肿瘤淋巴结转移相关MicroRNAs的研究进展
张莉向作林
(复旦大学附属中山医院放疗科,上海200032)
Research Progress of MicroRNAs Associated with Tumor Node Metastasis
ZHANGLiXIANGZuolinDepartmentofRadiotherapy,ZhongshanHospital,FudanUniversity,Shanghai200032,China
1MicroRNAs概述
微小RNA(microRNAs,miRNAs)是一类包含20~24个核苷酸的高度保守的非编码小分子RNA,可以调节mRNA的翻译[1]。miRNA结合到多种基因的mRNA的3’-非编码区,导致靶向mRNA的降解及转录的终止[2]。miRNA作为信号通路的枢纽,参与多种生理病理过程,如细胞增殖、凋亡及肿瘤转移[3-4]。越来越多的研究[5-6]表明,miRNAs可以发挥癌基因或者抑癌基因的作用,它们在多种肿瘤中的异常表达对肿瘤的侵袭和转移有着重要的影响。因此,异常表达的miRNA有望成分预测肿瘤侵袭及转移的生物标志物。本文综述了肿瘤淋巴结转移相关miRNAs的研究进展。
2miRNA与肿瘤淋巴结转移
2.1miRNA与头颈部肿瘤淋巴结转移Wang等[7]研究表明,EB病毒核抗原1(EBNA1)蛋白在鼻咽癌组织中高表达,并且通过转化生长因子-β1的介导抑制miR-200a和miR-200b的表达,从而导致鼻咽癌淋巴结转移的发生。Luo等[8]发现,高表达的miR-18a与晚期鼻咽癌的淋巴结转移相关。Huang等[9]发现,miR-491-5p 低表达与口腔鳞状细胞癌淋巴结转移有关。Lu等[10]研究发现,miR-196a/b在肿瘤组织中高度表达,并且与口腔癌淋巴结转移密切相关。Yang等[11]研究表明,miR-181可以作为口腔鳞状细胞癌淋巴结转移的生物标志物。Abraham 等[12]发现,miR-183 和miR-375的超表达与甲状腺髓样癌的对侧淋巴结转移相关(P<0.001、P=0.001)。Chou等[13]研究发现,miR-146b可以显著增加甲状腺乳头状癌细胞的迁移和侵袭。Wang等[14]发现,miR-2861和miR-451的低表达上调与甲状腺髓样癌淋巴结转移密切相关。
2.2miRNA与胸部肿瘤淋巴结转移有研究[15-17]表明,高表达的miR-21与食管鳞状细胞癌的淋巴结转移显著相关。Huang等[18]发现,miR-98和 miR-214的表达水平与食管鳞状细胞癌淋巴结转移呈负相关。Zhang等[19]研究表明,发生淋巴结转移的食管鳞状细胞癌患者中miR-200b表达显著下降。Wang等[20]发现,miR-196a的高表达与食管鳞状细胞癌淋巴结转移相关。Chen等[21]发现,miR-92a高表达的食管鳞状细胞癌患者较低表达者更容易发生淋巴结转移。
在非小细胞肺癌的研究中,Meng 等[22]应用全基因组测序证实表达上调的miR-31可以预测肺腺癌患者淋巴结转移,而且提示预后不良。Yu 等[23]发现,miR-193a-3p/5p低表达与非小细胞肺癌的TNM分期和淋巴结转移明显相关。Wang等[24]用基因芯片分析了非小细胞肺癌组织中miRNA的表达谱,发现了40个异常表达的miRNA,其中下调最明显的miR-451与非小细胞肺癌的分化程度,病理分期和淋巴结转移显著相关。Roth 等[25]发现,肺癌患者血清中高表达的miR-10b与淋巴结转移相关(P<0.03)。Wang等[26]的研究表明,miR-451的低表达水平与非小细胞肺癌的淋巴结转移相关。Chen等[27]的研究表明,miR-148a的低表达与非小细胞肺癌的淋巴结转移有关。Li等[28]发现,miR-339-5p可以抑制非小细胞肺癌的淋巴结转移相关。
Chan等[29]首次发现,低表达的miR-149与乳腺癌患者的淋巴结转移有密切关系。Yigit 等[30]提出,通过下调miR-10b的表达,可以阻止乳腺癌发生淋巴结转移。Chen等[31]也发现,miR-10b 和miR-373可作为预测乳腺癌淋巴结转移的生物标志物。Yang等[32]发现,miR-34可以抑制乳腺癌的侵袭和淋巴结转移。研究[33-34]发现,发生淋巴结转移的乳腺癌患者miR-200b表达下调。Gravgaard等[35]运用原位杂交实验证实miR-200家族和miR-9参与了乳腺癌的远处转移。Zhang等[36]研究表明,miR-30a与乳腺癌患者的淋巴结转移和肺转移程度呈负相关。Corcoran等[37]发现,miR-21高表达与乳腺癌淋巴结转移相关。Chu等[38]认为,miR-190a通过多种途径抑制乳腺癌淋巴结转移。Li等[39]研究证实,miR-720通过直接靶向下调TWIST1而抑制乳腺癌的转移。
2.3miRNA与腹部肿瘤淋巴结转移Zheng等[40]发现,miR-148a下调将会导致胃癌患者发生淋巴结转移。Tang 等[41]发现,miR-200b、 miR-200c下调与胃癌的淋巴结转移有关。有研究[42]表明,miR-146a表达降低对胃癌淋巴结转移的发生起着重要的作用。Zheng 等[43]运用基因芯片和生物信息学分析证实,miR-409可以抑制胃癌细胞发生淋巴结转移。Zhao等[44]发现,miR-7参与了胃癌上皮间质转化及淋巴结转移等生物学行为。Xu等[45]发现,miR-335的低表达和胃癌淋巴结转移明显相关。Feng等[46]发现,miR-126在胃癌淋巴结转移中起着肿瘤抑制基因的作用。Shin 等[47]发现,miR-135a可以抑制胃癌淋巴结转移。Xu等[48]发现,miR-21可以作为预测胃癌淋巴结转移的生物标志物。Chen等[49]发现,miR-10a参与了胃癌淋巴结转移的发生。
Yuan等[50]研究表明,在结直肠癌细胞中,miR-221和miR-224的表达水平与其淋巴结转移以及肿瘤分期呈负相关。Siemens等[51]发现,miR-34a启动子甲基化与结肠癌的远处转移有关。Toiyama等[52]发现,血清中高表达的miR-200c是结直肠癌淋巴结转移的独立预测因子(P=0.0005)。此外,Paterson等[53]也发现,高表达的miR-200家族参与了结直肠癌的淋巴结转移。Chen等[54]研究发现,miR-103/107可以促进结直肠癌淋巴结转移及远处转移。Yuan等[55]发现,miR-145表达上调在结直肠癌淋巴结转移中起着重要的作用。Wang等[56]研究表明,miR-195 表达下降与结直肠癌淋巴结转移及预后差有关。
Chen等[57]发现,发生淋巴结转移患者的肝癌组织中,miR-100表达降低。Guo等[58]发现,在体外miR-34a的异常表达可以抑制Hepa1-6和HCa-F细胞的生长和侵袭;此外,miR-34a可以引起G1期阻滞,并且下调Hepa1-6 细胞中cyclinD1和CDK6的表达;而且该研究进一步发现miR-34a可以降低Hca-F细胞黏附到局域淋巴结的能力,进而抑制肝癌淋巴结转移。
Caponi等[59]研究发现,高表达的miR-21与胰腺导管乳头状瘤淋巴结阳性相关(P=0.03)。He等[60]发现,miR-218和 ROBO-1 信号通路参与胰腺癌淋巴结转移。
2.4miRNA与泌尿生殖系统肿瘤淋巴结转移Brase等[61]发现,在前列腺癌淋巴结阳性患者的血清中,miR-375和miR-141水平升高。Spahn等[62]研究表明,低表达的miR-221有望成为预测前列腺癌淋巴结转移的生物标志物。Chen等[63]发现,血清中的6个microRNAs :miR-1246、miR-20a、miR-2392、miR-3147、miR-3162-5p、miR-4484,可预测早期宫颈癌的淋巴结转移。Zhao 等[64]发现,可以根据血清中高表达的miR-20a和低表达的miR-203筛选出发生淋巴结转移的早期宫颈癌患者。Yeh等[65]研究表明,miR-138低表达和SOX4高表达的卵巢癌患者更容易发生淋巴结转移,且肿瘤分级较高,也更易出现腹水。de Melo等研究[66]发现,miR-223-5p和miR-19-b1-5p的下调与外阴肿瘤的淋巴结转移相关,miR-100-3p 和miR-19-b1-5p的下调与外阴肿瘤的侵袭有关,miR-519b和miR-133a与其FIGO晚期有关。
3小结
近年来,miRNA与肿瘤淋巴结转移的研究取得了较大进展,为肿瘤的基因诊断、治疗提供了新靶点。然而,肿瘤淋巴结转移的机制还不完全明了。如果能通过建立肿瘤淋巴结转移的预测模型来预测淋巴结转移的发生,筛选出肿瘤淋巴结转移的高危人群,就能早期对其淋巴引流区进行预防性治疗,降低淋巴结转移,提高患者的生活质量,延长无瘤生存期。这将从根本上改变肿瘤淋巴结转移的治疗,即由出现淋巴结转移后的姑息性被动治疗转变为积极预防淋巴结转移的主动治疗。因此,筛选肿瘤淋巴结转移相关的miRNA、建立肿瘤淋巴结转移的预测模型具有非常重要的意义,有助于指导个体化治疗策略的制定。
参考文献
[1]Calin GA, Croce CM. MicroRNA signatures in human cancers[J]. Nat Rev Cancer, 2006,6(11):857-866.
[2]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science, 2001,294(5543):853-858.
[3]Ambros V. The functions of animal microRNAs[J]. Nature, 2004,431(7006):350-355.
[4]Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction[J]. Nat Rev Mol Cell Biol, 2010,11(4):252-263.
[5]Slack FJ, Weidhaas JB. MicroRNA in cancer prognosis[J]. N Engl J Med, 2008,359(25):2720-2722.
[6]Cheng CJ, Slack FJ. The duality of oncomiR addiction in the maintenance and treatment of cancer[J]. Cancer J, 2012,18(3):232-237.
[7]Wang L, Tian WD, Xu X, et al. Epstein-Barr virus nuclear antigen 1 (EBNA1) protein induction of epithelial-mesenchymal transition in nasopharyngeal carcinoma cells[J]. Cancer, 2014,120(3):363-372.
[8]Luo Z, Dai Y, Zhang L, et al. miR-18a promotes malignant progression by impairing microRNA biogenesis in nasopharyngeal carcinoma[J]. Carcinogenesis, 2013,34(2):415-425.
[9]Huang WC, Chan SH, Jang TH, et al. miRNA-491-5p and GIT1 serve as modulators and biomarkers for oral squamous cell carcinoma invasion and metastasis[J]. Cancer Res, 2014,74(3):751-764.
[10]Lu YC, Chang JT, Liao CT, et al. OncomiR-196 promotes an invasive phenotype in oral cancer through the NME4-JNK-TIMP1-MMP signaling pathway[J]. Mol Cancer, 2014,13:218.
[11]Yang CC, Hung PS, Wang PW, et al. miR-181 as a putative biomarker for lymph-node metastasis of oral squamous cell carcinoma[J]. J Oral Pathol Med, 2011,40(5):397-404.
[12]Abraham D, Jackson N, Gundara JS, et al. MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets[J]. Clin Cancer Res, 2011,17(14):4772-4781.
[13]Chou CK, Yang KD, Chou FF, et al. Prognostic implications of miR-146b expression and its functional role in papillary thyroid carcinoma[J]. J Clin Endocrinol Metab, 2013,98(2):E196-E205.
[14]Wang Z, Zhang H, Zhang P, et al. Upregulation of miR-2861 and miR-451 expression in papillary thyroid carcinoma with lymph node metastasis[J]. Med Oncol, 2013,30(2):577.
[15]Sakai NS, Samia-Aly E, Barbera M, et al. A review of the current understanding and clinical utility of miRNAs in esophageal cancer[J]. Semin Cancer Biol, 2013,23(6 Pt B):512-521.
[16]Hiyoshi Y, Kamohara H, Karashima R, et al. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma[J]. Clin Cancer Res, 2009,15(6):1915-1922.
[17]Tanaka Y, Kamohara H, Kinoshita K, et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma[J]. Cancer, 2013,119(6):1159-1167.
[18]Huang SD, Yuan Y, Zhuang CW, et al. MicroRNA-98 and microRNA-214 post-transcriptionally regulate enhancer of zeste homolog 2 and inhibit migration and invasion in human esophageal squamous cell carcinoma[J]. Mol Cancer, 2012,11:51.
[19]Zhang HF, Zhang K, Liao LD, et al. miR-200b suppresses invasiveness and modulates the cytoskeletal and adhesive machinery in esophageal squamous cell carcinoma cells via targeting Kindlin-2[J]. Carcinogenesis, 2014,35(2):292-301.
[20]Wang K, Li J, Guo H, et al. MiR-196a binding-site SNP regulates RAP1A expression contributing to esophageal squamous cell carcinoma risk and metastasis[J]. Carcinogenesis, 2012,33(11):2147-2154.
[21]Chen ZL, Zhao XH, Wang JW, et al. microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin[J]. J Biol Chem, 2011,286(12):10725-10734.
[22]Meng W, Ye Z, Cui R, et al. MicroRNA-31 predicts the presence of lymph node metastases and survival in patients with lung adenocarcinoma[J]. Clin Cancer Res, 2013,19(19):5423-5433.
[23]Yu T, Li J, Yan M, et al. MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway[J]. Oncogene, 2014.
[24]Wang R, Wang ZX, Yang JS, et al. MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14)[J]. Oncogene, 2011,30(23):2644-2658.
[25]Roth C, Kasimir-Bauer S, Pantel K, et al. Screening for circulating nucleic acids and caspase activity in the peripheral blood as potential diagnostic tools in lung cancer[J]. Mol Oncol, 2011,5(3):281-291.
[26]Wang XC, Tian LL, Jiang XY, et al. The expression and function of miRNA-451 in non-small cell lung cancer[J]. Cancer Lett, 2011,311(2):203-209.
[27]Chen Y, Min L, Zhang X, et al. Decreased miRNA-148a is associated with lymph node metastasis and poor clinical outcomes and functions as a suppressor of tumor metastasis in non-small cell lung cancer[J]. Oncol Rep, 2013,30(4):1832-1840.
[28]Li Y, Zhao W, Bao P, et al. miR-339-5p inhibits cell migration and invasion and may be associated with the tumor-node-metastasis staging and lymph node metastasis of non-small cell lung cancer[J]. Oncol Lett, 2014,8(2):719-725.
[29]Chan SH, Huang WC, Chang JW, et al. MicroRNA-149 targets GIT1 to suppress integrin signaling and breast cancer metastasis[J]. Oncogene, 2014,33(36):4496-4507.
[30]Yigit MV, Ghosh SK, Kumar M, et al. Context-dependent differences in miR-10b breast oncogenesis can be targeted for the prevention and arrest of lymph node metastasis[J]. Oncogene, 2013,32(12):1530-1538.
[31]Chen W, Cai F, Zhang B, et al. The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers[J]. Tumour Biol, 2013,34(1):455-462.
[32]Yang S, Li Y, Gao J, et al. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1[J]. Oncogene, 2013,32(36):4294-4303.
[33]Wee EJ, Peters K, Nair SS, et al. Mapping the regulatory sequences controlling 93 breast cancer-associated miRNA genes leads to the identification of two functional promoters of the Hsa-mir-200b cluster, methylation of which is associated with metastasis or hormone receptor status in advanced breast cancer[J]. Oncogene, 2012,31(38):4182-4195.
[34]Zhang X, Zhang B, Gao J, et al. Regulation of the microRNA 200b (miRNA-200b) by transcriptional regulators PEA3 and ELK-1 protein affects expression of Pin1 protein to control anoikis[J]. J Biol Chem, 2013,288(45):32742-32752.
[35]Gravgaard KH, Lyng MB, Laenkholm AV, et al. The miRNA-200 family and miRNA-9 exhibit differential expression in primary versus corresponding metastatic tissue in breast cancer[J]. Breast Cancer Res Treat, 2012,134(1):207-217.
[36]Zhang N, Wang X, Huo Q, et al. MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metadherin[J]. Oncogene, 2014,33(24):3119-3128.
[37]Corcoran C, Friel A M, Duffy M J, et al. Intracellular and extracellular microRNAs in breast cancer[J]. Clin Chem, 2011,57(1):18-32.
[38]Chu HW, Cheng CW, Chou WC, et al. A novel estrogen receptor-microRNA 190a-PAR-1-pathway regulates breast cancer progression, a finding initially suggested by genome-wide analysis of loci associated with lymph-node metastasis[J]. Hum Mol Genet, 2014,23(2):355-367.
[39]Li LZ, Zhang CZ, Liu LL, et al. miR-720 inhibits tumor invasion and migration in breast cancer by targeting TWIST1[J]. Carcinogenesis, 2014,35(2):469-478.
[40]Zheng B, Liang L, Wang C, et al. MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer[J]. Clin Cancer Res, 2011,17(24):7574-7583.
[41]Tang H, Deng M, Tang Y, et al. miR-200b and miR-200c as prognostic factors and mediators of gastric cancer cell progression[J]. Clin Cancer Res, 2013,19(20):5602-5612.
[42]Kogo R, Mimori K, Tanaka F, et al. Clinical significance of miR-146a in gastric cancer cases[J]. Clin Cancer Res, 2011,17(13):4277-4284.
[43]Zheng B, Liang L, Huang S, et al. MicroRNA-409 suppresses tumour cell invasion and metastasis by directly targeting radixin in gastric cancers[J]. Oncogene, 2012,31(42):4509-4516.
[44]Zhao X, Dou W, He L, et al. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor[J]. Oncogene, 2013,32(11):1363-1372.
[45]Xu Y, Zhao F, Wang Z, et al. MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1[J]. Oncogene, 2012,31(11):1398-1407.
[46]Feng R, Chen X, Yu Y, et al. miR-126 functions as a tumour suppressor in human gastric cancer[J]. Cancer Lett, 2010,298(1):50-63.
[47]Shin JY, Kim YI, Cho SJ, et al. MicroRNA 135a suppresses lymph node metastasis through down-regulation of ROCK1 in early gastric cancer[J]. PLoS One, 2014,9(1):e85205.
[48]Xu Y, Sun J, Xu J, et al. miR-21 Is a Promising Novel Biomarker for Lymph Node Metastasis in Patients with Gastric Cancer[J]. Gastroenterol Res Pract, 2012,2012:640168.
[49]Chen W, Tang Z, Sun Y, et al. miRNA expression profile in primary gastric cancers and paired lymph node metastases indicates that miR-10a plays a role in metastasis from primary gastric cancer to lymph nodes[J]. Exp Ther Med, 2012,3(2):351-356.
[50]Yuan K, Xie K, Fox J, et al. Decreased levels of miR-224 and the passenger strand of miR-221 increase MBD2, suppressing maspin and promoting colorectal tumor growth and metastasis in mice[J]. Gastroenterology, 2013,145(4):853-864.
[51]Siemens H, Neumann J, Jackstadt R, et al. Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and beta-catenin predicts distant metastasis of colon cancer[J]. Clin Cancer Res, 2013,19(3):710-720.
[52]Toiyama Y, Hur K, Tanaka K, et al. Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer[J]. Ann Surg, 2014,259(4):735-743.
[53]Paterson EL, Kazenwadel J, Bert AG, et al. Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression[J]. Neoplasia, 2013,15(2):180-191.
[54]Chen HY, Lin YM, Chung HC, et al. miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4[J]. Cancer Res, 2012,72(14):3631-3641.
[55]Yuan W, Sui C, Liu Q, et al. Up-regulation of microRNA-145 associates with lymph node metastasis in colorectal cancer[J]. PLoS One, 2014,9(7):e102017.
[56]Wang X, Wang J, Ma H, et al. Downregulation of miR-195 correlates with lymph node metastasis and poor prognosis in colorectal cancer[J]. Med Oncol, 2012,29(2):919-927.
[57]Chen P, Zhao X, Ma L. Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in hepatocellular carcinoma[J]. Mol Cell Biochem, 2013,383(1-2):49-58.
[58]Guo Y, Li S, Qu J, et al. MiR-34a inhibits lymphatic metastasis potential of mouse hepatoma cells[J]. Mol Cell Biochem, 2011,354(1-2):275-282.
[59]Caponi S, Funel N, Frampton AE, et al. The good, the bad and the ugly: a tale of miR-101, miR-21 and miR-155 in pancreatic intraductal papillary mucinous neoplasms[J]. Ann Oncol, 2013,24(3):734-741.
[60]He H, Di Y, Liang M, et al. The microRNA-218 and ROBO-1 signaling axis correlates with the lymphatic metastasis of pancreatic cancer[J]. Oncol Rep, 2013,30(2):651-658.
[61]Brase JC, Johannes M, Schlomm T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer[J]. Int J Cancer, 2011,128(3):608-616.
[62]Spahn M, Kneitz S, Scholz CJ, et al. Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence[J]. Int J Cancer, 2010,127(2):394-403.
[63]Chen J, Yao D, Li Y, et al. Serum microRNA expression levels can predict lymph node metastasis in patients with early-stage cervical squamous cell carcinoma[J]. Int J Mol Med, 2013,32(3):557-567.
[64]Zhao S, Yao D, Chen J, et al. Circulating miRNA-20a and miRNA-203 for screening lymph node metastasis in early stage cervical cancer[J]. Genet Test Mol Biomarkers, 2013,17(8):631-636.
[65]Yeh YM, Chuang CM, Chao KC, et al. MicroRNA-138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF-1alpha[J]. Int J Cancer, 2013,133(4):867-878.
[66]de Melo MB, Lavorato-Rocha AM, Rodrigues LS, et al. microRNA portraits in human vulvar carcinoma[J]. Cancer Prev Res (Phila), 2013,6(11):1231-1241.
通讯作者向作林,E-mail: Xiangzuolinmd@hotmail.com
基金项目:上海市卫生局面上项目(编号:20124208)
中图分类号R73-37
文献标识码A