持久性有机污染物导致糖尿病发病机制研究进展

2015-01-24 16:14王思梦吴南翔
中国药理学与毒理学杂志 2015年4期
关键词:持久性胰岛甲基化

王思梦,吴南翔,宋 杨

(浙江省医学科学院卫生学研究所,浙江杭州310013)

Abstract:Without clear pathogenesis,diabetes is becoming more prevalent in recent years.Many studies have found that persistent organic pollutants(POP)may be one of the possible causes of diabetes. This review elaborates on the concepts and types of POP,their role in diabetes,and the relationship between POP and diabetes in terms of insulin secretion,insulin resistance and epigenetics.We hypothesize that POP can affect insulin secretion by increasing the γ-glutamyl transpeptidase level and cause insulin resistance by decreasing the glucose transporter type 4 level.Besides,POP may result in the occurrence of diabetes by changing epigenetic modification including histone modification and the level of DNA methylation and microRNA(miRNA).

Key words:persistent organic pollutants;diabetes;epigenetics

持久性有机污染物导致糖尿病发病机制研究进展

王思梦,吴南翔,宋 杨

(浙江省医学科学院卫生学研究所,浙江杭州310013)

近年来,糖尿病的患病率明显升高,机制尚不清楚。研究发现,持久性有机污染物(POP)可能是导致糖尿病发生的原因之一。本文对POP的概念、种类及其导致糖尿病的相关机制进行综述,并从胰岛素分泌、胰岛素抵抗及表观遗传学3个方面对POP与糖尿病的关系进行探讨,推测POP通过升高血清γ谷氨酰转移酶水平影响胰岛素分泌;也可通过抑制葡萄糖转运蛋白4表达造成胰岛素抵抗;除此之外,POP可通过改变组蛋白修饰、DNA甲基化和微小RNA(miRNA)的水平等表观遗传修饰导致糖尿病的发生。

持久性有机污染物;糖尿病;表观遗传学

近年来,随着世界各国社会经济的发展和居民生活水平的提高,糖尿病的患病率于2010年已达6.4%,预计到2030年将达到7.7%[1],而临床尚无根治手段。糖尿病的诱因较多,如饮食结构不合理及运动少等。近年来研究表明,环境污染对人体的伤害更为直接,其中持久性有机污染物(persistent organic pollutants,POP)可能是导致糖尿病发生的机制之一。本文对POP的概念、种类及其导致糖尿病的相关机制进行综述,并从表观遗传学方面对POP与糖尿病的关系进行探讨,为防治糖尿病提供理论依据。

1 持久性有机污染物的分类及特点

POP是能通过环境介质长距离迁移并能在环境中长期存在、具有生物蓄积性和高毒性并严重危害环境和人类健康的有机污染物质。POP包括3大类12种化学物质。第一类为有机氯农药,分别为艾氏剂(aldrin)、氯丹(chlordane)、滴滴涕(dichlorodiphenyltrichloroethane,DDT)、狄氏剂(dieldrin)、异狄氏剂(endrin)、七氯(heptachlor)、六氯苯、灭蚁灵(mirex)和毒杀芬(camphechlor,Toxaphene)等。第二类为工业化学品,包括多氯联苯(polychlorinatedbiphenyls,PCB);第三类为副产物,主要为多氯二苯并二噁英和多氯二苯并呋喃。

首先,POP具有蓄积性。其长期在环境中存留的原因是POP在环境中普遍以低浓度存在,在自然界中难以发生化学降解、光降解或被微生物代谢降解,一旦排放到环境中,POP可在水体、土壤、大气和生物体中长期存在。其次,POP具有收放性。它可以通过食物链逐级放大,使难以监测出浓度的POP通过环境介质逐级对营养级放大,营养级越高蓄积越高。此外,POP有一定的挥发性,这决定了它可长距离的转运到一些地区,即便没有POP生产使用的地区也会受到POP的危害。最后,POP会对人体肝、肾等脏器和神经系统、内分泌系统、生殖系统等产生急慢性毒性作用,对实验动物表现出致癌性、生殖毒性、神经毒性及内分泌干扰毒性等[2]。

2 持久性有机污染物导致糖尿病发生的机制

POP导致糖尿病机制尚不明确,而胰岛素分泌绝对或相对不足、组织或细胞对胰岛素敏感性降低是导致糖尿病发病的关键环节。任何导致胰岛β细胞分泌功能障碍或胰岛素抵抗的POP都会促进糖尿病的发生和发展[3]。此外,POP还可能通过表观遗传修饰导致糖尿病的发生。

2.1 持久性有机污染物影响胰岛素分泌不足

胰岛素是唯一能降低血糖的激素,由胰岛β细胞分泌产生。正常情况下,体内的葡萄糖在胰岛素协助下进入到细胞内,然后再被分解,释放能量(ATP),供机体需要。当胰岛β细胞功能严重受损、无法分泌足够的胰岛素时,血液中的葡萄糖不能进入细胞内,造成血液中的葡萄糖浓度升高,促使糖尿病的发生。研究发现,多种POP可引起胰岛素分泌下降,进而导致糖尿病的发生。

双酚A(bisphenol A,BPA)、邻苯二甲酸盐和二噁英等会影响胰岛细胞的功能,从而导致胰岛素分泌减少[4]。Lin等[5]对大鼠胰岛瘤细胞INS-1给予BPA处理后,发现胰岛素分泌水平明显下调。Lind等[6]发现,暴露于邻苯二甲酸盐的老年人,其体内葡萄糖代谢的调控会受到影响,使胰岛素分泌下调。Kurita等[7]给小鼠腹腔注射四氯二苯并-p-二噁英(tetrachlorodibenzo-p-dioxin,TCDD),24 h后给予葡萄糖处理,60 min后胰岛素分泌水平明显下调。

有研究指出,小鼠暴露TCDD后,其血浆中γ谷氨酰转肽酶(γ-glutamyl transpeptidase,GGT)水平明显上调[8]。Sonne等[9]对暴露不同POP的北大西洋地区的大贼鸥(Stercorarius skua)进行研究发现,随着大贼鸥血浆中多溴二苯醚(polybrominated diphenyl ethers,PBDE)和六氯苯浓度的增高,GGT的水平也有所上调。Camacho等[10]对暴露于有机氯农药的保维斯塔岛海龟的研究发现,其血清中2,2-双(对氯苯基)-1-氯乙烯的浓度与GGT的水平呈负相关。而GGT是2型糖尿病的预测因素,它可作为助氧化剂及肝脂肪变性的标志,通过某些通路导致细胞损伤。活性氧(reactive oxygen species,ROS)上调会引起线粒体功能缺陷,进而导致胰岛素分泌异常[11]。ROS可上调Bax的基因表达,激活胱天蛋白酶家族,促进细胞凋亡[12]。大量自由基的产生导致NF-кB活化,并使多聚(ADP-核糖)聚合酶〔poly(ADP-ribose)polymerase,PADPRT〕活化,最终导致细胞凋亡[13]。杨洋等[14]对天津地区不同糖耐量人群资料进行了分析,发现血清GGT与早期胰岛素分泌指数呈负相关;同时,胰岛素分泌能力越低,越易发生血糖紊乱。Kunutsor等[15]发现,GGT的水平与2型糖尿病呈非线性相关关系。推测POP可能通过氧化应激反应使GGT水平上调进而引起糖尿病。

2.2 持久性有机污染物促使胰岛素抵抗

研究表明,人体内POP的积累与胰岛素抵抗和2型糖尿病[16]及多囊卵巢综合征有相关性[17]。Lee等[18]对暴露在POP环境下的非糖尿病人群做了20年随访,发现患者血清中2,2-双(对氯苯基)-1-氯乙烯〔2,2-bis(p-chlorophenyl)-1-chloride,p,p′-DDE〕的浓度与胰岛素抵抗的稳态模式有显著相关性。

尽管POP导致胰岛素抵抗的机制尚不清楚,但有研究发现葡萄糖转运蛋白4(glucose transporter type 4,GLUT4)的缺失会造成胰岛素抵抗和糖尿病的发生[19[20]。TCDD可能通过3T3-L1脂肪细胞中的C/EBP核转录因子使GLUT4下调[21]。Indumathi等[22]对雄性大鼠骨骼肌进行BPA处理后,发现BPA可使GLUT4水平下调。Williams等[23]对雄性大鼠骨骼肌给予多氯联苯(Aroclor1254)处理后,同样发现Aroclor1254可以使GLUT4表达下调。

2.3 持久性有机污染物可能通过表观遗传修饰导致糖尿病发生

POP可能通过组蛋白修饰、DNA甲基化和微小RNA(microRNA,miRNA)等导致糖尿病的发生。

2.3.1 持久性有机污染物可能通过组蛋白修饰导致糖尿病发生

组蛋白是染色体基本结构核小体的重要组成部分,包括组蛋白H1、H2(H2A和H2B)、H3、H4和H5。组蛋白修饰通过影响组蛋白与DNA双链的亲和性,从而改变染色质的疏松或凝集状态,或通过影响转录因子与结构基因启动子的亲和性来发挥基因调控作用。

有研究指出,TCDD和PCB可以改变组蛋白修饰[24]。Ovesen等[25]对小鼠Hepa-1细胞进行TCDD和PCB77处理后发现,H3K4me3水平上调,还使组蛋白H3的Lys14的乙酰化作用上调。Casati等[26]对人工培养的细胞HEK293给予多氯联苯后,发现H3K4me3水平下调。与此同时,他们还对雌性大鼠肝暴露多氯联苯后,发现H3K4me3水平下调[27]。还有研究指出,长期将小鼠模型暴露于狄氏剂环境下会引起组蛋白乙酰化水平上调[28]。体外暴露于己烯雌酚条件下的乳腺上皮细胞,会导致miR-9-3基因中的H3K27me3和H3K9me2水平下调[29]。

组蛋白修饰异常可能导致糖尿病的发生。沉默的组蛋白修饰会导致胰十二指肠同源盒1(pancreatic duodenal homeobox-1,Pdx1)表达抑制[30]。Pdx1是β细胞发育和功能的主要调节因素,是调节胰腺生长发育和β细胞特异性基因表达的特异性转录因子。Pdx1表达降低,胰岛素表达随之降低[31]。有报道指出,生长迟缓的胎鼠的胰岛中表现出组蛋白H3和H4的去乙酰化,这会导致Pdx1近端启动子和上游转录因子(upstream transcription factor 1,USF1)结合能力降低[32]。USF1是Pdx1转录的关键催化剂,其结合能力明显下降会使Pdx1转录受到抑制,Pdx1的表达下降[32]。我们推测,POP可能会使Pdx1表达逐渐下调,使组蛋白乙酰化作用异常,影响胰岛β细胞正常的功能,引起体内葡萄糖平衡异常,促使糖尿病的发生。

2.3.2 持久性有机污染物可能通过对DNA甲基化水平的改变导致糖尿病发生

DNA甲基化是指在DNA甲基化转移酶的催化下,以S-腺苷甲硫氨酸为甲基供体,将甲基基团转移到胞嘧啶和鸟嘌呤(CpG)二核苷酸胞嘧啶的5′碳位,形成5′甲基胞嘧啶。通常CpG岛处于非甲基状态,而基因组中其余散在的CpG位点处于甲基化状态。

研究发现,POP可干扰正常甲基化水平。通过对70个格陵兰因纽特人血样中提取DNA来评估持久性有机污染物蓄积与全基因组甲基化的关系,发现基因组甲基化水平与2,2-双(4-氯苯基)-1,1,1-三氯乙烷〔2,2-bis(4-chlorophenyl)-1,1,1-trichloroethane,p,p′-DDT〕、p,p′-DDE、β-六氯化苯(beta-hexachlorocyclohexane)、氧化氯丹(oxychlordane)、α-氯丹(alpha-chlordane)、灭蚁灵(mirex)、总PCB含量及总POP负荷成负相关关系[33]。Tang等[34]的研究表明,新生大鼠暴露BPA会引起其前列腺中Pde4d基因启动子区低甲基化。还有研究指出[35],焦炉工人长期暴露于多环芳烃下,尿液中表现出Alu和LINE-1的甲基化水平上调。大鼠暴露滴滴涕会改变下丘脑的甲基化模式,出现6个CpG岛发生低甲基化[36]。宫内暴露内分泌干扰物会干扰胎盘中Igf2/H19甲基化水平,而早期发育过程中的这种干扰现象会在成人后引起一系列疾病,如2型糖尿病、高血压和心脏病等[37]。

甲基化异常在糖尿病的发生发展中起着举足轻重的作用。一些糖尿病相关基因受DNA甲基化的调控[38],如GLP1R,Pdx1和CTCF。胰岛相关基因HNF4A的CpG岛高甲基化水平,导致该基因表达下调,影响胰岛β细胞的分化[39]。胰岛素编码基因INS启动子区发生高甲基化,抑制其表达,使胰岛对血糖的调节能力降低[40]。Volkmar等[41]在糖尿病患者的胰岛细胞中发现了分布于254个基因的276个异常DNA甲基化位点。Yang等[40]发现,2型糖尿病患者胰岛细胞中PPARGC1A基因启动子的甲基化水平有所上调。因此推测,POP可能通过对DNA甲基化水平的改变进而导致糖尿病发生。

2.3.3 持久性有机污染物通过调节miRNA水平导致糖尿病的发生

miRNA是一类长度为18~25个核苷酸的非编码单链小分子RNA,通过序列特异性碱基配对与靶基因mRNA的3′非翻译区的位点互补结合,在进化中的高度保守性以及在生长发育、组织功能的特异性对基因表达调控发挥了重要作用。有研究指出,BPA和滴滴涕可能会影响乳癌细胞中miRNA的表达,会使miR-21表达下调[42]。小鼠支持细胞TM4给予壬基苯酚(nonyl phenol,NP)处理后,发现细胞会发生miRNA和靶基因的表达下调[43]。大鼠产后暴露苯甲酸雌二醇后,会使miR-29a,miR-29b和miR-29c表达上调[44]。还有研究指出,孕鼠给予BPA处理后,其卵巢会发生miRNA差异性表达[45]。

近年来研究表明,一些miRNA可以直接调控胰岛素分泌、胰岛发育、胰岛β细胞和脂肪细胞分化,间接调控葡萄糖和脂类代谢[46-48],提示miRNA在糖尿病发生中发挥了重要作用。Drosha,Dicer及DGCR8是miRNA合成必需酶,相比健康女性,妊娠期糖尿病患者体内Drosha,Dicer和DGCR8表达水平上调[49]。此外,胰岛组织有特定的miRNA系统,包括miR-375,miR-127和miR-184,可能与胰岛素的合成和分泌有关[50]。而β细胞中miR-375转录下调会使磷脂酰肌醇依赖型蛋白激酶1表达下调,从而抑制胰岛素基因的表达,同时使胰岛β细胞增殖受到抑制[51]。有报道指出,miR-124a也在胰岛β细胞的发育和功能上发挥了作用[47]。由此推测,POP可能通过改变miRNA的水平,干扰了体内胰岛素的稳定性,影响胰岛素分泌、胰岛发育、胰岛β细胞和脂肪细胞分化,导致葡萄糖代谢紊乱,增大了患糖尿病的风险。

3 展望

近年来,POP与糖尿病的关系研究虽然取得了一些进展,但仍有许多有待于深入研究的问题。POP既可通过氧化应激反应使GGT水平上调来影响胰岛素分泌;还可下调GLUT4造成胰岛素抵抗;除此之外,POP可通过改变组蛋白修饰、DNA甲基化和miRNA的水平导致糖尿病的发生。这些研究结果可能对糖尿病的预防、诊断和治疗提供了一个全新的理论和方法。而多种POP在体内半衰期各不相同,更具致糖尿病毒性的物质还需进一步研究。另外,糖尿病的机体状态也会降低对POP的降解能力,因此,糖尿病与POP累积之间的因果关系还需进一步明确。

[1] Nolan CJ,Damm P,Prentki M.Type 2 diabetes across generations:from pathophysiology to pre-vention and management[J].Lancet,2011,378 (9786):169-181.

[2] Chen CL.The monitoring of persistent organic pollutants[J].China New Technol Prod(中国新技术新产品),2013,(12):211.

[3] Lee DH,Lind PM,Jacobs DR Jr,Salihovic S,van Bavel B,Lind L.Polychlorinated biphenyls and organochlorine pesticides in plasma predict development of type 2 diabetes in the elderly:the Prospective Investigation of the Vasculature in Uppsala Seniors(PIVUS)study[J].Diabetes Care,2011,34(8):1778-1784.

[4] Ni Q,Yan XF,Jiang S.Persistent organic pollutants and diabetes[J].J Med Res(医学研究杂志),2012,41(2):3-6,2.

[5] Lin Y,Sun X,Qiu L,Wei J,Huang Q,Fang C,et al.Exposure to bisphenol A induces dysfunction of insulin secretion and apoptosis through the damage of mitochondria in rat insulinoma(INS-1)cells [J].Cell Death Dis,2013,4:e460.

[6] Lind PM,Zethelius B,Lind L.Circulating levels of phthalate metabolites are associated with prevalent diabetes in the elderly[J].Diabetes Care,2012,35(7):1519-1524.

[7] Kurita H,Yoshioka W,Nishimura N,Kubota N,Kadowaki T,Tohyama C.Aryl hydrocarbon receptor-mediated effectsof 2,3,7,8-tetrachlorodibenzo-p-dioxinonglucose-stimulatedinsulin secretion in mice[J].J Appl Toxicol,2009,29 (8):689-694.

[8] Chen Y,Krishan M,Nebert DW,Shertzer HG. Glutathione-deficientmicearesusceptibleto TCDD-induced hepatocellular toxicity but resistant to steatosis[J].Chem Res Toxicol,2012,25(1): 94-100.

[9] Sonne C,Rigét FF,Leat EH,Bourgeon S,Borgå K,Strøm H,et al.Organohalogen contaminants and blood plasma clinical-chemical parameters in three colonies of North Atlantic Great skua(Stercorarius skua)[J].Ecotoxicol Environ Saf,2013,92:245-251.

[10] Camacho M,Luzardo OP,Boada LD,López Jurado LF,Medina M,Zumbado M,et al.Potential adverse health effects of persistent organic pollutants on sea turtles:evidences from a cross-sectional study on Cape Verde loggerhead sea turtles [J].Sci Total Environ,2013,458-460:283-289.

[11] Lee HK.Mitochondrial dysfunction and insulin resistance:the contribution of dioxin-like substances [J].Diabetes Metab J,2011,35(3):207-215.

[12] Ma RJ,Qiu XQ.Effect on fetal heart of gestational diabetes mellitus[J].Med Innov China(中国医学创新),2014,11(19):150-153.

[13] Lu Q,Liu SX.Effects of antioxidant on proteinuria in rat under acute motion state[J].Guangdong Med J(广东医学),2010,31(21):2763-2765.

[14] Yang Y,Liu S,Sun LR.The variance and significance of glutamyl transpeptidase level under different statuses of glucose metabolism[J].Chin J Endocrinol Metab(中华内分泌代谢杂志),2014,30(7):595-597.

[15] Kunutsor SK,Abbasi A,Adler AI.Gamma-glutamyl transferase and risk of typeⅡdiabetes:an updated systematic review and dose-response meta-analysis [J].Ann Epidemiol,2014,24(11):809-816.

[16] Wang J,Du YG.Potential mechanisms of insulin resistance induced by persistent organic pollutants [J].Asian J Ecotoxicol(生态毒理学报),2013,8 (6):817-823.

[17] Li TT,Xu LZ,Chen YH,Deng HM,Liang CY,Liu Y,et al.Effects of eight environmental endocrine disruptors on insulin resistance in patients with polycysticovarysyndrome:apreliminary investigation[J].J South Med Univ(南方医科大学学报),2011,31(10):1753-1756,1777.

[18] Lee DH,Steffes MW,Sjödin A,Jones RS,Needham LL,Jacobs DR Jr.Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity,dyslipidemia,and insulin resistance among people free of diabetes[J].PLoS One,2011,6(1):e15977.

[19] Govers R.Cellular regulation of glucose uptake by glucose transporter GLUT4[J].Adv Clin Chem,2014,66:173-240.

[20] Lyche JL,Nourizadeh-Lillabadi R,Karlsson C,Stavik B,Berg V,Skåre JU,et al.Natural mixtures of POPs affected body weight gain and induced transcription of genes involved in weight regulation and insulin signaling[J].Aquat Toxicol,2011,102(3-4):197-204.

[21] Hsu HF,Tsou TC,Chao HR,Kuo YT,Tsai FY,Yeh SC.Effects of 2,3,7,8-tetrachlorodibenzop-dioxin on adipogenic differentiation and insulininduced glucose uptake in 3T3-L1 cells[J].J Hazard Mater,2010,182(1-3):649-655.

[22] Indumathi D,Jayashree S,Selvaraj J,Sathish S,Mayilvanan C,Akilavalli N,et al.Effect of bisphenol-A on insulin signal transduction and glucose oxidation in skeletal muscle of adult male albino rat [J].Hum Exp Toxicol,2013,32(9):960-971.

[23] Williams AA,Selvaraj J,Srinivasan C,Sathish S,Rajesh P,Balaji V,et al.Protective role of lycopene against Aroclor 1254-induced changes on GLUT4 in the skeletal muscles of adult male rat [J].Drug Chem Toxicol,2013,36(3):320-328.

[24] Pozharny Y,Lambertini L,Clunie G,Ferrara L,Lee MJ.Epigenetics in women′s health care[J].Mt Sinai J Med,2010,77(2):225-235.

[25] Ovesen JL,Schnekenburger M,Puga A.Aryl hydrocarbon receptor ligands of widely different toxic equivalency factors induce similar histone marks in target gene chromatin[J].Toxicol Sci,2011,121 (1):123-131.

[26] Casati L,Sendra R,Poletti A,Negri-Cesi P,Celotti F.Androgen receptor activation by polychlorinated biphenyls:epigenetic effects mediated by the histone demethylase Jarid1b[J].Epigenetics,2013,8(10):1061-1068.

[27] Casati L,Sendra R,Colciago A,Negri-Cesi P,Berdasco M,Esteller M,et al.Polychlorinated biphenyls affect histone modification pattern in early development of rats:a role for androgen receptordependent modulation?[J].Epigenomics,2012,4(1):101-112.

[28] Song C,Kanthasamy A,Anantharam V,Sun F,Kanthasamy AG.Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells:relevance to epigenetic mechanisms of neurodegeneration [J].Mol Pharmacol,2010,77(4):621-632.

[29] HsuPY,DeatherageDE,RodriguezBA,LiyanarachchiS,WengYI,ZuoT,etal. Xenoestrogen-inducedepigeneticrepressionof microRNA-9-3 in breast epithelial cells[J].Cancer Res,2009,69(14):5936-5945.

[30] Kido Y.Progress in diabetes[J].Rinsho Byori,2013,61(10):941-947.

[31] Johnson JS,Kono T,Tong X,Yamamoto WR,Zarain-Herzberg A,Merrins MJ,et al.Pancreatic and duodenal homeobox protein 1(Pdx-1)maintains endoplasmic reticulum calcium levels through transcriptional regulation of sarco-endoplasmic reticulum calcium ATPase 2b(SERCA2b)in the islet β cell[J].J Biol Chem,2014,289(47): 32798-32810.

[32] Pinney SE,Jaeckle Santos LJ,Han Y,Stoffers DA,Simmons RA.Exendin-4 increases histone acetylase activity and reverses epigenetic modifications that silence Pdx1 in the intrauterine growth retarded rat[J].Diabetologia,2011,54(10):2606-2614.

[33] Zhang TY,Labonté B,Wen XL,Turecki G,Meaney MJ.Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans[J].Neuropsychopharmacology,2013,38(1):111-123.

[34] Tang WY,Morey LM,Cheung YY,Birch L,Prins GS,Ho SM.Neonatal exposure to estradiol/ bisphenol A alters promoter methylation and expression of Nsbp1 and Hpcal1 genes and transcriptional programs of Dnmt3a/b and Mbd2/4 in the rat prostate gland throughout life[J].Endocrinology,2012,153(1):42-55.

[35] Pavanello S,Bollati V,Pesatori AC,Kapka L,Bolognesi C,Bertazzi PA,et al.Global and genespecific promoter methylation changes are related to anti-B[a]PDE-DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon-exposed individuals[J].Int J Cancer,2009,125(7):1692-1697.

[36] Shutoh Y,Takeda M,Ohtsuka R,Haishima A,Yamaguchi S,Fujie H,et al.Low dose effects of dichlorodiphenyltrichloroethane(DDT)on gene transcription and DNA methylation in the hypothalamus of young male rats:implication of hormesislike effects[J].J Toxicol Sci,2009,34(5):469-482.

[37] LaRocca J,Binder AM,McElrath TF,Michels KB. The impact of first trimester phthalate and phenol exposure on IGF2/H19 genomic imprinting and birth outcomes[J].Environ Res,2014,133:396-406.

[38] LiyanageVR,JarmaszJS,MurugeshanN,Del Bigio MR,Rastegar M,Davie JR.DNA modifications:function and applications in normal and disease states[J].Biology(Basel),2014,3(4): 670-723.

[39] Gilbert ER,Liu D.Epigenetics:the missing link to understanding β-cell dysfunction in the pathogenesis of type 2 diabetes[J].Epigenetics,2012,7 (8):841-852.

[40] Yang BT,Dayeh TA,Kirkpatrick CL,Taneera J,Kumar R,Groop L,et al.Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c)levels in human pancreatic islets[J].Diabetologia,2011,54(2):360-367.

[41] Volkmar M,Dedeurwaerder S,Cunha DA,Ndlovu MN,Defrance M,Deplus R,et al.DNA methylation profiling identifies epigenetic dysregulation inpancreatic islets from type 2 diabetic patients[J].EMBO J,2012,31(6):1405-1426.

[42] Tilghman SL,Bratton MR,Segar HC,Martin EC,Rhodes LV,Li M,et al.Endocrine disruptor regulation of microRNA expression in breast carcinoma cells[J].PLoS One,2012,7(3):e32754.

[43] Choi JS,Oh JH,Park HJ,Choi MS,Park SM,Kang SJ,et al.miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol[J].Reprod Biol Endocrinol,2011,9:126.

[44] Meunier L,Siddeek B,Vega A,Lakhdari N,Inoubli L,Bellon RP,et al.Perinatal programming of adult rat germ cell death after exposure to xenoestrogens:role of microRNA miR-29 family in the down-regulation of DNA methyltransferases and Mcl-1[J].Endocrinology,2012,153(4): 1936-1947.

[45] Alonso-Magdalena P,Vieira E,Soriano S,Menes L,Burks D,Quesada I,et al.Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring[J].Environ Health Perspect,2010,118(9):1243-1250.

[46] Ling HY,Wen GB,Feng SD,Tuo QH,Ou HS,Yao CH,et al.MicroRNA-375 promotes 3T3-L adipocytedifferentiationthroughmodulationof extracellular signal-regulated kinase signalling[J].Clin Exp Pharmacol Physiol,2011,38(4):239-246.

[47] Sebastiani G,Po A,Miele E,Ventriglia G,Ceccarelli E,Bugliani M,et al.MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion[J/ OL].Acta Diabetol,(2014-11-19)[2014-11-27]. http://link.springer.com/article/10.1007/s00592-014-0675-y

[48] Heneghan HM,Miller N,Kerin MJ.Roleof microRNAs in obesity and the metabolic syndrome [J].Obes Rev,2010,11(5):354-361.

[49] Rahimi G,Jafari N,Khodabakhsh M,Shirzad Z,Dogaheh HP.Upregulation of microRNA processing enzymesdroshaanddiceringestational diabetes mellitus[J].Gynecol Endocrinol,2015,31(2):156-159.

[50] Bolmeson C,Esguerra JL,Salehi A,Speidel D,Eliasson L,Cilio CM.Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects[J].Biochem Biophys Res Commun,2011,404(1):16-22.

[51] Li X.MiR-375,a microRNA related to diabetes [J].Gene,2014,533(1):1-4.

Progress in mechanisms of diabetes induced by persistent organic pollutants exposure

WANG Si-meng,WU Nan-xiang,SONG Yang
(Institute of Hygiene,Zhejiang Academy of Medical Sciences,Hangzhou310013,China)

The project supported by National Natural Science Foundation of China(81102161);Natural Science Fund of Zhejiang Province(LY14H260004);and Funding from the Health Department of Zhejiang Province (201475777)

SONG Yang,E-mail:sygp_0@163.com

Abstract:Without clear pathogenesis,diabetes is becoming more prevalent in recent years.Many studies have found that persistent organic pollutants(POP)may be one of the possible causes of diabetes. This review elaborates on the concepts and types of POP,their role in diabetes,and the relationship between POP and diabetes in terms of insulin secretion,insulin resistance and epigenetics.We hypothesize that POP can affect insulin secretion by increasing the γ-glutamyl transpeptidase level and cause insulin resistance by decreasing the glucose transporter type 4 level.Besides,POP may result in the occurrence of diabetes by changing epigenetic modification including histone modification and the level of DNA methylation and microRNA(miRNA).

Key words:persistent organic pollutants;diabetes;epigenetics

R99

:A

:1000-3002(2015)04-0651-06

10.3867/j.issn.1000-3002.2015.04.019

2014-11-27 接受日期:2015-01-27)

(本文编辑:乔 虹)

国家自然科学基金(81102161);浙江省自然科学基金(LY14H260004);浙江省医药卫生科技计划(201475777)

王思梦(1988-),女,硕士研究生,主要从事生殖毒理学研究,E-mail:125097661@qq.com

宋 杨,E-mail:sygp_0@163.com

猜你喜欢
持久性胰岛甲基化
临床胰岛制备研究进展
试论持久性有机污染物在中国的环境监测现状
湖北省持久性有机物(POPs)产排特性分析
具有授粉互惠关系的非自治周期植物传粉系统的持久性
人工胰岛成功用于小鼠
肝癌组织hSulf-1基因表达与其甲基化状态的关系
应用磁珠法检测并提取尿液游离甲基化DNA
SOX30基因在结直肠癌中的表达与甲基化分析
持久性发疹性斑状毛细血管扩张一例
全甲基化没食子儿茶素没食子酸酯的制备