闫丽丽 潘殿魁
本课例是现代信息技术与课程内容有机整合的一次有效实践,几何画板软件的应用起到了突破难点的作用;在引导学生完成性质到图像和图像到性质转化的两个关键环节中,充分渗透了数形结合的思想和方法;引导启发学生积极运用观察、思考、猜想、讨论、推理、运算等多样化的学习策略,发展了学生的计算能力、空间想象能力、自主探究能力和合作交流能力。
【所用教材】
人教A版:1.4.3正切函数的性质和图像。
【教学资源】
教材;教参;课程标准;多媒体;投影仪;几何画板软件。
【教学目标】
1.知识与技能目标:利用已学的正切函数的知识探究性质;学会画正切函数的图像;掌握正切函数的性质;通过函数性质到图像和图像到性质的转化,体会数形结合的基本数学思想和方法。
2.过程与方法目标:通过想象图象、描点画出图象、计算机软件画出图象,研究函数图象的方法有了基本的认识,也增强了想象力;体会从性质到图象和从图象到性质两种研究函数的不同思路。
3.情感态度与价值观目标:借助几何画板,动态演示单位圆中的正切线的变化和正切函数准确图象,让学生亲身经历数学研究的过程,体会探索的乐趣,增强学习数学的乐趣;独立解答和分组讨论相结合的学习方式,增强学生自主创新和团结协作的精神。
【教学重难点】
1.重点:正切函数的主要性质和图像及画法。
2.难点:通过性质掌握图像特点,观察图像总结函数性质。
【教学方法】
主要采取类比、讨论、启发等教学方式,并借助多媒体辅助手段
【教学过程】
八、教学反思
初次阅读这篇教材内容,只觉得教学内容少、难度小,又由于本课之前学生已学习过正余弦函数、单调性、奇偶性、周期性等内容,好像没什么可细究的,也出不了什么新东西。但是再次详细阅读课本和教参后,又有了一些新的想法。
首先,正弦、余弦函数按照从函数定义到作函数图像再到讨论函数性质最后到函数模型应用的顺序展开,而正切函数先利用诱导公式和单位圆讨论性质,然后再利用性质作图像,这样做的目的是为了使学生体会可以从不同角度讨论函数。通过改进呈现方式,提供直观感知、观察发现、归纳类比、空间想象、反思与建构等思维活动的载体,贯彻体现数学教育新理念,促进学生采取积极主动、勇于探索的学习方式进行学习。
其次,加强相关知识的联系性,加强几何直观,强调数形结合的思想方法。为了更好的体现数形结合思想,教学中充分发挥单位圆和三角函数线的直观作用,使学生形成用单位圆讨论三角函数问题的意识和习惯。同时引导学生体会从正切函数的定义和几何意义出发,发现正切函数的性质,再想象正切函数图像的样子,直到画出函数图像后,再次总结函数性质,每个环节之间的转换都渗透着数形结合的思想方法。数形结合的思想方法是这节课的精髓。
再次,使用信息技术,符合新课程的基本要求。为了突破难点,本节适当使用了信息技术。多媒体教学的呈现方式不仅在课堂上为学生留出了更多的思考和讨论的时间,还加强了知识的发生发展过程,加深了对有关概念的认识,突破了学习中可能遇到的困难。特别是几何画板的一步步地使用,积极引导学生学习和使用计算机及专业工具和软件,以突破难点。
最后,加强学生学习的“过程性”,使数学思想的学习和数学能力培养落到实处。通过学生对五个思考题的各个击破,得出了主要性质;通过学生想象图象、描点画出图象,计算机软件画出图象,对图象有了深刻的印象,也增强了想象力;通过两组讨论和探究,深化知识,升华思想。教师提出问题、思考解决问题的策略等方面对学生进行了具体示范、引导,学生或看、或说、或想、或听、或写、或画完成了每个过程。
【参考资料】
[1]《数学(A版)教师培训手册》,人民教育出版社.
(作者单位:甘肃省嘉峪关市第一中学)
本课例是现代信息技术与课程内容有机整合的一次有效实践,几何画板软件的应用起到了突破难点的作用;在引导学生完成性质到图像和图像到性质转化的两个关键环节中,充分渗透了数形结合的思想和方法;引导启发学生积极运用观察、思考、猜想、讨论、推理、运算等多样化的学习策略,发展了学生的计算能力、空间想象能力、自主探究能力和合作交流能力。
【所用教材】
人教A版:1.4.3正切函数的性质和图像。
【教学资源】
教材;教参;课程标准;多媒体;投影仪;几何画板软件。
【教学目标】
1.知识与技能目标:利用已学的正切函数的知识探究性质;学会画正切函数的图像;掌握正切函数的性质;通过函数性质到图像和图像到性质的转化,体会数形结合的基本数学思想和方法。
2.过程与方法目标:通过想象图象、描点画出图象、计算机软件画出图象,研究函数图象的方法有了基本的认识,也增强了想象力;体会从性质到图象和从图象到性质两种研究函数的不同思路。
3.情感态度与价值观目标:借助几何画板,动态演示单位圆中的正切线的变化和正切函数准确图象,让学生亲身经历数学研究的过程,体会探索的乐趣,增强学习数学的乐趣;独立解答和分组讨论相结合的学习方式,增强学生自主创新和团结协作的精神。
【教学重难点】
1.重点:正切函数的主要性质和图像及画法。
2.难点:通过性质掌握图像特点,观察图像总结函数性质。
【教学方法】
主要采取类比、讨论、启发等教学方式,并借助多媒体辅助手段
【教学过程】
八、教学反思
初次阅读这篇教材内容,只觉得教学内容少、难度小,又由于本课之前学生已学习过正余弦函数、单调性、奇偶性、周期性等内容,好像没什么可细究的,也出不了什么新东西。但是再次详细阅读课本和教参后,又有了一些新的想法。
首先,正弦、余弦函数按照从函数定义到作函数图像再到讨论函数性质最后到函数模型应用的顺序展开,而正切函数先利用诱导公式和单位圆讨论性质,然后再利用性质作图像,这样做的目的是为了使学生体会可以从不同角度讨论函数。通过改进呈现方式,提供直观感知、观察发现、归纳类比、空间想象、反思与建构等思维活动的载体,贯彻体现数学教育新理念,促进学生采取积极主动、勇于探索的学习方式进行学习。
其次,加强相关知识的联系性,加强几何直观,强调数形结合的思想方法。为了更好的体现数形结合思想,教学中充分发挥单位圆和三角函数线的直观作用,使学生形成用单位圆讨论三角函数问题的意识和习惯。同时引导学生体会从正切函数的定义和几何意义出发,发现正切函数的性质,再想象正切函数图像的样子,直到画出函数图像后,再次总结函数性质,每个环节之间的转换都渗透着数形结合的思想方法。数形结合的思想方法是这节课的精髓。
再次,使用信息技术,符合新课程的基本要求。为了突破难点,本节适当使用了信息技术。多媒体教学的呈现方式不仅在课堂上为学生留出了更多的思考和讨论的时间,还加强了知识的发生发展过程,加深了对有关概念的认识,突破了学习中可能遇到的困难。特别是几何画板的一步步地使用,积极引导学生学习和使用计算机及专业工具和软件,以突破难点。
最后,加强学生学习的“过程性”,使数学思想的学习和数学能力培养落到实处。通过学生对五个思考题的各个击破,得出了主要性质;通过学生想象图象、描点画出图象,计算机软件画出图象,对图象有了深刻的印象,也增强了想象力;通过两组讨论和探究,深化知识,升华思想。教师提出问题、思考解决问题的策略等方面对学生进行了具体示范、引导,学生或看、或说、或想、或听、或写、或画完成了每个过程。
【参考资料】
[1]《数学(A版)教师培训手册》,人民教育出版社.
(作者单位:甘肃省嘉峪关市第一中学)
本课例是现代信息技术与课程内容有机整合的一次有效实践,几何画板软件的应用起到了突破难点的作用;在引导学生完成性质到图像和图像到性质转化的两个关键环节中,充分渗透了数形结合的思想和方法;引导启发学生积极运用观察、思考、猜想、讨论、推理、运算等多样化的学习策略,发展了学生的计算能力、空间想象能力、自主探究能力和合作交流能力。
【所用教材】
人教A版:1.4.3正切函数的性质和图像。
【教学资源】
教材;教参;课程标准;多媒体;投影仪;几何画板软件。
【教学目标】
1.知识与技能目标:利用已学的正切函数的知识探究性质;学会画正切函数的图像;掌握正切函数的性质;通过函数性质到图像和图像到性质的转化,体会数形结合的基本数学思想和方法。
2.过程与方法目标:通过想象图象、描点画出图象、计算机软件画出图象,研究函数图象的方法有了基本的认识,也增强了想象力;体会从性质到图象和从图象到性质两种研究函数的不同思路。
3.情感态度与价值观目标:借助几何画板,动态演示单位圆中的正切线的变化和正切函数准确图象,让学生亲身经历数学研究的过程,体会探索的乐趣,增强学习数学的乐趣;独立解答和分组讨论相结合的学习方式,增强学生自主创新和团结协作的精神。
【教学重难点】
1.重点:正切函数的主要性质和图像及画法。
2.难点:通过性质掌握图像特点,观察图像总结函数性质。
【教学方法】
主要采取类比、讨论、启发等教学方式,并借助多媒体辅助手段
【教学过程】
八、教学反思
初次阅读这篇教材内容,只觉得教学内容少、难度小,又由于本课之前学生已学习过正余弦函数、单调性、奇偶性、周期性等内容,好像没什么可细究的,也出不了什么新东西。但是再次详细阅读课本和教参后,又有了一些新的想法。
首先,正弦、余弦函数按照从函数定义到作函数图像再到讨论函数性质最后到函数模型应用的顺序展开,而正切函数先利用诱导公式和单位圆讨论性质,然后再利用性质作图像,这样做的目的是为了使学生体会可以从不同角度讨论函数。通过改进呈现方式,提供直观感知、观察发现、归纳类比、空间想象、反思与建构等思维活动的载体,贯彻体现数学教育新理念,促进学生采取积极主动、勇于探索的学习方式进行学习。
其次,加强相关知识的联系性,加强几何直观,强调数形结合的思想方法。为了更好的体现数形结合思想,教学中充分发挥单位圆和三角函数线的直观作用,使学生形成用单位圆讨论三角函数问题的意识和习惯。同时引导学生体会从正切函数的定义和几何意义出发,发现正切函数的性质,再想象正切函数图像的样子,直到画出函数图像后,再次总结函数性质,每个环节之间的转换都渗透着数形结合的思想方法。数形结合的思想方法是这节课的精髓。
再次,使用信息技术,符合新课程的基本要求。为了突破难点,本节适当使用了信息技术。多媒体教学的呈现方式不仅在课堂上为学生留出了更多的思考和讨论的时间,还加强了知识的发生发展过程,加深了对有关概念的认识,突破了学习中可能遇到的困难。特别是几何画板的一步步地使用,积极引导学生学习和使用计算机及专业工具和软件,以突破难点。
最后,加强学生学习的“过程性”,使数学思想的学习和数学能力培养落到实处。通过学生对五个思考题的各个击破,得出了主要性质;通过学生想象图象、描点画出图象,计算机软件画出图象,对图象有了深刻的印象,也增强了想象力;通过两组讨论和探究,深化知识,升华思想。教师提出问题、思考解决问题的策略等方面对学生进行了具体示范、引导,学生或看、或说、或想、或听、或写、或画完成了每个过程。
【参考资料】
[1]《数学(A版)教师培训手册》,人民教育出版社.
(作者单位:甘肃省嘉峪关市第一中学)