孔令彬,金前德
(东北石油大学数学与统计学院,黑龙江大庆 163318)
三阶非线性三点边值问题的正解
孔令彬,金前德
(东北石油大学数学与统计学院,黑龙江大庆 163318)
利用Krasnoselskii不动点定理及Ascoli-Arzela定理,研究含参数的非线性三阶三点边值问题,证明当参数取值范围不同时,该边值问题的正解存在性与不存在性.
非线性三阶三点边值问题;存在性;正解
非线性三阶三点边值问题来源于应用数学与物理等领域,已受到人们重视和研究[1-15].Sun Y在文献[16]研究下述非线性三阶三点边值问题,即
式(3)、(4)较式(1)、(2)更一般些.当ρ=0时,式(3)、(4)与式(1)、(2)相类似,可采用文献[16]的方法考虑正解存在性.笔者考虑ρ>0情形,通过适当变换,再利用Krasnoselskii不动点定理和Ascoli-Arzela定理,讨论参数变化时式(3)、(4)是否存在正解,所采用的方法与文献[16]不同,获得新结果.
假设:
(H1)对每个固定的u∈[0,+∞),f(t,u)在t∈[0,1]上非负连续,对几乎所有的t∈[0,1],f(t,u)关于u≥0单调非增;
定义 称函数u(t)为式(3)、(4)的一个正解,如果它满足
(ⅰ)u∈C1[0,1]∩C2(0,1)并在(0,1)内u(t)>0;
(ⅱ)u(t)满足式(3)和式(4).
主要结论为
定理1 假设(H1)、(H2)成立,则存在λ*∈(0,+∞).当λ∈(0,λ*]时,式(3)、(4)至少存在一个正解;当λ∈(λ*,+∞)时,式(3),(4)不存在正解.
设C[0,1]是[0,1]上连续函数构成的Banach空间,C+[0,1]={v∈C[0,1];v(t)≥0},定义映射J:C+[0,1]→C+[0,1],则
容易知道,若u(t)满足式(3)、(4),令u′(t)+ρu(t)=-v(t),则v(t)满足式(6)、(7),其中Jv(t)由式(5)给出.反之,若v(t)满足式(6)、(7),令u(t)=Jv(t),则u(t)满足式(3)、(4),因此边值问题式(3)、(4)与边值问题式(6)、(7)等价.
为证明文中主要结论,给出5个引理.
的解,则v″(t)-ρv′(t)+ρ2v(t)=-h(t)的任何解可表示为v(t)=C1φ1(t)+C2φ2(t)+φ0(t),其中h∈C+[0,1],C1,C2是任意常数.
证明 直接验证即可.
即Φv∈K或Φ(K)⊂K.另外,易证Φ是全连续的.
引理7 假设(H1)、(H2)成立,若λ充分大,则式(6)、(7)无正解.
研究含参数的非线性三阶边值问题,给出该问题的Green函数,进而将该边值问题转化为等价的积分方程,在适当的空间上定义映射,通过利用Green函数的性质和锥不动点定理,证明正解的存在性.
[1] Graef J R,Yang B.Multiple positive solutions to a three point third order boundary value problem[J].Discrete Contin.Dyn.Syst,2005(S1):1-8.
[2] Guo L,Sun J,Zhao Y.Existence of positive solution for nonlinear third-order three point boundary value problem[J].Nonlinear A-nal,2007(14):93-111.
[3] Boucherif A,Al-Malki N.Nonlinear three-point third order boundary value problems[J].Appl.Math.Comput,2007(190):1168-1177.
[4] Sun Y.Positive solutions of singular third order three point boundary value problems[J].J.Math.Anal.Appl,2005(306):589-603.
[5] Yu H,Lu H,Liu Y.Multiple positive solutions to third-order three-point singular semi positive boundary value problem[J].Proc. Indian Acad.Sci.Math.Sci,2004(114):409-422.
[6] Guo L J,Sun J P,Zhao Y H.Existence of positive solutions for nonlinear third-order three-point boundary value problems[J].Nonlinear Anal,2008(68):3151-3158.
[7] Graef J R,Webb J R.Third order boundary value problems with nonlocal boundary conditions[J].Nonlinear Anal,2009(71):1542-1551.
[8] Graef J R,Yang B.Positive solutions of a third order nonlocal boundary value problem[J].Discrete Contin.Dyn.Syst.Ser,2008 (S1):89-97.
[9] Stanek S.On a three-point boundary value problem for third order differential equations with singularities in phase variables[J]. Georgian Math.J,2007(14):361-383.
[10] Graef J R,Henderson J,Wong P J,et al.Three positive solutions of an n-th order three point focal type boundary value problem[J]. Nonlinear Anal,2008(69):3386-3404.
[11] Erbe L H,Wang H.On the existence of positive solutions of ordinary differential equations[J].Proc.Amer.Math,1994(120):743 -748.
[12] 孙建平,张小丽.非线性三阶三点边值问题正解的存在性[J].西北师范大学学报:自然科学版,2012,48(3):14-21.
Zhang Jianpin,Zhang Xiaoli.Existence of positive solutions for a class of third-order Three-point boundary value problem[J].Journal of Northwest Normal University:Natural Science Edition,2012,48(3):14-21.
[13] 张立新,孙博,张洪.三点边值问题的两个正解的存在性[J].西南师范大学学报:自然学科版,2013,16(10):30-33.
Zhang Lixin,Sun Bo,Zhang Hong.Existence of two positive solution for three-point third order boundary value problems[J].Journal of Southwest China Normal University:Natural Science Edition,2013,16(10):30-33.
[14] 姚庆六.一类复合型奇异三阶三点边值问题正解的存在性[J].浙江大学学报:理学版,2012,39(4):381-384.
Yao Qingliu.Existence of positive solution for a kind of composite singular three order three point boundary value problem[J].Journal of Zhejiang University:Science Edition,2012,39(4):381-384.
[15] 张晓萍,孙永平.三阶三点边值问题正解的存在性[J].数学的实践与认识,2014,44(2):181-185.
Zhang Xiaoping,Sun Yongping.Existence of positive solutions for a class of third-order three-point boundary value problem[J]. Mathematics in Practice and Theory,2014,44(2):181-185.
[16] Sun Y.Positive solutions for third-order three-point nonhomogeneous boundary value problems[J].Appl.Math.Lett,2009(22):45-51.
O175.8
A
2095-4107(2014)05-0121-06
DOI 10.3969/j.issn.2095-4107.2014.04.015
2014-04-09;编辑关开澄
黑龙江省教育厅科学技术研究项目(12541076)
孔令彬(1956-)男,硕士,教授,主要从事非线性微分方程边值问题方面的研究.