张凤芹, 朱爱东
( 延边大学理学院 物理系, 吉林 延吉 133002 )
在无消相干子空间中确定性地实现多目标量子比特相位翻转门
张凤芹,朱爱东*
( 延边大学理学院 物理系, 吉林 延吉 133002 )
摘要:基于腔的输入输出过程,在无消相干子空间中利用腔中束缚的2个原子编码成逻辑量子比特来确定性的实现多目标逻辑量子比特受控相位门.该方案不仅对抵御整体退相位错误是鲁棒的,而且容易实现.通过对相位门保真度的分析得知,该方案对腔衰减更加鲁棒,在中度耦合条件下,它的保真度可以达到1.最后,本文讨论了在当前实验条件下该方案的可行性. 无消相干子空间; 原子与光子的相互作用; 多量子比特相位门 O431
文献标识码:A
1单边腔的输入输出过程
考虑2个相同的二能级原子与单模腔相互作用的系统,耦合系统的哈密顿可以写成[28](ћ=1):
(1)
(2)
图1 腔中原子的能级结构(a)和单边光学腔的输入输出过程(b)
其中ω是单光子脉冲的频率, κ/2和γm/2分别为腔衰减率和第m个原子衰减率.假设在方程(2)中κ是足够大的,那么它可以确保原子与光子相互作用后原子布局仍保留在基态上.原子的衰减率,以及原子与腔模相互作用的耦合强度分别满足关系: γ1=γ2=γ, g1=g2=g.在共振条件下ωc=ω0=ω, 反射系数r(ω)可以写成:
(3)
其中下角标“2”代表2个原子与腔模相互作用.在强耦合(g≫κ,γ)区域中,发射系数r2≈1, 此时反射出来的光子将会携带一个φ2=0的相位;在去耦合(g=0)条件下,反射系数r0≈-1, 此时反射出来的光子将会携带一个φ0=π的相位;当单光子与腔中的一个原子相耦合时,反射系数r1≈1, 此时反射出来的光子将携带φ1=0的相位[28-29,32-33].
(4)
将方程(4)定义成UR, 它表示的是极化光子和原子跃迁之间的选择性定则,其目的是实现一些无消相干子空间中的量子逻辑操作.
2无消相干子空间中多目标的受控相位翻转门的实现
(5)
经过这个模块以后,腔中的2个原子就和单光子脉冲纠缠在一起.
图2 纠缠门的示意图 (PBS代表极化分束器,QWP代表四分之一波片,HWP22.5°表示半波片)
图3 实现三量子比特受控相位门的装置图
(6)
(7)
当光子脉冲通过模块Pc后,系统的态将演化成
(8)
(9)
则方程(8)可以写成
(10)
最后,光子到达探测器.当探测器Dv响应时,原子态将塌缩到
(11)
即
(12)
此外,利用图4的装置可以将上述的方案拓展到实现多目标逻辑量子比特的受控相位翻转门的情况.多目标逻辑量子比特受控相位翻转门可以写成[11]:
(13)
图4 实现多目标逻辑量子比特受控相位翻转门的装置
(14)
利用编码在无消相干子空间的原子所实现的上述纠缠态和量子逻辑门都不受整体退相位的影响,并且也不需要复杂的操作.
3讨论与总结
(15)
图5 多目标逻辑量子比特受控相位翻转门的保真度F与g/κ的关系图
(16)
(17)
从式(17)可以看出,在不同腔中的不同噪声,不会使量子态发生变化.
本文通过在无消相干子空间中的输入输出过程,提出了确定性的实现光子和原子的纠缠门,以及多目标逻辑量子比特的受控相位翻转门的方案.该方案对环境噪声所引起的整体退相位有很好的鲁棒性,并且在中度耦合强度下有较高的保真度,所以该方案有望被应用于分布式量子计算网络中.
参考文献:
[1]Grover L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Phys Rev Lett, 1997,79:325.
[2]Turchette Q A, Hood C J, Lange W, et al. Measurement of conditional phase shifts for quantum logic[J]. Phys Rev Lett, 1995,75:4710.
[3]Zou X B, Xiao Y F, Li S B, et al. Quantum phase gate through a dispersive atom-field interaction[J]. Phys Rev A, 2007,75:064301.
[4]Zou X B, Zhang S L, Li K, et al. Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors[J]. Phys Rev A, 2007,75:034302.
[5]Cirac J I, Zoller P. Quantum computations with cold trapped ions[J]. Phys Rev Lett, 1995,74:4091.
[6]Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation[J]. Phys Rev A, 1995,52:3457.
[7]Chow1 J M, Gambetta J M, Cross A W, et al. Microwave-activated conditional-phase gate for superconducting qubits[J]. New J Phys, 2013,15:115012.
[8]Doherty A C, Wardrop M P. Two-qubit gates for resonant exchange qubits[J]. Phys Rev Lett, 2013,111:050503.
[9]Milburn G J. Quantum optical fredkin gate[J]. Phys Rev Lett, 1989,62:2124.
[10]Yang C P, Han S. N-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator[J]. Phys Rev A, 2005,72:032311.
[11]Yang C P, Su Q P, Zhang F Y, et al. Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses[J]. Opt Lett, 2014,39:003312.
[12]Chen C Y, Feng M, Gao K L. Toffoli gate originating from a single resonant interaction with cavity QED[J]. Phys Rev A, 2006,73:064304.
[13]Deng Z J, Zhang X L, Wei H, et al. Implementation of a nonlocaln-qubit conditional phase gate by single-photon interference[J]. Phys Rev A, 2007,76:044305.
[14]Deng Z J, Feng M, Gao K L. Preparation of entangled states of four remote atomic qubits in decoherence-free subspace[J]. Phys Rev A, 2007,75:024302.
[15]Lidar D A, Chuang I L, Whaley K B. Decoherence-free subspaces for quantum computation[J]. Phys Rev Lett, 1998,81:2594.
[16]Beige A, Braun D, Tregenna B, et al. Quantum computing using dissipation to remain in a decoherence-free subspace[J]. Phys Rev Lett, 2000,85:1762.
[17]Kempe J, Bacon D, Lidar D A, et al. Theory of decoherence-free fault-tolerant universal quantum computation[J]. Phys Rev A, 2001,63:042307.
[18]Lidar D A, Bacon D, Kempe J, et al. Decoherence-free subspaces for multiple-qubit errors. II. Universal, fault-tolerant quantum computation[J]. Phys Rev A, 2001,63:022307.
[19]Feng M. Grover search with pairs of trapped ions[J]. Phys Rev A, 2001,63:052308.
[20]Mohseni M, Lundeen J S, Resch K J, et al. Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm[J]. Phys Rev Lett, 2003,91:187903.
[21]Duan L M, Kimble H J. Scalable photonic quantum computation through cavity-assisted interactions[J]. Phys Rev Lett, 2004,92:127902.
[22]Wei H, Yang W L, Deng Z J, et al. Many-qubit network employing cavity QED in adecoherence-free subspace[J]. Phys Rev A, 2008,78:014304.
[23]Hu Y M, Chen Q, Feng M. Grover search in decoherence-free subspace with low-Qcavities[J]. J Phys B: At Mol Opt Phys, 2011,44:175504.
[24]Wei H, Deng Z J, Zhang X L, et al. Ransfer and teleportation of quantum states encoded in decoherence-free subspace[J]. Phys Rev A, 2007,76:054304.
[25]Liu A P, Cheng L Y, Chen L, et al. Quantum information processing in decoherence-free subspace with nitrogen-vacancy centers coupled to a whispering-gallery mode microresonator[J]. Opt Commun, 2013,313:180.
[26]Duan L M, Guo G C. Preserving coherence in quantum computation by pairing quantum bits[J]. Phys Rev Lett, 1997,79:1953.
[27]Kielpinski D, Monroe C, Wineland D J. Architecture for a large-scale ion-trap quantum computer[J]. Nature, 2002,417:709.
[28]Chen Q, Feng M. Quantum-information processing in decoherence-free subspace with low-Qcavities[J]. Phys Rev A, 2010,82:052329.
[29]Wang C, Wang T J, Zhang Y, et al. Concentration of entangled nitrogen-vacancy centers in decoherence free subspace[J]. Opt Express, 2014,22:1551.
[30]An J H, Feng M, Oh C H. Quantum-information processing with a single photon by an input-output process with respect to low-Qcavities[J]. Phys Rev A, 2009,79:032303.
[31]Garnier A A, Simon C, Gérard J M, et al. Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime[J]. Phys Rev A, 2007,75:053823.
[32]Duan L M, Kimble H J. Scalable photonic quantum computation through cavity-assisted interactions[J]. Phys Rev Lett, 2004,92:127902.
[33]Lin X M, Xue P, Chen M Y, et al. Scalable preparation of multiple-particle entangled states via the cavity input-output process[J]. Phys Rev A, 2006,74:052339.
[34]McKeever J, Buck J R, Boozer A D, et al. State-insensitive cooling and trapping of single atoms in an optical cavity[J]. Phys Rev Lett, 2003,90:133602.
[35]McKeever J, Boca A, Boozer A D, et al. Experimental realization of a one-atom laser in the regime of strong coupling[J]. Nature, 2003,425:268.
[36]Boca A, Miller R, Birnbaum K M, et al. Observation of the vacuum rabi spectrum for one trapped atom[J]. Phys Rev Lett, 2004,93:233603.
Deterministic implementation of a controlled phase gate with multi-target qubits in decoherence-free subspace
ZHANG Fengqin,ZHU Aidong*
(DepartmentofPhysics,CollegeofScience,YanbianUniversity,Yanji133002,China)
Abstract:A scheme is proposed for deterministically implementing a controlled-phase flip gate with multi-target logic qubits via the input-output process of the cavity, in which two atoms are trapped and encoded as one logic qubit in the decoherence-free subspace. The scheme is not only robust against the collective dephasing errors, but also easy to implement. The analysis of fidelity for this gate shows the robustness to cavity decay. Under a medium coupling strength it reaches a high fidelity near unity. The discussion on experiment shows its feasibility with current technology.
Keywords:decoherence-free subspace; interactions of atoms with photons; multi-qubit phase gate
文章编号:1004-4353(2015)04-0300-07
*通信作者:朱爱东(1968—),女,博士,教授,研究方向为量子光学和量子信息学.
收稿日期:2015-10-13基金项目: 国家自然科学基金资助项目(11564041,61465013,11264042)