王秀娟 孙尧
【摘要】 目的:观察乏氧条件下miRNA调节AMPK对胰腺β细胞发挥的作用。方法:经细胞培养及Real-time PCR,观察在乏氧条件下miR-29a通过AMPK调控胰岛β细胞功能的发挥。结果:INS-1细胞,主要表达AMPKα2,其磷酸化AMPK活性在乏氧条件下增加。用Real time PCR检测AMPK的表达,发现乏氧说明在胰腺β细胞,主要表达AMPKα2亚基。乏氧能促进HIF-1α表达,促进AMPK的活化。同时AMPK可能受miR-29a的调节。结论:乏氧条件下胰岛β细胞主要表达为AMPKa2,说明AMPK能促进胰岛β细胞细胞增殖。
【关键词】 AMPK; 胰腺β细胞; 乏氧; miR-29a
【Abstract】 Objective:To explore the mechanism by which miRNA plays roles in pancreatic β cells through regulating AMPK under hypoxic condition. Method:Under the condition of lack of oxygen miR - 29 a by AMPK regulation islet beta cell function were observed by cell culture and Real - time PCR.Result:The INS-1 cell primarily expressed AMPKα2, which the phosphorylation activity of AMPK was increased under hypoxic condition. the expression of AMPK was detected by Real time PCR, which suggested that pancreatic β cells primarily expressed AMPKα2 under hypoxic condition. Hypoxia could accelerate the expression of HIF-1α and the activation of AMPK. Meanwhile, AMPK might be regulated by miR-29a.Conclusion:Under the condition of lack of oxygen islet beta cells mainly expressed as AMPKa2, AMPK can promote cell proliferation islet beta cells.
【Key words】 AMPK; Pancreatic β cells; Hypoxia; miR-29a
First-authors address:Hebei United University,Tangshan 063000,China
doi:10.3969/j.issn.1674-4985.2014.18.023
胰腺是一腺体器官,内分泌胰腺包括胰岛,约有100~1000激素分泌细胞散布在外分泌组织和通过血管团相互联系。胰岛的功能主要是通过产生多种激素维持代谢平衡,这些激素调节血糖水平。胰腺β细胞的功能受很多分子的调控包括信号转导通路、各种代谢分子及microRNA(miRNA)等构成一个复杂的网络系统,精确调控其行为[1-3]。miRNA是一种内源性的非编码RNA,广泛存在于真核生物中。而乏氧上调miR-29a通过AMPK抑制胰腺β细胞增殖、促进凋亡及促进自噬。笔者采用分子生物学和细胞生物学的方法研究特分析如下。
1 材料与方法
1.1 材料与试剂
1.1.1 RPMI 1640培养液 RPMI 1640培养基干粉为Invitrogen产品,去离子水配制,每升加入2.0 g的碳酸氢钠,充分溶解后用HCl调pH至7.4,0.22 μm滤膜过滤后4 ℃保存使用。
1.1.2 DMEM培养液 DMEM培养基干粉为Invitrogen 产品。去离子水配制,每升加入3.7 g的碳酸氢钠,充分溶解后用HCl调pH至7.4,0.22 μm滤膜过滤后4 ℃保存使用。
1.1.3 D-Hanks液配制 1 L含有0.12 g Na2HPO4·7H2O,0.06 g KH2PO4,0.35 g NaHCO3,0.4 g KCl,8 g NaCl。
1.1.4 0.25%胰蛋白酶 1L D-Hanks液(pH 7.4)含有2.5 g胰酶,充分溶解后过滤除菌于4 ℃保存。
1.1.5 其他材料 细胞培养用各式培养皿、培养板和其他耗材,均购自Corning公司。
1.1.6 10×PBS 室温保存,使用时以水稀释至1×PBS,调pH 7.4。
1.1.7 Real-time PCR相关试剂 Olig(dT)18、dNTP、逆转录酶和逆转录酶抑制剂购自Promega公司;2×SYBR Green PCR Master Mix(Takara公司,日本),此混合物中含有dNTP、MgCl2、Taq DNA多聚酶、抗Taq单克隆抗体和SYBR Green I、II等。
1.2 实验方法
1.2.1 细胞培养 INS-1细胞为本实验室保存,培养在RPMI1640并含有2 mmol/L Gln,另外加100 kU/L青霉素和100 mg/L链霉素,1 mmol/L丙酮酸钠,完全的培养基含有10%灭活的胎牛血清,培养37 ℃,5% CO2条件下[4-5]。乏氧处理的条件是1% O2。
1.2.2 Real-time PCR 使用Primer Premier software 5.0软件设计引物,DNA序列由上海生物工程有限公司合成,Real-time PCR扩增程序为:热启动95 ℃ 3 min,然后95 ℃ 30 s,60 ℃ 30 s,72 ℃ 30 s扩增40循环,最后0.5 ℃/s作融解曲线。使用Light Cycler软件分析结果。目的基因与内参Ct值各自通过标准曲线转换为浓度值,以各目的基因和GAPDH基因的浓度比值表示mRNA的相对水平[6-8]。endprint
2 结果
2.1 乏氧条件下胰岛β细胞AMPK的表达情况 为研究乏氧条件下胰岛β细胞AMPK的表达情况,将INS-1细胞放于常氧和乏氧(1% O2)条件下培养,观察不同乏氧时间4、12和24 h的AMPK表达情况,结果发现在INS-1细胞,主要表达AMPKα2,其磷酸化AMPK活性在乏氧条件下增加(图1)。用Real time PCR检测AMPK的表达,发现乏氧说明在胰腺β细胞,主要表达AMPKα2亚基(图2)。当HIF-1α被抑制后,磷酸化AMPK下降,同时AMPK也下降。说明乏氧能促进HIF-1α表达,促进AMPK的活化(图3)。
2.2 miR-29a调节AMPK在胰岛细胞的表达 AMPK在胰岛细胞有很重要的作用,笔者用生物学软件对调节AMPK的3UTR的miRNAs进行了预测,发现AMPK的3UTR区有miR-29a结合位点,说明AMPK可能受miR-29a的调节,因此构建了AMPK的3UTR的报告基因载体,证明了AMPK是miR-29a的靶基因(图4)。将INS-1细胞在乏氧条件下培养发现,乏氧能下调miR-29a的表达(图5)。
3 讨论
AMPK在细胞内氧化应激是活性增加。ROS诱导激活AMPK被认为对许多药物的有益效果是非常重要的。例如,已报道二甲双胍通过线粒体衍生的RNS激活AMPK。在小鼠骨骼肌AMPK被活化,氧化应激和增强葡萄糖转运,并不依赖于AMP或AMP/ATP比值的变化。同样,在细胞培养条件下,缺氧诱导的AMPK活化依赖于线粒体ROS而AMP/ATP比值没有显著的变化[9]。过氧化氢已被观察到,能够强烈诱导活化AMPK。
线粒体尤其线粒体受损是细胞ROS产生的主要来源,线粒体损伤与许多慢性疾病有关如糖尿病,神经退行性疾病和癌症。AMPK可通过几个机制调节线粒体ROS的产生[10]。解偶联蛋白是线粒体阴离子载体蛋白的大家庭成员,解偶联蛋白促进线粒体膜上的阴离子转移。UCP2在控制线粒体ROS生产中起着重要的作用是治疗肥胖、糖尿病及衰老的潜在靶点[11]。研究表明,一个在氧化还原调控AMPK的作用机制是通过上调线粒体UCP2表达。例如,通过AICAR激活AMPK,或过表达组成性激活AMPK,抑制O2生产和降低酪氨酸硝化前列环素合酶在人脐静脉内皮细胞在高糖处理[12]。AMPK参与NPY/刺鼠相关肽的作用。后者似乎是由于了UCP2表达的调控,导致神经元的调控线粒体ROS的产生。培养MIN6胰岛瘤细胞。此外,在动物模型,发现激活AMPK导致胰岛UCP2表达的增加,此结果与在β细胞缺失的细胞结果一致[13]。尽管这些研究结果,AMPK调节UCP2表达和功能的详细的机制仍然不完全清楚。新研究表明,AMPK调节自噬从而调节线粒体ROS的产生。众所周知的,受损的蛋白质和DNA的或不正常的线粒体可导致线粒体产生ROS增强[14]。因此,细胞有各种特定的机制来控制这些受损细胞器,这样的机制之一就是细胞自噬,从细胞中消除不正常的线粒体是至关重要的[14]。自噬缺陷导致生产ROS;这是由自噬功能失调的细胞或动物的许多实验结果的支持。例如,从agt7缺陷小鼠的骨骼肌细胞表现为线粒体呼吸和ROS水平增加[15]。
笔者的研究发现乏氧条件下胰岛β细胞主要表达AMPKα2,而AMPKα1表达很低,说明AMPK在细胞的表达存在组织特异性。进一步的结果说明AMPK能促进胰岛β细胞细胞增殖。
参考文献
[1] Bonal C,Herrera P L.Genes controlling pancreas ontogeny[J].Int J Dev Biol,2008,52(23):823-835.
[2] Collombat P,Hecksher-Sorensen J,Serup P,et al.Specifying pancreatic endocrine cell fates[J].Mech Dev,2006,123(12):501-512.
[3] Oliver-Krasinski J M,Stoffers D A.On the origin of the beta cell[J].Genes Dev,2008,22(2):1998-2021.
[4] Palanichamy J K,Rao D S.miRNA dysregulation in cancer: towards a mechanistic understanding[J].Front Genet,2014,5(4):54.
[5] Kaspi H,Pasvolsky R,Hornstein E.Could microRNAs contribute to the maintenance of β cell identity?[J].Trends Endocrinol Metab,2014,25(6):274-282.
[6] Gong W,Xiao D,Ming G,et al.Type 2 diabetes mellitus-related genetic polymorphisms in micro RNAs and microRNA target sites[J]. J Diabetes,2014,6(4):279-283.
[7] Jiang H,Zhang G,Wu J H,et al.Diverse roles of miR-29 in cancer (Review)[J].Oncol Rep,2014,31(4):1509-1516.
[8] Farr R J,Joglekar M V,Taylor C J,et al.Circulating non-coding RNAs as biomarkers of β cell death in diabetes[J].Pediatr Endocrinol Rev,2013,11(1):14-20.endprint
[9] Mao Y,Mohan R,Zhang S,et al.MicroRNAs as pharmacological targets in diabetes[J].Pharmacol Res,2013,75(5):37-47.
[10] Bagge A,Dahmcke C M,Dalgaard LT.Syntaxin-1a is a direct target of miR-29a in insulin-producing β-cells[J].Horm Metab Res,2013,45(6):463-466.
[11] Bagge A,Clausen T R,Larsen S,et al.MicroRNA-29a is up-regulated in β-cells by glucose and decreases glucose-stimulated insulin secretion[J].Biochem Biophys Res Commun,2012,426(2):266-272.
[12] Roggli E,Gattesco S,Caille D,et al.Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice[J].Diabetes,2012,61(7):1742-1751.
[13] Pullen T J,da Silva Xavier G,Kelsey G,et al.miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1)[J].Mol Cell Biol,2011,31(15):3182-3194.
[14] Puddu A,Sanguineti R,Mach F,et al.Update on the protective molecular pathways improving pancreatic β-cell dysfunction[J].Mediators Inflamm,2013,13(23):750 540.
[15] Zong H,Ren J M,Young L H,et al.AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation[J].Natl Acad Sci,2002,99(12):15 983-15 987.
(收稿日期:2014-04-21) (本文编辑:蔡元元)endprint
[9] Mao Y,Mohan R,Zhang S,et al.MicroRNAs as pharmacological targets in diabetes[J].Pharmacol Res,2013,75(5):37-47.
[10] Bagge A,Dahmcke C M,Dalgaard LT.Syntaxin-1a is a direct target of miR-29a in insulin-producing β-cells[J].Horm Metab Res,2013,45(6):463-466.
[11] Bagge A,Clausen T R,Larsen S,et al.MicroRNA-29a is up-regulated in β-cells by glucose and decreases glucose-stimulated insulin secretion[J].Biochem Biophys Res Commun,2012,426(2):266-272.
[12] Roggli E,Gattesco S,Caille D,et al.Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice[J].Diabetes,2012,61(7):1742-1751.
[13] Pullen T J,da Silva Xavier G,Kelsey G,et al.miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1)[J].Mol Cell Biol,2011,31(15):3182-3194.
[14] Puddu A,Sanguineti R,Mach F,et al.Update on the protective molecular pathways improving pancreatic β-cell dysfunction[J].Mediators Inflamm,2013,13(23):750 540.
[15] Zong H,Ren J M,Young L H,et al.AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation[J].Natl Acad Sci,2002,99(12):15 983-15 987.
(收稿日期:2014-04-21) (本文编辑:蔡元元)endprint
[9] Mao Y,Mohan R,Zhang S,et al.MicroRNAs as pharmacological targets in diabetes[J].Pharmacol Res,2013,75(5):37-47.
[10] Bagge A,Dahmcke C M,Dalgaard LT.Syntaxin-1a is a direct target of miR-29a in insulin-producing β-cells[J].Horm Metab Res,2013,45(6):463-466.
[11] Bagge A,Clausen T R,Larsen S,et al.MicroRNA-29a is up-regulated in β-cells by glucose and decreases glucose-stimulated insulin secretion[J].Biochem Biophys Res Commun,2012,426(2):266-272.
[12] Roggli E,Gattesco S,Caille D,et al.Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice[J].Diabetes,2012,61(7):1742-1751.
[13] Pullen T J,da Silva Xavier G,Kelsey G,et al.miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1)[J].Mol Cell Biol,2011,31(15):3182-3194.
[14] Puddu A,Sanguineti R,Mach F,et al.Update on the protective molecular pathways improving pancreatic β-cell dysfunction[J].Mediators Inflamm,2013,13(23):750 540.
[15] Zong H,Ren J M,Young L H,et al.AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation[J].Natl Acad Sci,2002,99(12):15 983-15 987.
(收稿日期:2014-04-21) (本文编辑:蔡元元)endprint