罗 宇, 王力工
(西北工业大学理学院应用数学系, 中国 西安 710072)
一类图及其线图的Wiener指数
罗 宇, 王力工
(西北工业大学理学院应用数学系, 中国 西安 710072)
Wiener指数W(G)是指一个连通图G中所有顶点对之间的距离之和.本文定义了一类具有圈数为r,围长为n的平面图Gr,s,t,n,证明了对于满足特定条件的正整数r,s,t,n,存在无穷个这样的图Gr,s,t,n,满足性质W(Gr,s,t,n)=W(L(Gr,s,t,n)),这里L(Gr,s,t,n)表示图Gr,s,t,n的线图, 推广了苏晓海等人的结果.
Wiener指数;线图;围长
设图G是一个具有顶点集V(G)={v1,v2,…,vn}和边集E(G)={e1,e2,…,em}的简单无向连通图.图G的顶点数n称为图G的阶数, 也记为n(G). 图G的线图L(G)是指它的顶点集V(L(G))=E(G),线图L(G)中两个互异的顶点相邻当且仅当在图G中相对应的两条边有一个公共顶点. 一个图G的圈数λ定义为λ(G)=m-n+1.
在本文中,作者的主要目标是找出满足下列等式的具有特定结构的图类,
W(L(G))=W(G) .
(1)
已知树的Wiener指数和其线图的Wiener指数总是不相等的[5],对于单圈图,除了圈图Cn之外,均满足W(L(G))
为了便于计算图的Wiener指数,先介绍两个引理:
引理1[3]设G1和G2是任意两个图,v1∈V(G1),v2∈V(G2),且图G是将图G1的顶点v1和图G2的顶点v2重叠后得到的图,则图G的Wiener指数为:
W(G)=W(G1)+W(G2)+(n(G1)-1)dG2(v2)+(n(G2)-1)dG1(v1).
引理2[15]设a为正整数,则不定方程x2-y2=a有解的充分必要条件是a为奇数或4 的倍数.
考虑如图1所示的图Gr,s,t,n,它的圈数为r,围长是n(n为正整数且n≥ 3),图中的每个圈都是Cn,阶为nr+s+t+2,对于每一组正整数r,s,t和n,Gr,s,t,n都是简单平面图,其线图L(Gr,s,t,n)的具体结构见图1,其中它的完全子图中部分边没有画出.
定理1 图1中图Gr,s,t,n的Wiener指数为:
A.n=2k-1时,L(Gr,s,t,n) B.n=2k时,L(Gr,s,t,n)
(2)当n=2k时,W(Gr,s,t,n)=(2k3+4k2)r2+s2+t2+3st+(k2+4k)sr+(k2+6k)rt-(k3+2k2-6k)r+2s+2t+1.
(2)当n=2k时,由Wiener指数的定义可得:W(G1)=(2k3+4k2)r2-(k3+3k2-2k)r,dG1(v)=(k2+2k)r,n(G1)=2kr+1,W(G2)=s2+t2+3st+2s+2t+1,dG2(v)=s+2t+1,n(G2)=s+t+2. 由引理1可得(2)成立.
定理2 图1中图Gr,s,t,n和L(Gr,s,t,n),设ΔW(Gr,s,t,n)=W(L(Gr,s,t,n))-W(Gr,s,t,n),则有:
定理3 对于图1中图Gr,s,t,n,当r,s,t,k,l均为正整数,且满足下列条件之一,则有ΔW(Gr,s,t,n)=0,即W(L(Gr,s,t,n))=W(Gr,s,t,n).
[2s+ 2t+ 2(k-3)r+ 3]2- 4k2r2=(8k2+28)r2-8sr-(8k2+28k+4)r+1.
引入任意正整数l,上式两边分别减去(8kl+4l2)r2,左边配方得
[2s+2t+2(k-3)r+3]2-[(2k+2l)r]2=(8k2-8kl-4l2+28)r2-8sr-(8k2+28k+4)r+1.
令x=2s+2t+2(k-3)r+3,y=(2k+2l)r,有
x2-y2=(8k2-8kl-4l2+28)r2-8sr-(8k2+28k+4)r+1.
显然上式等号右边是一个奇数,故x+y和x-y也是奇数,不妨令
其中s+t+1=(l+3)r.于是定理3(1)的结果成立.
[2s+2t+2(k-2)r+3]2- 4k2r2=(8k2+8k+20)r2-8sr-(8k2+28k+4)r+1.
引入任意正整数l,上式两边分别减去(8kl+4l2)r2左边配方得到:
[2s+2t+2(k-2)r+3]2-[(2k+2l)r]2=[8k2-(8l-8)k-4l2+20]r2-8sr-(8k2+28k+20)r+1.
其中s+t+=(l+2)r.于是定理3(2)的结果成立.
推论1 当正整数n,k,r,s,t,l满足下列条件之一,W(L(Gr,s,t,n))=W(Gr,s,t,n)成立.
(4)n=6,k=3,l=2,s=r-25,t=4r+24,r≥25是整数;
(5)n=7,k=4,l=3,s=3r-34,t=3r+33,r≥12是整数;
注当n=8,k=4 时,在0 [1] WIENER H. Structural determination of paraffin boiling points[J]. J Am Chem Soc, 1947,69(1):17-20. [2] DEVILLERS J, BALABAN A T. Topological indices and related descriptors in QSAR and QSPR[M]. Amsterdam: Gordon and Breach Science Publishers, 1999. [3] DOBRYNIN A A, ENTRINGER R, GUTMAN I. Wiener index of trees: theory and applications[J].Acta Appl Math, 2001,66(3):211-249. [4] BERTZ S H, WRIGHT W F. The graph theory approach to synthetic analysis: definition and application of molecular complexity and synthetic complexity[J]. Graph Theory Notes New York, 1998,35:32-48. [5] BUCKLY F. Mean distance of line graphs[J]. Congr Numer, 1981,32(4):153-162. [6] GUTMAN I. Distance of line graphs[J]. Graph Theory Notes New York, 1996,31:49-52. [8] DOBRYNIN A A, GUTMAN I, JOVAEVIV. Bicyclic graphs and its line graphs with the same Wiener index[J]. Diskretn Analiz Issled Oper Ser 2, 1997,4(2):3-9(in Russian). [9] 邓汉元. 一类化学图及其线图的Wiener指数[J]. 湖南师范大学自然科学学报, 2009,32(3):23-26. [10] DOBRYNIN A A, MEL’NIKOV L S. Wiener index for graphs and their line graphs with arbitrary large cyclomatic numbers[J]. Appl Math Lett, 2005,18(3):307-312. [11] DOBRYNIN A A, MEL’NIKOV L S. Wiener index, line graphs and the cyclomatic number[J].MATCH Commun Math Comput Chem, 2005,53(1):209-214. [12] DOBRYNIN A A, MEL’NIKOV L S. Some results on the Wiener index of iterated line graphs[J].Electron Notes Discrete Math, 2005, 22:469-475. [13] COHEN N, DIMITROV D, KRAKOVSKI R,etal. On Wiener index of graphs and their line graphs[J].MATCH Commun Math Comput Chem, 2010,64(3):683-698. [14] 苏晓海,王力工. 两类图及其线图的Wiener指数[J]. 山西大学学报:自然科学版, 2011,34(3):397-401. [15] 潘承洞,潘承彪. 初等数论[M]. 北京:北京大学出版社, 1994. (编辑 沈小玲) Wiener Index for a Class of Graphs and Their Line Graphs LUOYu,WANGLi-gong* (Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, China) The Wiener indexW(G) of a connected graphGis the sum of distances among all pairs of vertices ofG. A class of planar graphGr,s,t,nwith cyclomatic numberrand girthnis defined. It is proved that for given positive integersr,s,t,n, there are infinite families of graphsGr,s,t,nhaving the propertyW(Gr,s,t,n)=W(L(Gr,s,t,n)), whereL(Gr,s,t,n) is the line graph ofGr,s,t,n. These results generalize the results of Xiaohai Su et al. Wiener index; line graph; girth 2012-11-21 国家自然科学基金资助项目(11171273);国家级大学生创新创业训练计划资助项目(20120699107) * ,E-maillgwangmath@163.com O157.5 A 1000-2537(2014)01-0081-05