论数学问题解决中的直觉思维

2015-02-09 18:24罗波
读与写·下旬刊 2014年2期
关键词:直觉创造性思维

摘要:直觉思维较逻辑思维是一种更加强调想象力,更充满创造性的思维。在数学教学中,数学问题的解决中,直觉思维和逻辑思维同样具有十分重要的作用。但是,在我国数学的传统教学中,过分的注重逻辑推理,教育出的学生认真严谨,而且,基础扎实。在世界性的各种比赛中我国的学生都取得过优异的成绩,但是在这种传统教学方法下,我国的学生缺乏创新意识,对于诺贝尔这种要求创造力的奖项,中国学生远远低于他国。因此,在数学教学中,应该改变传统的只重视逻辑推理,而忽视直觉思维的培养的弊端。本文将从,对于直觉思维的理解,直觉思维在数学问题解决中的作用,以及直觉思维在数学问题解决中的培养三方面论述,数学问题解决中的直觉思维。

关键字:直觉思维;数学问题解决中图分类号:G642.0文献标识码:B文章编号:1672-1578(2014)02-0008-01引言:直觉思维的重要性在我国数学教学中一直没有受到应有的重视,其实,直觉思维同逻辑思维在揭示数学问题的本质,以及内在规律性的问题方面,具有同等重要的作用。直觉思维充满创造性,它具有自由,灵活,自发,偶然等等特点。它没有完全的逻辑过程,是对问题的迅速回答,讲求的是猜想,是顿悟,是创新。事实证明,伟大的发现往往运用的正是直觉思维,而不是逻辑思维。例如,阿基米德的浮力定律的发现就是由洗澡引发的等等。随着科技的进步,时代的发展,与掌握基础知识相比,我们更加重视学生对于数学的能力的培养,帮助学生以数学的方式思考,以数学的眼光观察世界,处理问题。

1.对于直觉思维的理解

1.1直觉思维的含义。国内外的研究者对于"直觉"一词的含义的解释各不相同,存在着许多种的说法。但是都肯它的存在,以及在解决问题中发挥的重要作用。直觉思维是一种客观存在的,完全不同于逻辑思维的非逻辑思维方式,具体表现为,人们在遇到突发的新事物,新问题,需要解决时。运用已有的经验和认识,在整体上直接对问题加以认识以及把握,达到直接的领悟,是一种高度的简化的,浓缩的洞察问题,迅速的解决问题的思维方式。简单的说,就是从整体上对于所遇到的新问题,做出猜想,达到顿悟。

1.2直觉思维的特点。与逻辑思维相比,直觉思维具有明显的跳跃性。在数学问题的解决中,直觉思维是从整体上把握问题的性质以及特点,初步的做出结论性的判断,从而直接得出答案。而不是,按部就班的逻辑分析。

直觉思维的另一个突出的特点就是快速性。直觉思维不同于逻辑思维,在遇到一个问题时,对于问题的解决,要遵循一定的思维规律,要认真严谨的做出一步步的分析,得出的结论是严谨的,准确性强。而直觉思维,对于一个问题的解决是凭借的自己的过往的经验,以及已有的知识,立即的进行判断,快速的得出结论。

综合性也是直觉思维的特点。直觉思维对于问题的解决是从整体上进行的,对于问题的把握是从整体理解到触及问题的本质。因此,直觉思维是整体的,综合的。

偶然性是直觉思维的又一特点。直觉思维具有很强的个人的色彩,与个人的以往经验,认识水平都具有重要的关系,因此,在问题的解决上偶然性很大。

创造性是直觉思维的最重要的一个特点,直觉思维是属于无意识范畴的,因此,它的想象力是丰富多彩的,是发散性的。因此,对于问题的解决,更易做出创造性的答案。

2.直觉思维在数学问题解决中的作用

问题解决,是为了提高学生解决现实生活中的实际问题的能力,问题解决是一个创造性的活动。数学的学习本身就是为了解决实际问题的,因此,问题解决是数学的目的。而且,问题解决是数学学习的基本方法与技巧。直觉思维,在数学问题解决中起着重要的作用。

2.1直觉思维更加符合青少年的思维的习惯。青少年喜欢自由思考,喜欢无拘束。他们的逻辑思维的严密性还不足,在知识上也存在着,这样那样的缺陷,有时,能够说出问题的答案,却说不出原因。因此,直觉思维更加适合青少年的思维方式,在这时培养学生的直觉思维能力,根据他们不同的特点,教会他们直觉思维的方法,才能使学生得到数学学习的乐趣,从而激发学生学习数学的兴趣。

2.2培养学生的探索能力。直觉思维虽然强调顿悟,常常能创造出奇异的效果,是具有创造性的活动,因此能够培养学生的探索问题的能力。

2.3帮助问题的解决。在数学问题的解决过程中,我们常常会遇到,突然解决思路中断,逻辑思维阻塞,当各种尝试,各种方案的尝试都未能解决问题时,突然的顿悟,往往能帮助我们一下子理清思路,解决阻塞,从而得出全新的解决方案。

2.4培养创新力。人们在遇到新问题时,往往借助已有的知识经验,在新领域,新问题中塑造各种模型,然后在作出比较严格的理论,以及实践性的检验,从而获得创造性的突破。

3.直觉思维在数学问题解决中培养

直觉是人自然产生的,属于潜意识的范畴,但是,直觉也是可以通过后天的学习,训练加以培养的。对于数学问题解决中的直觉思维,是可以通过教师对于学生有意识的教育,训练而得到最大的发展的。

3.1扎实数学基础知识。直觉思维虽然具有一定的偶然性,但是这绝对不是单纯的凭空想象,而是以扎实的数学知识为基础的,如果学生不具备数学基本功,也就不能凭借经验对问题做出迅速的判断,从而得出答案了。因此扎实数学基础是最根本的任务。

3.1鼓励学生大胆猜想。所谓的数学猜想,就是指根据已有的数学经验,借助数学条件,以及相应的数学原理,对于未知的量或者未知的关系作出判断。这就需要,教师在讲解数学问题时,不是直接告诉学生公式定理,而是用一些特殊的例题,启发学生思考,使学生通过这些例题,大胆猜想,自己得出正确的公式原理。期间要允许学生犯错,教师要慢慢的耐心引导, 以培养学生的猜想能力,并逐渐向正确的猜想方向发展。

3.3注重解题的教学。教师在教学中选择什么样的题目类型,对于直觉思维的培养也是很重要的。例如选择题的讲解训练对于学生数学直觉思维的培养就很重要。选择题的解题没有解题的过程,只需要学生从四个选项中找出正确的答案。这时,就可以通过合理的猜想,以节约大量宝贵的时间了。

总之,直觉思维在数学的问题解决中扮演着重要的角色。而且日益受到我国教育界的重视,本文通过对于直觉思维的理解,直觉思维在数学问题解决中的作用以及培养,系统的介绍了直觉思维。参考文献

[1]蒋景生. 重视并发展学生解决数学问题中的直觉思维《试题与研究:新课程论坛》2012(15)

[2]王海兰,数学教学中如何培养学生的直觉思维《新课程(上)》2012(09)(3)赵思林,朱德全.论述数学直觉思维的培养训练《数学教报》2010(01)

作者简介:

罗波(1990-11-25),男,贵州省清镇市麦格乡,凯里学院2010级数学与应用数学(师范)生,主要研究方向:数学与应用数(师范)学生(师范)

猜你喜欢
直觉创造性思维
思维跳跳糖
思维跳跳糖
思维跳跳糖
思维跳跳糖
“好一个装不下”直觉引起的创新解法
创造性结合启示的判断与公知常识的认定说理
《文心雕龙》中的作家创造性考辨
林文月 “人生是一场直觉”
一个“数学直觉”结论的思考
数学直觉诌议