刘燕青 赵启军 何羽强等
【摘要】 目的:观察嗅鞘细胞(OECs)联合神经干细胞(NSCs)对大鼠急性脊髓损伤及神经营养素-3(NT-3)表达的影响。方法:SD大鼠80只,Allens法行急性脊髓损伤造模后,将大鼠按随机数字表法分为对照组(假手术组)、实验1组(NSCs移植组)、实验2组(OECs移植组)和实验3组(NSCs+OECs联合移植组)。局部注射法进行细胞移植。于术前和术后1、3、5、7、14、21、28 d,采用BBB评分法、改良的Tralov评分法和斜板实验,对大鼠后肢运动功能状况进行评分,进行运动诱发电位(MEP N1波)潜伏期的检测。最后,各组随机抽取一只大鼠进行灌注、取材与固定,免疫组织化学染色的方法观察各组NT-3在局部受损脊髓组织中的表达情况。结果:(1)造模及细胞移植术后,24 h时内各组大鼠BBB评分及改良的Tralov评分均为0分;斜板实验角度下降非常明显,由实验前(82.00±3.45)°降为(12.73±1.34)°,差异有统计学意义(P<0.05);各组MEP(N1波)潜伏期明显延长。(2)随着实验的进行,各组均表现出不同程度的恢复情况:各实验组BBB评分及改良的Tralov评分与对照组比较增高显著(P<0.05);1周后各组各时间点比较差异均有统计学意义(P<0.05),且各实验组两两比较差异均有统计学意义(P<0.05)。(3)斜板实验角度也逐渐增加,1周后,实验组增幅大于对照组(P<0.05);1周后各组各时间点比较差异均有统计学意义(P<0.05),且各实验组两两比较差异有统计学意义(P<0.05)。(4)各组MEP(N1波)潜伏期均逐渐缩短,3 d后,各实验组潜伏期缩短幅度均大于对照组(P<0.05);3 d后各组各时间点比较差异均有统计学意义(P<0.05),且各实验组两两比较差异有统计学意义(P<0.05)。(5)各组大鼠受损脊髓组织中NT-3均有明显增高,7 d内维持在较高的水平,此后逐渐减少。其中从第5天开始,各实验组与对照组比较差异有统计学意义(P<0.05);各组各时间点比较差异均有统计学意义(P<0.05),且各实验组两两比较差异有统计学意义(P<0.05)。结论:(1)细胞移植治疗大鼠急性脊髓损伤时,单种细胞单独移植,OECs的治疗修复效果要强于NSCs的治疗修复效果,OECs与NSCs联合移植取得的治疗修复效果最好。(2)NT-3在OECs与NSCs细胞联合移植组中表达最高。
【关键词】 嗅鞘细胞; 神经干细胞; 急性脊髓损伤; 神经营养素-3
【Abstract】 Objective:To observe the impact of olfactory ensheathing cells combined neural stem cells in rats with acute spinal cord injury and neurotrophin-3 Expression.Method:80 SD rats were selected, after acute spinal cord injury modeling by Allen's method, the rats were randomly divided into the control group (sham group), the experimental 1 group (NSCs transplantation group), the experimental 2 group (OECs transplantation group) and the experimental 3 group (NSCs+OECs transplantation group). Cells were used local injection method to transplant. In the preoperative and postoperative 1, 3, 5, 7, 14, 21, 28 days, adopt BBB score, improved Tralov score and inclined plane experiments were used to rate the status of rats hindlimb motor function, tested motor evoked potential(MEP N1 wave) preclinical. Finally, one rat in each group were selected, randomly, then perfused, drawn and fixed. Immunohistochemical staining were used to observe neurotrophin-3(NT-3) in the damaged spinal cord tissue localized expression in each group. Result:(1)After modeling and cell transplanting, the rats BBB rating and improved Tralov score was 0 points within 24 hours, inclined plane experiments angle decreased very significantly, from the previous experiment(82.00±3.45) ° reduced to(12.73±1.34) °(P<0.05).Each groups MEP (N1 wave) latency was prolonged. (2)As the experiment progresses, the groups had shown varying degrees of recovery. Compared with the control group, the BBB score and improved Tralov score of the experimental group were increased significantly (P<0.05); after 1 week, the differences of each group in each time point were statistically significant (P<0.05), and the differences in each two of the experimental group were statistically significant (P<0.05).(3)Oblique plate experiment angle also gradually increased, after 1 week, the experimental group was increased than the control group (P<0.05); after 1 week, the differences of each group in each time point were statistically significant (P<0.05), and the differences in each two of the experimental group were statistically significant (P<0.05). (4)MEP (N1 wave) of each groups were gradually shortened in the incubation period; after 3 d, the incubation period shorten amplitude of the experimental group were greater than the control group (P<0.05); after 3 d, the differences of each group in each time point were statistically significant (P<0.05), and the differences in each two of the experimental group were statistically significant (P<0.05).(5)The NT - 3 of damaged spinal cord tissue rats in each groups were significantly higher, 7 d maintain at a high level, then gradually reduced. Since 5 days, the difference of the experimental group and the control group was statistically significant (P<0.05); the differences of each group in each time point were statistically significant (P<0.05), and the differences in each two of the experimental group were statistically significant (P<0.05).Conclusion:(1)When a single cell specie transplant to treat acute spinal cord injury alone, OECs transplantation has better restoration treatment effect than NSCs transplantation. OECs and NSCs transplantation group achieve the best results.(2)NT-3 expresses highest in the OECs and NSCs cell transplantation group.endprint
【Key words】 Olfactory ensheathing cells; Neural stem cells; Acute spinal cord injury; Neurotrophic-3
First-authors address:The First Affiliated Hospital of Baotou Medical College,Baotou 014010,China
doi:10.3969/j.issn.1674-4985.2014.22.008
脊髓损伤(Spinal Cord Injury,SCI)是中枢神经系统的一种严重创伤,近年来其发病呈逐年增多的趋势[1]。如何有效地治疗脊髓损伤已成为当今研究的热点难题[2]。在治疗脊髓损伤众多方法中,细胞移植的治疗方法越来越受到人们的重视。本实验采用局部注射法将神经干细胞(NSCs)及嗅鞘细胞(OECs)分别、共同移植于大鼠脊髓受损区,通过行为学评价(BBB评分、改良Tarlov评分和斜板实验)、电生理检测(运动诱发电位)及免疫组织化学的方法观测各种指标,从而考察两种细胞移植后在脊髓损伤区的存活、分化、表达及功能情况,以期为脊髓损伤的临床治疗提供实验依据。
1 材料与方法
1.1 实验动物 SD雄性大鼠购买自内蒙古医科大学实验动物中心,共83只,其中3只(出生3 d内)用于神经干细胞及嗅鞘细胞的培养取材。余80只大鼠用于实验。
1.2 主要试剂与仪器 试剂:DMEM/F12细胞培养液、B27、碱性成纤维细胞生长因子(bFGF)、表皮生长因子(EGF)、兔抗鼠巢蛋白(Nestin)单抗、兔抗鼠P75单抗、兔抗鼠NT-3单抗、异硫氰酸荧光素(FITC)标记羊抗兔二抗、NT-3染色SP试剂盒等;仪器:5% CO2培养箱、倒置荧光显微镜、垂直流洁净工作台、电热恒温水浴锅、玻璃细胞培养瓶等。
1.3 实验方法
1.3.1 细胞培养及鉴定 (1)神经干细胞(NSCs)的培养及鉴定:新生(出生3 d内)SD大鼠消毒后,引颈法处死。无菌条件下,充分暴露出嗅球、两侧大脑半球及小脑。外科显微镊剪断与海马有联系的大脑皮质或神经组织,仔细剥离海马。垂直流洁净工作台内,无菌条件下将海马表面的软脑膜剔除干净,4 ℃生理盐水内清洗3次后,将海马放入DMEM/F12细胞培养液中,显微镜下用显微外科剪将其剪碎,巴氏吸管先反复轻柔机械吹打分离,不锈钢细胞滤网过滤后离心沉淀,最后将沉淀加入含bFGF、EGF和B27的DMEM/F12细胞培养液内,细胞培养瓶中悬浮培养,置37 ℃、5% CO2培养箱中培养。3~4 d换液1次,每次换50%培养液。传代一次约需5~7 d。第二代细胞用特异性Nestin抗原免疫荧光染色法鉴定NSCs。最后将细胞浓度调整为1×109/L,备用。(2)嗅鞘细胞(OECs)的培养及鉴定:同样方法,无菌条件下取大鼠两侧嗅球后培养OECs。3 d全部换液1次。传代1次约需16 d。第二代细胞用P75受体单抗免疫荧光染色法鉴定OECs。最后将细胞浓度调整为1×109个/L,备用。
1.3.2 实验动物分组 SD雄性大鼠(体重200~300 g)80只,按随机数字表法分为对照组(假手术组)15只、实验1组(NSCs移植组)20只、实验2组(OECs移植组)20只和实验3组(OECs+NSCs联合移植组)20只,剩余5只大鼠备用。分组完成后将大鼠做好标记。
1.3.3 大鼠急性脊髓损伤Allens模型的制备及术后一般情况和处理 (1)模型制备:腹腔注射麻醉大鼠起效后,手术区备皮,将大鼠俯卧固定于手术台上,消毒、铺巾,背部正中切口,钝性剥离椎旁肌,缝线牵拉开,显露T10~12棘突、横突及椎板。切除T10棘突及椎板下部、T12棘突及椎板上部和全部T11棘突及椎板,形成方形骨窗,充分暴露相应脊髓节段(T11)的硬脊膜及椎管,作为打击损伤区域。自制的改良Allens撞击器15 g自6 cm高度自由落下,对T11段脊髓造成损伤,制成急性脊髓损伤动物实验模型[3]。打击完成后,4 ℃生理盐水冲洗2次,依次逐层常规缝合切口。(2)术后一般情况和处理:术后大鼠禁食水数小时,以后逐渐增加进食水量至正常。7 d内先单独饲养,7 d后5只合笼饲养。术后7 d内青霉素2×105 U肌注2次,预防伤口、肺部感染,每日饲喂呋喃坦啶水以预防泌尿系感染。大鼠术后出现尿潴留,在其恢复之前,每日应给予按摩膀胱协助排尿3次。
1.3.4 局部注射法行细胞移植 进行细胞移植之前,先将部分NSCs与OECs混合,用于实验3组的联合细胞移植。各组细胞移植均在急性脊髓损伤动物实验模型制作完成24 h以内进行。操作方法:造模成功以后,4 ℃生理盐水冲洗后,外科显微镊轻柔提起T11处硬脊膜,1 mL无菌注射器针头在硬脊膜上刺一小洞,垂直进针,缓慢向该处硬脊膜下约3 mm、脊髓损伤方向插入,缓慢注入细胞悬液0.1 mL(细胞数约为1×105个)。关闭切口前,小块可吸收明胶海绵微加压填塞于硬脊膜进针点处,防止细胞移植液及大鼠脑脊液的渗漏。对照组生理盐水代替细胞移植液,作阴性对照,余操作步骤与实验组相同。
1.4 功能检测
1.4.1 行为学评价 术前和术后1、3、5、7、14、21 d和28 d,随机抽取实验组15只大鼠及全部对照组大鼠,采用BBB评分法、改良的Tralov评分法和斜板实验,对大鼠后肢运动功能状况进行双盲法评分,与手术之前相比较,以了解受损脊髓功能恢复情况。
1.4.2 神经电生理检测 运动诱发电位(MEP N1波)的检测,观察外周运动神经(坐骨神经)的功能状态。检测方法:大鼠麻醉起效后,环形切开头后部皮肤,剥离至骨膜,细纹螺钉钻孔,孔的大小以刚好将刺激电极放入为宜。根据MEP的产生原理,刺激电极置于皮层,记录电极置于后肢大腿后侧坐骨神经处,参考电极置于硬腭下。刺激类型是:单脉冲粗电压,强度3 V,波宽1 ms、频率10 Hz,滤波3000 Hz,增益20倍,时间常数0.01 s,次数100次。检测完毕后缝合切口。endprint
1.5 大鼠灌注、取材、固定与免疫组织化学染色 各组随机抽取1只大鼠进行灌注、取材与固定,免疫组织化学染色的方法测定NT-3标记阳性细胞指数,检测NT-3在局部受损脊髓组织中的表达情况。操作方法:腹腔麻醉起效后,开胸后经左心室主动脉插管,剪开右心耳,先快速灌注冰盐水,清亮液体流出后,再用多聚甲醛经心灌注、固定动物,速度先快后慢。切取T10~T12脊髓节段上下各约1 mm脊髓节段,立即放入中性福尔马林溶液内后固定,再入蔗糖溶液内脱水,置4 ℃下至沉底,常规石蜡包埋,切片机连续切片,厚度为10 um。免疫组织化学染色按NT-3染色SP试剂盒操作说明进行(操作步骤详见说明书)。NT-3染色阳性的标志是细胞浆或细胞膜呈棕黄色。选取15张最优切片,每张切片在10倍光镜下分别计数4个视野内染色阳性细胞,测定各组染色阳性细胞在总计数细胞中所占比例(即阳性细胞指数),重复5次,求平均值。
1.6 统计学处理 采用SPSS 11.5统计学软件对数据进行处理,计量资料以(x±s)表示,两两比较采用t检验,不同时间点比较采用单因素方差分析(ANOVA),以P<0.05为差异有统计学意义。
2 结果
2.1 SD大鼠急性脊髓损伤细胞移植后BBB评分变化 对照组及各实验组大鼠术后24 h内BBB评分均为0分,随着实验的进行,各组均表现出不同程度的恢复情况。其中实验组恢复速度及程度大于对照组(P<0.05);1周后各组各时间点比较差异均有统计学意义(P<0.05),且有增大趋势;各实验组两两比较差异均有统计学意义(P<0.05)。见表1、图1。
2.2 SD大鼠急性脊髓损伤细胞移植后改良的Tralov评分变化 所有大鼠模型制备完成后及术后任一检测时间点,Tralov评分均显著低于术前。随着实验的进行,各组大鼠均表现出不同程度的恢复情况。与BBB评分的统计分析结果相似,实验组Tralov评分均显著高于同一检测时间点的对照组(P<0.05);1周后,各组各时间点比较差异均有统计学意义(P<0.05),各实验组两两比较差异均有统计学意义(P<0.05)见表2、图2。
2.3 SD大鼠急性脊髓损伤细胞移植后斜板实验角度变化 造模及细胞移植术后,大鼠斜板实验角度大幅下降,术后1 d由(82.00±3.45)°降为(12.73±1.34)°,差异有统计学意义(P<0.05)。随着实验的进行,各实验组大鼠斜板实验角度逐渐增加,以术后第7天增加非常明显。实验组与对照组术后1周以内大鼠斜板实验角度比较差异无统计学意义(P>0.05);1周后,实验组与对照组比较差异均有统计学意义(P<0.05);各组各时间点比较差异有统计学意义(P<0.05),各实验组两两比较差异有统计学意义(P<0.05)。见表3、图3。
2.4 SD大鼠急性脊髓损伤细胞移植后MEP(N1波)潜伏期变化 造模及细胞移植术后,各组MEP(N1波)潜伏期明显延长,但各实验组N1波潜伏期短于对照组(P<0.05)。随着实验的进行,实验组及对照组潜伏期均逐渐缩短,但各实验组潜伏期缩短幅度大于对照组(P<0.05)。实验组间比较:3 d后,各组各时间点比较差异均有统计学意义(P<0.05),各实验组两两比较差异均有统计学意义(P<0.05)。见表4、图4。
2.5 SD大鼠急性脊髓损伤细胞移植后NT-3染色表达阳性的细胞数变化 造模及细胞移植术后,各组大鼠受损脊髓组织中NT-3均有明显增高,其中术后第3天达到高峰,7 d内NT-3的表达维持在较高的水平,此后逐步减少。自术后第5天(包含5 d)开始,各实验组与对照组比较NT-3增高显著,差异有统计学意义(P<0.05);各组各时间点比较差异均有统计学意义(P<0.05),各实验组两两比较差异均有统计学意义(P<0.05)。见表5、图5。
3 讨论
治疗急性脊髓损伤必须要明确其受损机制,从而针对其中的关键环节做出行之有效干预治疗措施。急性脊髓损伤的具体机制虽尚未被完全阐明,但医学工作者的认识逐渐趋于统一,认为脊髓损伤包括原发性损伤和继发性损伤[4]。基于这一认识,目前急性脊髓损伤动物实验模型基础研究中所实验的新方法新技术和临床上治疗脊髓损伤的各种常用措施,就是要及早正确的干预、减轻和预防可逆性的继发性损伤,但取得的治疗效果却不甚理想。上世纪90年代初,Reynold等[5]在鼠纹状体中发现了具有多向分化潜能、不断进行分裂的细胞群,后来Mckay将之命名为神经干细胞(NSCs)。他们的发现颠覆了人们以往认为成年中枢神经系统神经元不能够再生的认知,为治疗脊髓损伤提供了新的治疗思路—细胞移植。自此,各种细胞被尝试用来治疗神经系统损伤和脊髓损伤。在这些尝试中,最成功的例子就是神经干细胞移植治疗帕金森病、癫痫、中风等神经系统疾病[6-9]。但急性脊髓损伤的机制更加错综复杂,细胞移植虽然在基础实验研究及动物实验等方面取得了重大进展与突破,但国内外人体临床试验尚未大规模开展,这仍有待于研究者的进一步地探索研究。
神经干细胞(NSCs)是一类特定的干细胞,它可以通过非对称分裂的方式分化成为神经元、星形胶质细胞、少突胶质细胞等。此外,还可自分泌神经生长因子(NGF)、神经营养因子(NTF)等物质。自其被发现伊始,神经干细胞就被医学工作者用来自体移植治疗神经系统损伤,这样不仅可以避免免疫排斥反应的发生,同时又解决了移植细胞的来源问题,取得了满意的临床疗效,可作为急性脊髓损伤治疗的重要参照[10]。
嗅鞘细胞(OECs)是目前所发现的极少数中枢神经系统内可以再生的细胞之一,被认为是髓鞘化能力最强的胶质细胞,其特点是具备终生再生分裂的能力,它不仅能存活于中枢神经系统当中,而且又可以促进外周神经元细胞轴突的生长。Sasaki等[11]研究就发现,嗅鞘细胞移植后能够突出脊髓受损区达8 mm,除了仍可保持再生分裂的能力外,还可使已经脱髓鞘的神经元轴突重新髓鞘化。此外,与NSCs相似,嗅鞘细胞也能分泌多种神经营养因子,这些可能都对神经元轴突的生长起着重要的促进作用[12]。endprint
本实验中,采用单种细胞或两种细胞联合移植治疗大鼠急性脊髓损伤,将能够分泌NT-3的神经干细胞及嗅鞘细胞分别、共同移植于脊髓受损区,以期可持续分泌NT-3,这样就可避免外源性神经营养因子半衰期短和持续性作用差的弊端,等同于NT-3、神经干细胞及嗅鞘细胞共同修复受损的脊髓,改善大鼠急性脊髓损伤后运动功能的恢复[13]。实验中笔者观察到,造模及细胞移植术后,24 h内各组大鼠BBB评分及改良的Tralov评分均为0分,斜板实验角度下降非常明显,由实验前的(82±3.45)°降为(12.73±1.34)°,各组MEP(N1波)潜伏期明显延长。随着实验的进行,各组均表现出不同程度的恢复情况,各实验组BBB评分及改良的Tralov评分与对照组相比增高显著(P<0.05);斜板实验角度也逐渐增加,实验组增幅要大于对照组,以术后第7天增加非常明显;各组MEP(N1波)潜伏期均逐渐缩短,且各实验组潜伏期缩短幅度大于对照组(P<0.05),说明大鼠急性脊髓损伤后有一定的自我恢复作用,细胞移植能够对受损脊髓产生修复治疗效应,促进大鼠双后肢运动动能恢复。实验3组BBB评分和改良的Tralov评分在各实验组中增高最显著,实验2组次之,实验1组最弱,表明细胞移植虽能促进大鼠伤后后肢运动动能的恢复,但单种细胞移植或两种细胞联合移植后取得的治疗效果不甚相同。笔者还观察到,急性脊髓损伤后NT-3表达量迅速增高,术后第3天达到最高峰,7 d内其浓度维持在一个较高的水平,此后表达明显变弱,趋于平缓。这说明,大鼠急性脊髓损伤后机体本身NT-3合成增加,推测NT-3可能在急性脊髓损伤的早期修复中发挥着重要作用。实验3组和实验2组与实验1组相比促进作用更显著(P<0.05),实验3组与实验2组比较差异有统计学意义(P<0.05)。这说明,OECs+NSCs联合移植促进NT-3分泌的作用最优,OECs移植次之,NSCs移植最弱。这与以上实验结果相一致。
然而,并非所有的实验研究都获得了一致或相仿的研究结论。有学者认为,局部注射法进行细胞移植时,“细胞迁徙”可能是人为进行细胞移植时局部注射的压力所导致的局部扩散而已,而不是所谓的“主动迁徙”[14]。在各种急性脊髓损伤模型中,如脊髓半或全横断模型,脊髓压迫模型等,可见细胞移植无疗效或疗效甚微的案例,故而一部分学者对细胞移植治疗急性脊髓损伤的疗效抱有怀疑态度[15]。尽管如此,笔者认为急性脊髓损伤机制的复杂性决定了其治疗的全面性,不是单独应用一种治疗方法或多种治疗方法联合应用就可一蹴而就的。细胞移植的方法虽然不是涉及了急性脊髓损伤修复的所有方面,但取得了一定的疗效。
参考文献
[1] Stevens R D,Bhardwaj A,Kirsch J R,et al.Critical care and perioperative management in traumatic spinal cord injury [J].Neurosurg Anesthesiol,2003,15(6):215-229.
[2] Jarocha D,Milczarek O,Kawecki Z,et al.Preliminary study of autologous bone marrow nucleated cells transplantation in children with spinal cord injury[J].Stem Cells Transl Med,2014,3(3):395-404.
[3] Fujimoto T,Nakamura T,Ikeda T,et al.Potent protective effects of melatonin on experimental spinal cord injury[J].Spine,2000,25(7):769-775.
[4] Olby N.The pathogenesis and treatment of acute spinal cord injuries in dogs[J].Vetclin N Am-Small,2010,40(5):791-807.
[5] Reynold B A,Tetzlaff W,Weiss S,et al.A multipotent EGF responsive striatal embryonic progenitor cell produce neurons and astrocytes[J].Neurosci,1992,12(11):4565-4574.
[6] Baumann C R,Waldvogel D.The treatment of Parkinson's disease[J].Praxis (Bern 1994),2013,102(25):1529-1535.
[7] Connolly B S,Lang A E.Pharmacological treatment of Parkinson disease: a review[J].JAMA,2014,311(16):1670-1683.
[8] Ramkumar K,Bharathi H,Shetty A K.Hippocampal neurogenesis and neural stem cells in temporal lobe epilepsy[J].Epilepsy Behav,2009,14(1): 65-73.
[9] Yuan M,Wen S J,Yang C X,et al.Transplantation of neural stem cells overexpressing glial cell line-derived neurotrophic factor enhances Akt and Erk1/2 signaling and neurogenesis in rats after stroke[J].Chinese Medical Journal,2013,126(7):1302-1309.endprint
[10] Xu C J,Xu L,Huang L D,et al.Combined NgR vaccination and neural stem cell transplantation promote functional recovery after spinal cord injury in adult rats[J].Neuropathol Appl Neurobiol,2011,37(2):135-155.
[11] Sasaki M,Black J A,Lankford K L,et al.Molecular reconstruction of nodes of Ranvier after remyelination by transplanted olfactory ensheathing cells in the demyelinated spinal cord[J].Neurosci,2006,26(6):1803-1812.
[12] Kalincik T,Choi E A,Feron F,et al.Olfactory ensheathing cells reduce duration of autonomic dysreflexia in rats with high spinal cord injury[J].Auton Neurosci,2010,154(1):20-29.
[13] Ejstrup R,Kiilgaard J F,Tucker B A,et al.Pharmacokinetics of intravitreal glial cell line-derived v neurotrophic factor: experimental studies in pigs[J].Exp Eye Res,2010,91(6):890-895.
[14] Lu P,Yang H,Culbertson M,et al.Olfactory ensheathing cells do not exhibit unique migratory or axonal growth-promoting properties after spinal cord injury[J].J Neurosci,2006,26(43):11 120-11 130.
[15] Fawcett J W,Curt A,Steeves J D,et al.Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials[J].Spinal Cord,2007,45(3):190-205.
(收稿日期:2014-05-14) (本文编辑:蔡元元)endprint
[10] Xu C J,Xu L,Huang L D,et al.Combined NgR vaccination and neural stem cell transplantation promote functional recovery after spinal cord injury in adult rats[J].Neuropathol Appl Neurobiol,2011,37(2):135-155.
[11] Sasaki M,Black J A,Lankford K L,et al.Molecular reconstruction of nodes of Ranvier after remyelination by transplanted olfactory ensheathing cells in the demyelinated spinal cord[J].Neurosci,2006,26(6):1803-1812.
[12] Kalincik T,Choi E A,Feron F,et al.Olfactory ensheathing cells reduce duration of autonomic dysreflexia in rats with high spinal cord injury[J].Auton Neurosci,2010,154(1):20-29.
[13] Ejstrup R,Kiilgaard J F,Tucker B A,et al.Pharmacokinetics of intravitreal glial cell line-derived v neurotrophic factor: experimental studies in pigs[J].Exp Eye Res,2010,91(6):890-895.
[14] Lu P,Yang H,Culbertson M,et al.Olfactory ensheathing cells do not exhibit unique migratory or axonal growth-promoting properties after spinal cord injury[J].J Neurosci,2006,26(43):11 120-11 130.
[15] Fawcett J W,Curt A,Steeves J D,et al.Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials[J].Spinal Cord,2007,45(3):190-205.
(收稿日期:2014-05-14) (本文编辑:蔡元元)endprint
[10] Xu C J,Xu L,Huang L D,et al.Combined NgR vaccination and neural stem cell transplantation promote functional recovery after spinal cord injury in adult rats[J].Neuropathol Appl Neurobiol,2011,37(2):135-155.
[11] Sasaki M,Black J A,Lankford K L,et al.Molecular reconstruction of nodes of Ranvier after remyelination by transplanted olfactory ensheathing cells in the demyelinated spinal cord[J].Neurosci,2006,26(6):1803-1812.
[12] Kalincik T,Choi E A,Feron F,et al.Olfactory ensheathing cells reduce duration of autonomic dysreflexia in rats with high spinal cord injury[J].Auton Neurosci,2010,154(1):20-29.
[13] Ejstrup R,Kiilgaard J F,Tucker B A,et al.Pharmacokinetics of intravitreal glial cell line-derived v neurotrophic factor: experimental studies in pigs[J].Exp Eye Res,2010,91(6):890-895.
[14] Lu P,Yang H,Culbertson M,et al.Olfactory ensheathing cells do not exhibit unique migratory or axonal growth-promoting properties after spinal cord injury[J].J Neurosci,2006,26(43):11 120-11 130.
[15] Fawcett J W,Curt A,Steeves J D,et al.Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials[J].Spinal Cord,2007,45(3):190-205.
(收稿日期:2014-05-14) (本文编辑:蔡元元)endprint