnetic Wall Model,MWM)[13]与Chang-Itoh提出的介质波导模型(Dielectric Waveguide Model-DWM)[14].磁壁模型假设介质界面为理想磁壁,是一种比较粗糙的近似方法,计算精度较差.介质波导模型是基于Marcatili波导模型改进的近似方法,与磁壁模型法相比精度更高,能够满足工程需要.数值法主要有矩量法(Method of Moments,MOM)[15]、有 限 元 法(Finite Element Method,FEM)[16]和时域有限差分法(Finite Difference Time Domain,FDTD)[17]等.采用严格的数值法分析时,能将介质谐振器周围的环境影响也考虑在内,理论上可以计算出期望精度的谐振频率和场分布.
在实际工程设计中,对置于导体面上的圆柱形DRA,Long教授已给出谐振频率的解析解[3].其常用的辐射模有TE01δ、TM01δ和HE11δ模,其谐振频率可用下列经验公式估算[6]:对TE01δ模
对TM01δ模
对HE11δ模
式(1)~(3)中:c为自由空间中的光速;a为圆柱谐振器的直径;h为高度.
置于导体面上的矩形DRA,谐振频率可通过DWM法计算,求解过程涉及超越方程的求解.其基模TMδ11模谐振频率的近似表达式为[5]
式中:
d,w,h分别为谐振器在x,y,z方向的长度,单位为cm;f0的单位为GHz.
对置于导体面上的半球DRA,可以通过解超越方程求得TE111模的谐振频率[18]为
式中:a为半球介质谐振器的半径;Re(ka)为复数ka的实部.
由于DRA除接地板外的各个面均可辐射,而微带天线主要是通过两个辐射缝隙辐射的,所以DRA具有更宽的阻抗带宽.这是DRA有别于微带天线的主要特征之一.介质谐振器的品质因数,即Q值,对天线的阻抗带宽具有重要影响.若DRA的馈电端口处能承受的最大电压驻波比RVSW不大于S,则阻抗带宽WB与Q值有如下关系:
可见,在单一工作模式下提高DRA带宽的基本途径,就是降低谐振器的Q值,即减小介质材料的介电常数.例如,相对介电常数小于10的矩形DRA经优化后,带宽可达到20%[5];镂空或内嵌低介电常数介质的DRA由于等效介电常数降低,也具有宽带特性[19-20].除此之外,提高DRA带宽的主要途径是引入多模谐振,介绍如下.
激励两个具有相似边射辐射特性的谐振模,是设计宽带DRA的最简单的方法之一.文献[21]报导,利用同轴和缝隙耦合两种馈电方式激励圆柱谐振器的高阶模HEM11Δ(1<Δ<2),通过调节谐振器尺寸比例关系,使之与基模HEM11δ(0<δ<1)同时工作,从而实现了宽带设计.研究表明,当谐振器的半径高度比等于0.329时,天线最优带宽为26.8%.而基模TE111和高阶模TE113同时工作的矩形DRA(εr≈10)实现了超过40%的阻抗带宽[22-23].由于简单结构(例如矩形、圆柱形、半球形)的谐振频率容易计算,而特殊结构的谐振频率不易求出,所以高阶模的引入一般只用于简单结构的宽带DRA设计.
层叠式宽带DRA[10]的结构已示于图1中,层叠结构,由于采用不同介电常数的各层介质对应的固有谐振频率不同,会产生多谐振现象,从而使DRA的相对带宽展宽到66%.针对不同的结构,G.Walsh等给出了层叠与嵌入式DRA带宽与阻抗的变化规律[24].阶梯形结构的DRA可认为是层叠式结构的另一种形式,由于各层等效介电常数不同,也具有多谐振特点,可获得较宽的阻抗带宽.口径耦合的倒金字塔阶梯形DRA,实测阻抗带宽可达62%,覆盖6.6~14.6GHz频段[25].
特殊形状的介质谐振器结合特定的馈电结构,可以激励起多个模式,已广泛应用于宽带DRA设计中.文献[26]分析了不同形状的锥台DRA,文中指出倒锥形获得的阻抗带宽最宽,其中半锥台设计的阻抗带宽达到了50%;形状与之类似的碗型DRA带宽可达85%[27];本课题组[28]采用三角贴片激励U形介质谐振器,实现了84.1%的阻抗带宽;降低谐振器剖面结合缺陷地的平面单极子结构也能实现超宽带设计[29].此外,其他典型的DRA形状还有蝶形[30]和T形[31]等.
辐射缝隙激励的介质谐振器天线是混合辐射结构DRA最早的形式[32],由于缝隙谐振模与介质谐振器的谐振模产生模式合并,从而实现了宽带或者双频设计[33-34].显然,缝隙谐振模和谐振器谐振模的带宽均会影响天线带宽.为了实现更宽的阻抗带宽,一般采用宽带馈电结构或宽带谐振器结构来设计宽带DRA.常用的组合形式是用特殊形状的介质谐振器与单极子天线相结合.国际象棋棋子形(如图2所示)介质谐振器与单极子混合结构[34]的阻抗带宽可达122%.文献[36]在圆柱形介质谐振器与单极子混合结构的基础上,在圆柱介质上加一圆环,其上又加一圆锥介质,使RVSW.≤2阻抗带宽达到148.4%(6.2~42GHz).
宽带印刷单极子天线已广泛应用于超宽带系统中[37].这类宽带单极子天线一般采取两种激励方式,一种是共面波导激励,另一种是结合缺陷地结构的微带线激励.这两种激励方式同样可用于超宽带DRA的设计中.共面波导激励的印刷单极子与矩形介质谐振器相结合的设计获得大于3∶1的比带宽[38-39];缺陷地微带单极子激励的矩形谐振器,实现了93%的阻抗带宽,而且具有边射方向图[40].
图2 国际象棋棋子形超宽带DRA
表1对宽带/超宽带DRA设计作了归纳.可见,宽带DRA设计的重要途径是使用各种方法引入多个谐振模.激励高阶模,使用层叠介质结构或特殊的介质结构均可达到引入多谐振的目的.而混合辐射结构在宽带设计方面具有更强的灵活性,已成为超宽带DRA的主要发展趋势.
表1 宽带/超宽带DRA
天线产生圆极化波的关键是形成两个极化正交、幅度相等、相位相差90°的线极化波.DRA圆极化技术与微带天线类似,归纳起来可分为单馈点法、双/多馈点法和多元法三类.圆极化天线的基本电参数是最大增益方向上的轴比RA,把轴比不大于3 dB的带宽定义为圆极化带宽,或称为轴比带宽.轴比将决定天线的极化效率,表征天线极化纯度的交叉极化也可以通过轴比来衡量[41-42].
单馈点型圆极化DRA如图3所示.一般采用具有不同微扰结构的介质谐振器来调节两个正交线极化的幅度和相位,例如:切角谐振器[43],十字形谐振器[44],椭圆形[45]和半圆形谐振器[46].这些结构微扰理论与圆极化微带天线的设计类似.此外还有激励某些特殊形状的谐振器[47-49],或者采用特定的馈电方式,如十字型[50]缝隙、Y型[51]微带线、C字型[52]缺口圆环和螺旋线[53]馈电结构来激励简单的介质谐振器,及附加寄生金属贴片来形成正交极化模以实现圆极化辐射[54].
可见,单馈点型圆极化DRA设计比较灵活,结构较为简单,但常规设计的轴比带宽仅能做到1%~15%[7].而采用电阻加载的缝隙激励简单介质谐振器的圆极化设计[55]和缝隙激励的开槽棱台设计[56]分别可获得18.5%和21.5%的3dB轴比带宽.如果要进一步提高轴比带宽,则需采用宽带介质谐振器和宽带馈电结构.例如,Khalily等提出了一种单点馈电宽带圆极化DRA[57],它采用开口环形地产生线极化模,使其与单极子DRA的辐射场正交,从而实现了圆极化辐射.该宽带DRA获得了51%的轴比带宽和53%的阻抗带宽.
图3 单馈点圆极化DRA示意图
对于双/多馈点技术,要求相邻馈电点信号幅度相等,极化正交,相位相差90°.那么,介质谐振器结构上也应具有对称性,例如截面为正方形(环)或圆形(环),馈电方式如图4所示.图4中P1,P2,P3,P4均为馈电点,图4(a)中的P1,P2两馈点的信号幅度相等,极化正交,相位相差90°;图4(b)中四点信号除幅度相等,极化正交外,相位依次为0°、90°、180°和270°.这些馈电网络都需结合功分和移相电路,例如混合电桥,威尔金森功分器或T型功分器附加90°移相器等来实现.馈电网络的性能将直接影响天线的轴比和阻抗带宽.
1994年,Mongia等人首次用3dB混合电桥结合双探针馈电空心圆柱介质谐振器(εr=36))天线,实现了大于11%的轴比带宽[58].同样利用此技术,通过使用低介电常数(εr≈10)的介质材料可以实现超过20%的轴比带宽[59].本课题组研制的双探针馈电圆极化方形DRA(εr=12),利用由威尔金森3dB功分器和宽带90°移相器组成的馈电网络,实现了41.7%的轴比带宽[60].我们研制的另一类似设计如图5所示,由于馈电结构与DR实现了更好的匹配,其实测的有效圆极化带宽(RA≤3dB,RVSW≤2)达46.9%[61].采用多点馈电技术的圆极化DRA一般能获得更大的圆极化带宽.采用四馈点的圆柱DRA已获得25%~50%的轴比带宽和阻抗带宽[62-63].
图4 双/多馈点圆极化DRA示意图
图5 宽带双馈点圆极化DRA[61]
多元法圆极化技术的本质就是通过天线阵来实现圆极化.多元圆极化天线一般采用顺序旋转馈电,各阵元馈电的位置依次旋转90°,通过馈电网络使阵元间相位相差90°.这样,相邻阵元的辐射场在空间形成一对极化正交、幅度相同、相位差为90°的线极化波.文献[64-66]使用顺序旋转馈电技术均实现了大于20%的轴比带宽.多元法的优点是可以提高天线增益和带宽,但体积变大,同时增加了加工成本,所以馈电网络的小型化与宽带设计同样重要.上述三类圆极化DRA的技术性能归纳于表2,对其优缺点的评价是就一般而论,并不绝对.
表2 圆极化DRA
天线的双极化技术在地面无线通信、卫星通信、合成孔径雷达等系统有着广泛的应用,如:用极化分集技术在无线通信中抑制信道衰落,提高系统信噪比;用极化复用技术在卫星通信中提高频谱利用率;利用天线的双极化工作在射频识别系统中实现收发信道的隔离等.端口隔离度与交叉极化电平是衡量双极化天线性能的重要指标,且与其馈电结构密切相关.双极化DRA的各种馈电结构如图6所示,它们对端口隔离度和交叉极化电平的影响归纳在表3中[67].可见,采用缝隙耦合可以获得较低的交叉极化电平和较高的隔离度.对于两个正交端口均采用缝隙耦合的设计,缝隙布局对隔离度与交叉极化均有较大影响[68]:T形缝隙耦合的双极化DRA的隔离度优于L形布局的情形,可达35dB以上,但由于其馈电结构的不对称,交叉极化电平较差.我们对双极化分别采用H形和U形缝隙耦合,实现了46.8dB的隔离度,而两种极化的方向图交叉极化电平分别低于-21.4dB和-18.1dB[69].由于馈电结构不对称性对交叉极化影响显著,两个正交端口均采用对称的馈电结构为好.例如,如图6(d)所示,此时较高的隔离度和较低的交叉极化可以兼得.但是,该结构中的共面波导和缝隙距离太近,最佳设计实现难度较高.
图6 双极化DRA馈电方式示意图
表3 双极化DRA馈电方式
如采用差分信号对双极化各端口进行平衡馈电,可获得高性能的双极化设计[11].差分信号可使同向的交叉极化辐射相互抵消,交叉极化电平相应降低;较低的交叉极化电平又能减小端口间的耦合强度,从而提高了端口隔离度.当DRA采用平衡探针馈电时,可实现优于40dB的隔离度和-30dB的交叉极化电平[70];我们课题组曾采用平衡缝隙激励,已获得优于45dB的隔离度和-34dB的交叉极化电平[71].
理论上,DRA可以工作于很多模式.然而,之前大部分工作都集中在对基模特性的研究上;近期,高阶模特性被用在不同领域的DRA设计中.高阶模的应用主要集中在宽带、双频和高增益DRA设计等方面,其发展现状总结于表4.
表4 高阶模/高增益DRA
由表4可见,DRA的高阶模与基模同时被激励时既可用作宽带天线[22-23,72],亦可用作双频天线[72-75].研究表明[72],电激励的双频矩形DRA比磁激励DRA更易实现模式合并而实现宽带特性,高频段和低频段的频率比一般要小于3.与混合辐射结构的宽带DRA设计相似,借助谐振的馈电结构可实现多频设计.λ/4(λ为介质中波长)单极子激励的矩形DRA可覆盖无线通信的800MHz、2.4 GHz和3.5GHz三个频段[76].这类多频天线已广泛应用于各种无线系统中.
工作于高阶模状态的DRA等效电尺寸变大,根据DRA高阶模式传播特性,有些边射的高阶模被激励后可提高天线的增益[77].微带贴片激励的高阶模DRA(微带贴片辐射模,介质谐振器起加载作用)[78]与圆极化DRA[79]的实测增益分别达11 dBi和9dBi;缝隙耦合的X波段矩形DRA其不同的高阶模可实现8.2~13.7dBi的增益[80].这类高增益DRA的设计重点是如何激励起具有边射方向图的高阶模.
此外,高增益DRA的设计方法还有很多,例如,采用寄生结构[81]、层叠结构[82]、背腔结构[83]、电磁带隙(Electromagnetic Bandgap,EBG)地面结构[84]、漏波辐射[85]的DRA以及特种晶体DRA[86]均具有高增益特性.这些结构往往需要较大的接地面,结构复杂,体积较大.可以说,在增益要求不是特别高的情形下,采用高阶模是高增益DRA一种最简单的设计方法.
毫米波天线具有“天然小型化”的优点,相同天线(物理)口径的情形下增益更高,绝对带宽更宽,已广泛应用于便携通信、卫星通信、防撞雷达、生物医学工程等领域.然而,毫米波波段的欧姆损耗和介质损耗、大气衰减和加工公差都会对金属天线的性能产生重要影响.而DRA除馈线以外没有导体损耗而具有较高的辐射效率,对加工公差没有微带天线那么敏感[7].研究表明,增益相当的毫米波天线,DRA的辐射效率和带宽均优于微带天线[87];另外,DRA介电常数的可选择性以及高阶模工作状态均为进一步减小对加工公差的敏感度提供了理论依据[88].所以,近年来DRA在毫米波领域备受青睐.毫米波DRA的研究热点集中在提高辐射效率和加工工艺两方面,即高增益/高效率DRA和集成DRA.毫米波DRA的主要应用范围是35~100 GHz,采用何种馈电形式才能将能量高效地耦合到介质谐振器中成为一大挑战.采用基片集成波导(Substrate Integrated Waveguide,SIW)馈电是设计高效率毫米波DRA的有效手段之一,SIW激励的矩形DRA的辐射效率可达95%[89],而半模SIW激励的圆柱形DRA的辐射效率也达到了80%~92%[90].
毫米波集成DRA的设计一般有三类:封装系统(System in Package,SIP)DRA[91-92]、片上系统(System on Chip,SOP)DRA[93,94]和 单 片(Monolithic Integration,MI)DRA[95].SIP DRA的设计理念是在电子系统的封装结构上集成DRA,加工工艺可采用低温共烧陶瓷技术.与SIP DRA不同的是,SOP DRA集成在电子系统中的某个芯片上,可以方便地结合芯片的加工技术,例如互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)技术[94].Ohlsson和Bryllert等[95]将磷化铟微波单片集成电路加工技术和毫米波DRA设计结合在一起,制成了单片DRA,实现了6 dBi增益.随着加工技术的进步,毫米波集成DRA必将成为毫米波天线的发展趋势.
单个介质谐振器天线单元增益较低,而阵列是提高天线方向性的常用手段,文献[96]设计了一副四元圆柱形介质谐振器天线阵,获得11dBi的增益.自1990年代末以来,在介质谐振器天线阵方面已开展了不少研究,包括线阵和面阵,两款面阵天线如图7所示[97-98].如何保证介质谐振器位置的精度和稳定性,尤其对大型阵列,是介质谐振器天线阵所面临的巨大挑战.所以,工艺方面的研究在介质谐振器天线阵设计中尤显重要.文献[98]除了对一款介质谐振器天线阵的性能进行研究以外,还对单元安装的工艺问题作了介绍.
图7 两款介质谐振器天线阵
本文首先简介了介质谐振器天线研究的历史概况、特点与分析方法,然后综述了近三十年来DRA技术的重要进展,归纳了宽带/超宽带、圆/双极化、高阶模/高增益、毫米波DRA及DRA阵等方面的技术进展.此外,可重构介质谐振器天线技术在波束控制、频率可调及极化捷变等方面也得到了发展,请参见文献[99-101]等.随着无线通信技术的进展,DRA正在向宽频带、多极化、高增益和智能化方向不断发展.
[1]KAJFEZ D,GUILLON P.Dielectric Resonators[M].Norwood:Artech House,1986.
[2]BIRAND M T,GELSTHORPE R V.Experimental millimetric array using dielectric radiators fed by means of dielectric waveguide[J].Electron Lett,1981,17(18):633-635.
[3]LONG S A,MCALLISTER M W,SHEN L C.The resonant cylindrical dielectric cavity antenna[J].IEEE Trans Antennas Propag,1983,3(31):406-412.
[4]LUK K M,LEUNG K W.Dielectric Resonator Antennas[M].Baldock:Research Studies Press,2003.
[5]PETOSA A.Dielectric Resonator Antenna Handbook[M].Norwood:Artech House,2007.
[6]MONGIA R K,BHARTIA P.Dielectric Resonator Antennas—a review and general design relations for resonant frequency and bandwidth[J].Int J Microw Millimet Wave Comput Aided Eng,1994,4(3):230-247.
[7]PETOSA A,ITTIPIBOON A,ANTAR Y M M,et al.Recent advances in dielectric resonator antenna technology[J].IEEE Antennas Propag Mag,1998,3(40):35-48.
[8]PETOSA A,ITTIPIBOON A.Dielectric resonator antennas—a historical review and the current state of the art[J].IEEE Antennas Propag Mag,2010,52(5):91-116.
[9]LEUNG K W,LIM E H,FANG X S,et al.Dielectric resonator antennas:from the basic to the aesthetic[J].Proc IEEE,2012,100(7):2181-2193.
[10]HUANG W,KISHK A A.Compact wideband multilayer cylindrical dielectric resonator antennas[J].IET Microw Antennas Propag,2007,5(1):998-1005.
[11]钟顺时.天线理论与技术[M].北京:电子工业出版社,2011.
[12]LEUNG K W,LUK K M,LAI K Y A,et al.Theory and experiment of an aperture-coupled hemispherical dielectric resonator antenna[J].IEEE Trans Antennas Propag,1995,43(11):1192-1198.
[13]OKAYA A,BARASH L F.The dielectric microwave resonator[J].Proc IRE,1962,50(10):2081-2092.
[14]CHANG C,ITOH T.Resonant characteristics of dielectric resonators for millimeter wave integrated circuits[J].Arch Elektron Ubertrag Tech,1979,33:141-144.
[15]KISHK A A,ZUNOUBI M R,KAJIFEZ D.A numerical study of a dielectric disk antenna above grounded dielectric substrate[J].IEEE Trans Antennas Propag,1993,41(6):813-821.
[16]SHENG X Q,LEUNG K W,YUNG E K N.Analysis of waveguide-fed dielectric resonator antenna using a hybrid finite element method/moment method[J].IEE Proc Microw Antennas Propag,2004,151(9):91-95.
[17]SHUM S M,LUK K M.FDTD analysis of probe-fed cylindrical dielectric resonator antenna[J].IEEE Trans Antennas Propag,1998,46(3):325-333.
[18]MCALLISTER M W,LONG S A.Resonant hemispherical dielectric antenna[J].Electron Lett,1984,20(16):657-659.
[19]GUO Y X,RUAN Y F,SHI X Q.Wideband stacked double annular-ring dielectric resonator antenna at the endfire mode operation[J].IEEE Trans Antennas Propag,2005,53(10):3394-3397.
[20]CHAIR R,KISHK A A,LEE K F.Low profile wideband embedded dielectric resonator[J].IET Microw Antennas Propag,2007,1(2):294-298.
[21]CHAIR R,KISHK A A,LEE K F.Wideband simple cylindrical dielectric resonator antennas[J].IEEE Microw Wireless Compon Lett,2005,15(4):241-243.
[22]LI B,LEUNG K W.Strip-fed rectangular dielectric resonator antenna with/without a parasitic patch[J].IEEE Trans Antennas Propag,2005,53(7):2200-2207.
[23]DE YOUNG C S,LONG S A.Wideband cylindrical and rectangular dielectric resonator antennas[J].IEEE Antennas Wireless Propag Lett,2006,5:426-429.
[24]WALSH A G,DE YOUNG C S,LONG S A.An investigation of stacked and embedded cylindrical dielectric resonator antennas[J].IEEE Antennas Wireless Propag Lett,2006,51:30-133.
[25]CHAIR R,KISHK A A,LEE K F,et al.Wideband flipped staired pyramid dielectric resonator antennas[J].Electron Lett,2004,40(10):581-582.
[26]KISHK A A,YAN Y,GLISSON A W.Conical dielectric rresonator antennas for wideband applications[J].IEEE Trans Antennas Propag,2002,50(4):469-474.
[27]MUKHERJEE B,PATEL P,MUKHERJEE J.A novel cup-shaped inverted hemispherical dielectric resonator antenna for wideband applications[J].IEEE Antennas Wireless Propag Lett,2013,12:1240-1243.
[28]ZHANG L N,ZHONG S S,LIANG X L.Wideband u-shaped dielectric resonator antenna fed by triangle patch[J].Microwave Opt Technol Lett,2014,52(11):2345-2348.
[29]MESSAOUDENE I,DENIDNI T A BENGHALIAA.Ultra-wideband DRA integrated with narrowband slot antenna[J].Electron Lett,2014,50(3):139-141.
[30]THAMAE L Z,WU Z.Broadband bowtie dielectric resonator antenna[J].IEEE Trans Antennas Propag,2010,11(58):3707-3710.
[31]GAO Y,FENG Z H,ZHANG L.Compact asymmetrical T-shaped dielectric resonator antenna for broadband applications[J].IEEE Trans Antennas Propag,2012,60(3):1611-1615.
[32]ESSELLE K P,BIRD T S.A hybrid-resonator antenna:experimental results[J].IEEE Trans Antennas Propag,2005,53(2):870-871.
[33]BUERKLE A,SARABANDI K,MOSALLAEI H.Compact slot and dielectric resonator antenna with dual-resonance,broadband characteristics[J].IEEE Trans Antennas Propag,2005,53(3):1020-1027.
[34]LAPIERRE M,ANTAR Y M M,ITTIPIBOON A,et al.Ultra wideband monopole/dielectric resonator antenna[J].IEEE Microw Wireless Compon Lett,2005,15(1):7-9.
[35]GUHA D,GUPTA B,ANTAR Y M M.New pawnshaped dielectric ring resonator loaded hybrid monopole antenna for improved ultrawide bandwidth[J].IEEE Antennas Wireless Propag Lett,2009,(8):1178-1181.
[36]AL-AZZA A A N,HARACKIEWICZ F J.Modified ultra wideband hybrid dielectric resonator antenna[C]//IEEE Antennas Propag Soc Int Symp.Memphis,2014:1980-1982.
[37]钟顺时,梁仙灵,延晓荣.超宽带平面天线技术[J].电波科学学报,2007,2(22):308-315.ZHONG Shunshi,LIANG Xianling,YAN Xiaorong.UWB planar antenna technology[J].Chinese Journal of Radio Science,2007,2(22):308-315.(in Chinese)
[38]DENIDNI T A,WENG Z.Hybrid ultrawide band dielectric resonator antenna and band-notched designs[J].IET Microw Antennas Propag,2011,5(4):450-458.
[39]RYU K S,KISHK A A.UWB dielectric resonator antenna having consistent omnidirectional pattern and low cross-polarization characteristics[J].IEEE Trans Antennas Propag,2011,59(4):1403-1408.
[40]RYU K S,KISHK A A.Ultrawideband dielectric resonator antenna with broadside patterns mounted on a vertical ground plane edge[J].IEEE Trans Antennas Propag,2010,58(4):1047-1053.
[41]钟顺时.微带天线理论与应用[M].西安:西安电子科技大学出版社,1991.
[42]薛睿峰,钟顺时.微带天线圆极化技术概述与进展[J].电波科学学报,2002,17(4):331-336.XUE Ruifeng,ZHONG Shunshi.Survey and progress in circular-polarization technology of microstrip antennas[J].Chinese Journal of Radio Science,2002,17(4):331-336.(in Chinese)
[43]HANEISHI M,TAKAZAWA H.Broadband circularly polarised planar array composed of pair of dielectric resonator antennas[J].Electron Lett,1985,21(10):437-439.
[44]ZOU L,FUMEAUX C.A cross-shaped dielectric resonator antenna for multifunction and polarization diversity applications[J].IEEE Antennas Wireless Propag Lett,2011,10:742-745.
[45]KISHK A A.An elliptic dielectric resonator antenna designed for circular polarization with single feed[J].Microw Opt Technol Lett,2003,37(6):454-456.
[46]TAM M T K,MURCH R D.Circularly polarized circular sector dielectric resonator antenna[J].IEEE Trans Antennas Propag,2000,48(1):126-128.
[47]HAMSAKUTTY V,KUMAR A V P,YOHANNAN J,et al.Coaxial fed hexagonal dielectric resonator antenna for circular polarization[J].Microwave Opt Technol Lett,2006,48(3):581-582.
[48]TAM M T K,MURCH R D.Compact circular sector and annular sector dielectric resonator antennas[J].IEEE Trans Antennas Propag,1999,47(5):837-842.
[49]SIMEONI M,CICCHETTI R,YAROVOY A,et al.Plastic-based super shaped dielectric resonator antennas for wideband applications[J].IEEE Trans Antennas Propag,2011,59(12):4820-4825.
[50]HUANG Y,WU J Y,WONG K L.Cross-slot-coupled microstrip antenna and dielectric resonator antenna for circular polarization[J].IEEE Trans Antennas Propag,1999,47(4):605-609.
[51]LI L X,ZHONG S S,CHEN M H.Circularly polarized ceramics dielectric resonator antenna excited by Y-shaped microstrip[J].Microwave Opt Technol Lett,2009,10(15):2416-2418.
[52]李丽娴,钟顺时,许赛卿,等.缺口圆环激励的圆极化陶瓷介质谐振器天线[J].上海大学学报:自然科学版,2010,2(16):111-114.LI Lixian,ZHONG Shunshi,XU Saiqing,et al.Circularly polarized ceramics dielectric resonator antenna excited by gapped annular slot[J].Journal of Shang-hai University:Science Edition,2010,2(16):111-114.(in Chinese)
[53]KHAMAS S K.Circularly polarized dielectric resonator antenna excited by a conformal wire[J].IEEE Antennas and Wireless Propag Lett,2008,7:240-242.
[54]LI B,LEUNG K W.Strip-fed rectangular dielectric resonator antennas with/without a parasitic patch[J].IEEE Trans Antennas Propag,2005,53(7):2200-2207.
[55]ZOU M,PAN J,NIE Z P,et al.A wideband circularly polarized rectangular dielectric resonator antenna excited by a lumped resistively loaded monofilar-spiral-slot[J].IEEE Antennas Wireless Propag Lett,2013,12:1646-1649.
[56]PAN Y M,LEUNG K W.Wideband circularly polarized trapezoidal dielectric resonator antenna[J].IEEE Antennas Wireless Propag Lett,2010,9:588-591.
[57]KHALILY M,RAHIM M K A,KISHK A A.Planar wideband circularly polarized antenna design with rectangular ring dielectric resonator and parasitic printed loops[J].IEEE Antennas Wireless Propag Lett,2012,11:905-908.
[58]MONGIA R K,ITTIPIBOON A,CUHACI M,et al.Circularly polarized dielectric resonator antenna[J].Electron Lett,1994,30(17):1361-362.
[59]LI B,HAO C X,SHENG X Q.A dual-mode quadrature-fed wideband circularly polarized dielectric resonator antenna[J].IEEE Antennas Wireless Propag Lett,2009,8:1036-1038.
[60]HAN R C,ZHONG S S,LIU J.Design of broadband circularly polarized dielectric resonator antenna using improved feed network[J].Microwave Opt Technol Lett,2014,56(9):2191-2195.
[61]HAN R C,ZHONG S S,LIU J.Broadband circularly polarised dielectric resonator antenna fed by wideband switched line coupler[J].Electron Lett,2014,50(10):725-726.
[62]KHOO K W,GUO Y X,ONG L C.Wideband circularly polarized resonator antenna[J].IEEE Trans Antennas Propag,2007,55(7):1929-1932.
[63]MASSIE G,CAILLET M,CLENET M,et al.A new wideband circularly polarized hybrid dielectric resonator antenna[J].IEEE Antennas Wireless Propag Lett,2010,9:347-350.
[64]PETOSA A,ITTIPIBOON A,CUHACI M.An array of circular-polarized cross dielectric resonator antenna[J].Electron Lett,1996,32(16):1742-1743.
[65]HANEISHI M,WU B.Array antenna composed of ccircularly polarized dielectric resonator antennas[C]//IEEE Antennas Propag Soc Int Symp.Orlando,1999,1:252-255.
[66]YANG S L,CHAIR R,KISHK A A,et al.Study on sequential feeding networks for subarrays of circularly polarized elliptical dielectric resonator antenna[J].IEEE Trans Antennas Propag,2007,55(2):321-333.
[67]CHAIR R,KISHK A A,LEE K F.Comparative study on different feeding techniques for dual polarized dielectric resonator antennas[C]//IEEE Antennas Propag Soc Int Symp.Albuquerque,2006:2495-2498.
[68]GUO Y X,LUK K M.Dual polarized dielectric resonator antennas[J].IEEE Trans Antennas Propag,2003,51(5):1120-1123.
[69]ZHONG S S,KONG L B,TANG X R.Dual-polarized dielectric resonator antenna with very high isolation and lower cross-polarization[C]//IEEE Antennas Propag Soc Int Symp.Orlando,2013:413.
[70]CHAIR R,KISHK A A,LEE K F.Hook-and 3-D J-shaped probe excited dielectric resonator antenna for dual polarization applications[J].IEE Proc Microw Antennas Propag,2006,153(3):277-281.
[71]TANG X R,ZHONG S S,KUANG L B,et al.Dual-polarized dielectric resonator antenna with high isolation and low cross-polarization[J].Electron Lett,2009,45(14):719-720.
[72]FANG X S,LEUNG K W.Designs of single-/dual-/wide-band rectangular dielectric resonator antennas[J].IEEE Trans Antennas Propag,2011,59(6):2409-2414.
[73]FANG X S,CHOW C K,LEUNG K W,et al.New single-/dual-mode design formulas of the rectangular dielectric resonator antenna using covariance matrix adaptation evolutionary strategy[J].IEEE Antennas Wireless Propag Lett,2011,10:734-737.
[74]FANG X S,LEUNG K W.Linear-/circular-polarization designs of dual-/wide-band cylindrical dielectric resonator antennas[J].IEEE Trans Antennas Propag,2012,60(6):2662-2671.
[75]LEUNG K W,FANG X S,PAN Y M,et al.Dualfunction radiating glass for antennas and light coverspart II:dual-band glass dielectric resonator antennas[J].IEEE Trans Antennas Propag,2013,61(2):587-597.
[76]HUITEMA L,KOUBEISSI M,MOUHAMADOU M,et al.Compact and multiband dielectric resonator antenna with pattern diversity for multi-standard mobile handheld devices[J].IEEE Trans Antennas Propag,2011,59(11):4201-4208.
[77]PAN Y,LEUNG K W,LUK K M.Design of the millimeter-wave rectangular dielectric resonator antenna using a higher-order mode[J].IEEE Trans Antennas Propag,2011,59(8):2780-2788.
[78]PERRON A,DENIDNI T A,SEBAK A.High-gain hybrid dielectric resonator antenna for millimeterwave applications:design and implementation[J].IEEE Trans Antennas Propag,2009,57(10):2882-2892.
[79]PERRON A,DENIDNI T A,SEBAK A.Circularly polarized microstrip/elliptical dielectric ring resonator antenna for millimeter-wave applications[J].IEEE Trans Antennas Propag,2010,9:783-786.
[80]PETOSA A,THIRAKOUNE S.Rectangular dielectric resonator antennas with enhanced gain[J].IEEE Trans Antennas Propag,2011,59(4):1385-1389.
[81]NIKKHAH M R,RASHED-MOHASSEL J,KISHK A A.High-gain aperture coupled rectangular dielectric resonator antenna array using parasitic elements[J].IEEE Trans Antennas Propag,2013,61(7):3905-3908.
[82]LUK K M,LEUNG K W,CHOW K W.Bandwidth and gain enhancement of a dielectric resonator antenna with the use of a stacking element[J].Microwave Opt Technol Lett,1997,14(4):215-217.
[83]NASIMUDDIN,ESSELLE K.Antennas with dielectric resonators and surface mounted short horns for high gain and large bandwidth[J].IET Microw Antennas Propag,2007,1(3):723-729.
[84]AL-HASAN M J,DENIDNI T A,SEBAK A.Millimeter-wave EBG-based aperture-coupled dielectric resonator antenna[J].IEEE Trans Antennas Propag,2013,61(8):4354-4357.
[85]DENIDNI T A COULIBALY Y,BOUTAYEB H.Hybrid dielectric resonator antenna with circular mushroom-like structure for gain improvement[J].IEEE Trans Antennas Propag,2009,57(4):1043-1049.
[86]YARGA S,SERTEL K,VOLAKIS J L.Degenerate band edge crystals for directive antennas[J].IEEE Trans Antennas Propag,2008,56(1):119-126.
[87]LAI Q,ALMPANIS G,FUMEAUX C,et al.Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band[J].IEEE Trans Antennas Propag,2008,56(11):3589-3592.
[88]ANTAR Y M M.Antennas for wireless communications:recent advances using dielectric resonators[J].IET Circuits Devices Syst,2008,2(1):133-138.
[89]WAHAB W M A,BUSUIOC D,SAFAVI-NAEINI S.Low cost planar waveguide technology-based dielectric resonator antenna for millimeter-wave applications:analysis,design,and fabrication[J].IEEE Trans Antennas Propag,2010,58(8):2499-2507.
[90]LAI Q,FUMEAUX C,HONG W,et al.60GHz aperture-coupled dielectric resonator antennas fed by a half-mode substrate integrated waveguide[J].IEEE Trans Antennas Propag,2010,58(6):1856-1864.
[91]ABDEL-WAHAB W M,BUSUIOC D,SAFAVINAEINI S.Millimeter-wave high radiation efficiency planar waveguide series-fed dielectric resonator antenna(DRA)array:analysis,design,and measurements[J].IEEE Trans Antennas Propag,2011,59(8):2834-3242.
[92]AMADJIKPÉA L,CHOUDHURY D,PATTERSON C E,et al.Integrated 60-GHz antenna on multilayer organic package with broadside and end-fire radiation[J].IEEE Trans Microw Theory Techn,2013,61(1):303-315.
[93]NEZHAD-AHMADI M R,FAKHARZADEH M,BIGLARBEGIAN B,et al.High-efficiency on-chip dielectric resonator antenna for MM-wave transceivers[J].IEEE Trans Antennas Propag,2010,58(10):3388-3392.
[94]HOU D,XIONG Y Z,GOH W L,et al.130-GHz on-chip meander slot antennas with stacked dielectric resonators in standard CMOS technology[J].IEEE Trans Antennas Propag,2012,60(9):4102-4109.
[95]OHLSSON L,BRYLLERT T,GUSTAFSON C,et al.Slot-coupled millimeter-wave dielectric resonator antenna for high-efficiency monolithic integration[J].IEEE Trans Antennas Propag,2013,61(4):1599-1607.
[96]张丽娜,钟顺时,许赛卿,等.微带馈电的圆柱形介质谐振器天线阵[J].微波学报,2008,3(24):25-27.ZHANG Lina,ZHONG Shunshi,XU Saiqing,et al.Microstrip-fed cylindrical dielectric resonator antenna array[J].Journal of Microwaves,2008,3(24):25-27.(in Chinese)
[97]ZHANG Y Z,KISHK A A.Analysis of dielectric re-sonator antenna arrays with supporting perforated rods[C]//IET The Second European Conference on Antennas and Propagation.Edinburgh,Nov 2007:1-5.
[98]BUERKLE A,BRAKORA K F,SARABANDI K.Fabrication of a DRA array using ceramic stereolithography[J].IEEE Antennas and Wireless Propag Lett,2006(5):479-482.
[99]DROSSOS G,WU Z,DAVIS L E.Switchable cylindrical dielectric resonator antenna[J].Electronics Letters,1996,10(32):862-864.
[100]KINGSLEY S P,KEEFE S G O.Steerable-beam Multiple Feed Dielectric Resonator Antenna:US 6,452,65B1[P].2002.
[101]PETOSA A,THIRAKOUNE S.Frequency tunable rectangular dielectric resonator antenna[C]//IEEE Antennas Propag Soc Int Symp.Charleston,June 2009:1-4.