何传新,任圣颖,谢敏随,袁安朋,洪 飞,张黔玲,刘剑洪
深圳大学化学与化工学院,深圳 518060
【材料科学 / Material Science】
基于Fe3O4-PEI纳米粒子构建葡萄糖传感器的研究
何传新,任圣颖,谢敏随,袁安朋,洪 飞,张黔玲,刘剑洪
深圳大学化学与化工学院,深圳 518060
采用共沉淀法制备核层为四氧化三铁(Fe3O4)壳层为聚乙烯亚胺(polyethyleneimine, PEI)的磁性复合纳米粒子Fe3O4-PEI.扫描电子显微镜和透射电子显微镜表征结果显示,制备的磁性复合纳米粒子Fe3O4-PEI粒径均匀,直径约为25 nm. 通过振动样品磁强计比较Fe3O4-PEI和Fe3O4纳米粒子的磁滞回线,结果表明,经PEI包覆后复合纳米粒子饱和磁化值为38.2 emu/g,仍具有较好的磁性. 热重分析表明,包覆在Fe3O4纳米粒子表面的PEI质量分数约为23.26%.通过静电作用,实现了Fe3O4-PEI复合纳米粒子对葡萄糖氧化酶的负载,以铂电极为基底电极,制备了Fe3O4-PEI-GOx/Pt葡萄糖传感器. 在最优测试条件下,该修饰电极对葡萄糖表现出优异的电化学催化性能,具有灵敏度高、抗干扰能力强、稳定性好的特点.
高分子化学;葡萄糖传感器;磁性纳米粒子;聚乙烯亚胺,葡萄糖氧化酶,静电作用
自1956年Clark提出氧电极与酶的电化学反应理论以来,经科学家长期不懈地努力,葡萄糖酶传感器已取得长足发展[1].一般来讲,葡萄糖酶传感器具有选择性好[2-3]和灵敏度高等优点[4-5],但由于其所负载的葡萄糖氧化酶易受pH值和温度等外界环境的影响而降低或丧失活性,从而导致该类型电极稳定性差[6-7].
磁性纳米粒子具有良好的生物相容性、磁导向性和磁场响应性等性能,在核磁共振成像、药物的缓释、标记DNA和蛋白质等生物医学领域得到广泛应用[8-10]. 在有酶型葡萄糖传感器的制备上,需借助载体将葡萄糖氧化酶修饰到电极界面.如何在载体上尽可能多的负载葡萄糖氧化酶,并保留酶的活性,是提高葡萄糖传感器综合性能的一个关键因素.利用Fe3O4磁性纳米粒子负载葡萄糖氧化酶,不仅使制备的葡萄糖传感器具有良好的生物相容性,有利于酶活性的保留,且在负载酶的过程中易于分离,降低了酶活性的损失[11-14].一般来说,酶在载体上固定的方法主要有共价键合法、包埋法、吸附法和交联法[15-18].其中,吸附法条件温和,对酶的结构影响较小,能够较好地保持酶的催化活性.本研究采用共沉淀法合成出带有正电的磁性纳米复合粒子四氧化三铁-聚乙烯亚胺(Fe3O4-polyethyleneimine,Fe3O4-PEI),并通过静电吸附作用将带有负电的葡萄糖氧化酶修饰到Fe3O4-PEI纳米粒子上,以铂(platinum,Pt)电极为基底电极,制备了电流型葡萄糖传感器. 电化学测试结果表明,通过该方法制备的葡萄糖传感器对葡萄糖具有优异的电化学催化氧化性能,且灵敏度高、响应范围大、稳定性好.
1.1 仪器与试剂
仪器:日本日立公司SU-70扫描电子显微镜(scanning electron microscope,SEM);日本JEM-2100F场发射透射电子显微镜(transmission electron microscope,TEM);美国 Quantum Design 公司VersaLab振动样品磁强计;德国耐驰公司STA409PC同步热分析仪;英国Solartron SI 1260综合电化学分析仪.
试剂:FeCl2·4H2O(分析纯)、FeCl3·6H2O (分析纯)和 聚乙烯亚胺(polyethylenimine, PEI,相对分子质量10 000)购自阿拉丁试剂(上海)有限公司,D-葡萄糖、戊二醛(体积分数为50%)、葡萄糖氧化酶(glucose oxidase, GOx,来源于黑曲霉Aspergillusniger, 25 ℃条件下酶活性大于1 000 U/g)购自生物生工(上海)工程有限公司;NaOH、HCl和KH2PO4购自国药集团化学试剂有限公司,使用前未作处理.实验用水为超纯水(电阻率值为18.2 MΩ·cm).
1.2 修饰电极的制备
1.2.1 Fe3O4-PEI纳米粒子的制备
采用共沉淀法合成Fe3O4-PEI纳米粒子[14],具体过程如下:将0.1 moL的FeCl2·4H2O与0.2 moL的FeCl3·6H2O溶于20 mL 超纯水中,在25 ℃高速机械搅拌条件下将铁盐混合溶液匀速滴加到含有125 mL浓度为1.5 mol/L NaOH溶液的三口烧瓶中.滴加完成后,将温度升高至80 ℃熟化30 min,然后冷却至室温,磁分离后用超纯水洗5遍,最后分散于110 mL超纯水中.反应均在氮气保护下进行.
在80 ℃高速搅拌条件下将110 mL质量浓度为0.02 g/mL的PEI溶液匀速滴加到Fe3O4溶液中,搅拌30 min.待溶液冷却,将PEI包覆后的粒子磁分离,用超纯水洗5遍,分散于110 mL、pH=7.4的磷酸盐缓冲液(phosphate buffered saline,PBS)中保存.
1.2.2 Fe3O4-PEI-GOx/Pt修饰电极的制备
将Pt电极依次用1.00、 0.50和0.05 μm的Al2O3粉在麂皮上打磨抛光,分别在无水乙醇和超纯水中反复超声5次,然后,在0.5 mol/L的H2SO4中于-0.2~1.5 V电位范围内进行循环伏安扫描,直到得到稳定循环伏安曲线,再用超纯水超声清洗,经高纯氮气吹干后使用.
将0.5 mL的Fe3O4-PEI复合纳米粒子分散液与1 mL 8 mg/mL GOx溶液(pH=7.4)混合3 h后,移取3 μL混合溶液滴加到处理过的铂电极表面; 室温下干燥后,滴加2.5 μL体积分数为1%的戊二醛; 室温下再次干燥后,在pH=7.4的PBS溶液浸泡30 min.制好的电极不用时在4 ℃条件下,贮存于pH=7.4的PBS缓冲溶液中.
电化学测试采用三电极系统:Fe3O4-PEI-GOx/Pt电极作为工作电极, Ag/AgCl(饱和KCl)作为参比电极,铂柱电极作为对电极.
2.1 Fe3O4-PEI磁性纳米复合粒子的表征
图1是Fe3O4-PEI纳米粒子的SEM和TEM结果.从图1可见,采用共沉淀法制备的Fe3O4-PEI纳米粒子近似球形.图1(b)显示,Fe3O4-PEI纳米粒子的平均粒径约为25 nm.
图1 Fe3O4-PEI纳米粒子的SEM图和 TEM图Fig.1 SEM and TEM images of Fe3O4-PEI nanoparticles
图2(a)是通过振动样品磁强计(vibrating sample magnetometer, VSM)测定的磁滞回线,Fe3O4纳米粒子的粒径小于临界尺寸,矫顽力和剩磁几乎都为0,表现出超顺磁性.Fe3O4纳米粒子的饱和磁化值M为52.1emu/g,有较高的磁响应性;Fe3O4-PEI纳米粒子的M为38.2emu/g.饱和磁化值的下降可能是包裹在磁性纳米粒子表面的PEI所引起的.从图2(b)中的热重(thermogravimetry,TG)曲线分析得知,Fe3O4-PEI粒子的失重分为两个阶段,第1阶段在120 ℃以下,失重率为3.1%,这个温度段的失重是真空干燥后复合纳米粒子中仍残留的结合水蒸发所致;第2阶段是从120 ℃开始并最终趋于稳定, 这段的失重主要是聚合物PEI分解造成的.经计算,PEI在Fe3O4表面的包覆量为约23.26%.
图2 VSM和TG表征结果Fig.2 Results of VSM curves and TG curves
2.2Fe3O4-PEI-GOx/Pt对葡萄糖的电催化氧化
图3是PEI-Fe3O4-GOx/Pt修饰电极对不同浓度的葡萄糖响应的循环伏安法(cyclicvoltammetry,CV)曲线图.从图3可见,加入1mmol/L葡萄糖后,修饰电极的氧化电流明显增大.随着葡萄糖浓度持续增加,修饰电极的氧化电流也不断增大. 这些结果表明,Fe3O4-PEI-GOx/Pt修饰电极对葡萄糖浓度具有较好的线性响应.
图3 修饰电极在葡萄糖浓度分别为0、1、2、3和 4 mmol/L的磷酸盐缓冲液(0.05 mmol/L, pH=7.4)中的循环伏安图(扫描速度50 mV/s)Fig.3 CV curves of Fe3O4-PEI-GOx/Pt with 0, 1, 2, 3, and 4 mmol/L glucose in PBS buffer solution (pH=7.4, scan rates: 50 mV/s)
2.3 工作条件的优化
工作电压及缓冲液pH值的优化对葡萄糖传感器的性能有着重要影响.通常,较高的工作电位有利于增加葡萄糖传感器的电流响应值,但对血液中存在的抗坏血酸和尿酸等电活性物质的抗干扰能力会有所降低.相反,较低的电位有助于获得较好的抗干扰能力,但低电位下的电流响应会相应的降低。此外,葡萄糖氧化酶作为一种生物催化剂,其活性易受pH值影响,较高或较低的pH值都会造成其活性的降低或损失.图4是Fe3O4-PEI-GOx/Pt修饰电极工作电位及pH值(优化结果).从图4可见,在工作电位超过0.4V,pH值在7.0~8.5时,修饰电极具备较高的电流响应.考虑到修饰电极的干扰性及正常人体血液的pH值(7.4左右),最优测试参数可选择为:工作电位0.4V;PBS缓冲液pH=7.4.
图5 连续加入葡萄糖时Fe3O4-PEI-GOx/Pt 在0.4 V、 pH=7.4 条件下的电流响应图 (小图是其电流与其对应的葡萄糖浓度线性曲线图)Fig.5 Amperometric responses of Fe3O4-PEI-GOx/Pt for successive addition of glucose solution at optimal conditions (0.4 V, pH=7.4) (Inset: linear relationship of response current versus the concentration of glucose)
2.4 传感器的性能
在最佳测试参数条件下(工作电压为0.4V,在pH=7.4,0.05mol/LPBS溶液中测试),利用计时安培法,研究了PEI-Fe3O4-GOx/Pt电极对葡萄糖的催化性能,如图5所示.从图5可见, 随着葡萄糖的不断加入,相应的响应电流呈阶跃式增加.在0.39~6.36mmol/L之间,电流响应值与葡萄糖浓度c呈良好的线性关系,线性回归方程为i=2.999c+1.324,R=0.992.电极的检出限为1×10-8mol/L,灵敏度为95.5μA/(mmol·L-1·cm2).
2.5 抗干扰性及耐久性
由于在传感器的实际操作中,人体血液中的尿酸(uricacid,UA)、抗坏血酸(ascorbicacid,AA)会对葡萄糖浓度的测定产生干扰,因此,通过计时安培法研究这些物质在Fe3O4-PEI-GOx/Pt电极上的响应. 工作电压为0.4V条件下,在pH=7.4的PBS中分别加入葡萄糖、尿酸和抗坏血酸溶液.如图6(a)所示,当加入葡萄糖溶液后,响应电流迅速增加并在极短时间内达到平衡,而加入抗坏血酸和尿酸后响应电流值基本没有变化.这说明制备的电极具有较好的选择性, 可消除其他物质的干扰.
图6 传感器的选择性和稳定性Fig.6 The selectivity and stability of the biosensor
GOx的等电点在4.6左右. 在pH=7.4的PBS中,GOx由于羧基电离而带负电;通常,包覆在纳米粒子表面的高分子可以显著影响纳米粒子的空间行为. 包覆在Fe3O4纳米粒子上的PEI在Fe3O4-PEI-GOx复合纳米粒子形成过程中具有重要作用,它有效地阻止了Fe3O4纳米粒子的聚沉;其次,由于包覆在Fe3O4纳米粒子表面的PEI氨基电离使Fe3O4-PEI表面带有正电荷[19-21],可以通过静电作用将GOx固定在其表面. 将制备的电极在4 ℃条件下浸入PBS溶液中存储30d后,仍能保持90%的响应电流, 如图6(b)所示. 这种较长时间的耐久性一方面归功于Fe3O4-PEI纳米粒子具有较好生物相容性,另一方面,与酶在载体上比较温和的固定,对酶的结构破坏较少有关.
通过共沉淀法制备了粒径较为均一的核壳型Fe3O4-PEI复合纳米粒子,并将其应用在电流型酶葡萄糖传感器上.在0.4V的工作电压下,制备的Fe3O4-PEI-GOx/Pt电极对葡萄糖具有良好的催化活性,灵敏度高达95.5μA/(mmol·L-1·cm2),电流响应与葡萄糖浓度在0.39~6.36mmol/L范围内呈现出良好的线性关系,表现出优异的抗干扰性能.由于制备的Fe3O4-PEI纳米粒子具备良好的生物相容性且能够较长时间的保持吸附在其表面的葡萄糖氧化酶的活性,对实现该类型葡萄糖传感器产业化具有重要意义.
/ References:
[1] Heller A, Feldman B. Electrochemical glucose sensors and their applications in diabetes management[J]. Chemical Reviews, 2008, 108(7): 2482-2505.
[2] Mathew M, Sandhyarani N. A highly sensitive electrochemical glucose sensor structuring with Nickel hydroxide and enzyme glucose oxidase[J]. Electrochimica Acta, 2013, 108: 274-280.
[3] Wu Shouguo, Liu Gang, Li Ping, et al. A high-sensitive and fast-fabric glucose biosensor based on Prussian blue/topological insulator Bi2Se3hybrid film[J]. Biosensors and Bioelectronics, 2012, 38(1): 289-294.
[4] Huang Kejing, Wang Lan, Li Jing, et al. Glassy Carbon electrode modified with glucose oxidase-graphene-nano-copper composite film for glucose sensing[J]. Measurement, 2013, 46(1): 378-383.
[5] Lin Jiehua, He Chunyan, Zhao Yue, et al. One-step synthesis of Silver nanoparticles/Carbon nanotubes/chitosan film and its application in glucose biosensor[J]. Sensors and Actuators B-Chemical, 2009, 137(2): 768-773.
[6] Wang Zhijuan, Zhou Xiaozhu, Zhang Juan, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase[J]. Journal of Physical Chemistry C, 2009, 113(32): 14071-14075.
[7] Toghill K E,Compton R G.Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation[J].International Journal of Electrochemical Science, 2010, 5(9): 1246-1301.
[8] Xia Tingting, Guan Yueping, Yang Mingzhu, et al. Synthesis of polyethylenimine modified Fe3O4nanoparticles with immobilized Cu2+for highly-efficient proteins adsorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443: 552-559.
[9] Hultman K L, Raffo A J, Grzenda A L, et al. Magnetic resonance imaging of major histocompatibility class II expression in the renal medulla using immunotargeted superparamagnetic Iron oxide nanoparticles[J]. ACS Nano, 2008, 2(3): 477-484.
[10] Wang Aijun, Li Yongfang, Li Zhonghua, et al. Amperometric glucose sensor based on enhanced catalytic reduction of Oxygen using glucose oxidase adsorbed onto core-shell Fe3O4@silica@Au magnetic nanoparticles[J]. Materials Science & Engineering C-Materials for Biological Applications, 2012, 32(6): 1640-1647.
[11] Marand Z R, Shahtahmassebi N, Housaindokht M R, et al. Construction of an amperometric glucose biosensor by immobilization of glucose oxidase on nanocomposite at the surface of FTO electrode[J]. Electroanalysis, 2014, 26(4): 840-848.
[12] Sharma R, Sinha R K, Agrawal V V. Electroactive prussian blue encapsulated iron oxide nanostructures for mediator-free cholesterol estimation[J]. Electroanalysis, 2014, 26(7): 1551-1559.
[13] Tan Xuecai, Zhang Jinlei, Tan Shengwei, et al. Amperometric hydrogen peroxide biosensor based on horseradish peroxidase immobilized on Fe3O4/chitosan modifiedGlassy carbon electrode[J]. Electroanalysis, 2009, 21(13): 1514-1520.
[14] Teymourian H, Salimi A, Firoozi S. A high performance electrochemical biosensing platform for glucose detection and IgE aptasensing based on Fe3O4/reduced graphene oxide nanocomposite[J]. Electroanalysis, 2014, 26(1): 129-138.
[15] Pellissier M, Zigah D, Barriere F, et al. Optimized preparation and scanning electrochemical microscopy analysis in feedback mode of glucose oxidase layers grafted onto conducting carbon surfaces[J]. Langmuir, 2008, 24(16): 9089-9095.
[16] Jeykumari D R S,Narayanan S S.A novel nanobiocomposite based glucose biosensorusing neutral red functionalized carbon nanotubes[J]. Biosensors and Bioelectronics, 2008, 23(19) : 1404-1411.
[17] Gooding J J, Praig V G, Hall E A H. Platinum-catalyzed enzyme electrodes immobilized on gold using self-assembled layers[J]. Analytical Chemistry, 1998, 70(11): 2396-2402.
[18] Yu Jiuhong, Liu Songqin, Ju Huangxian. Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol-gel membrane[J]. Biosensors and Bioelectronics, 2003, 19(4): 401-409.
[19] Lou Lei, Yu Ke, Zhang Zhengli, et al. Dual-mode protein detection based on Fe3O4-Au hybrid nanoparticles[J]. Nano Research, 2012, 5(4): 272-282.
[20] Zhou Xi, Xu Wenlong, Wang Yan, et al. Fabrication of cluster/shell Fe3O4/Au nanoparticles and application in protein detection via a SERS method[J]. Journal of Physical Chemistry C, 2010, 114(46): 19607-19613.
[21] Goon I Y, Lai L M, Lim M, et al. Fabrication and dispersion of Gold-Shell-Protected magnetite nanoparticles: systematic control using polyethyleneimine[J]. Chemistry of Materials, 2009, 21(4): 673-681.
【中文责编:晨 兮;英文责编:新 谷】
Glucose sensor based on Fe3O4-PEI nanoparticles
He Chuanxin†, Ren Shengying, Xie Minsui, Yuan Anpeng, Hong Fei,Zhang Qianling, and Liu Jianhong†
College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, P.R.China
Fe3O4-PEI nanoparticles with Fe3O4core and polyethylenimine (PEI) shell were prepared via the co-precipitation method. Results from scanning electron microscope (SEM) and transmission electron microscope (TEM) show that Fe3O4-PEI nanoparticles present globular shape with almost uniform diameters of about 25 nm. Magnetic hysteresis loops of Fe3O4-PEI and Fe3O4nanoparticles were obtained by a vibrating sample magnetometer (VSM). The magnetism of Fe3O4nanoparticles still remains a lot after coating with PEI, and the saturation magnetization value of Fe3O4-PEI nanoparticles is 38.2 emu/g. Thermogravimetry (TG) analysis indicats that the loading amount of PEI on the surface of Fe3O4nanoparticles is about 23.26%. The glucose oxidase (GOx) enzyme was immobilized on the Fe3O4-PEI nanoparticles surface by electrostatic interaction. Fe3O4-PEI-GOx/Pt glucose sensor was prepared with platinum (Pt) as its basal electrode, which exhibits a good electrochemical catalysis for glucose, high sensitivity, strong anti-interference ability and long-term durability for glucose detection under an optimal preparation condition.
polymer chemistry; glucose sensor; magnetic nanoparticles; polyethyleneimine; glucose oxidase; electrostatic interaction
:He Chuanxin, Ren Shengying, Xie Minsui, et al. Glucose sensor based on Fe3O4-PEI nanoparticles[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(1): 76-81.(in Chinese)
O 63
A
10.3724/SP.J.1249.2015.01076
国家自然科学基金资助项目(21374064,21004040)
何传新(1983—),男(汉族),安徽省宣城市人,深圳大学副教授、博士.E-mail:hechuanxin2002@163.com
Received:2014-08-14;Accepted:2014-10-19
Foundation:National Natural Science Foundation of China (21374064, 21004040)
† Corresponding author:Associate professor He Chuanxin. E-mail:hechuanxin2002@163.com; Professor Liu Jianhong. E-mail: Liujh@szu.edu.cn
引 文:何传新,任圣颖,谢敏随,等. 基于Fe3O4-PEI纳米粒子构建葡萄糖传感器的研究[J]. 深圳大学学报理工版,2015,32(1):76-81.