文小霞等
摘 要 [HTSS]建立了一种用于多重细菌鉴定的微流控芯片分析方法。在芯片上实现细菌进样、培养和鉴定,结合培养池阵列的空间分辨力以及菌种特异性显色培养基的颜色分辨力,可以实现多重细菌检测。实验选用4种泌尿系统感染常见病原菌作为模拟测试对象,结果显示,这种芯片方法在15 h内可完成细菌鉴定,
关键词 微流控芯片; 细菌鉴定; 多重显色反应; 快速检测
1 引 言
细菌感染可以引发多种疾病,不仅发病率高而且经常引发危重病情,因而需要及时诊治。细菌感染的主要治疗手段是使用抗生素,而抗生素治疗需要在明确病原的前提下合理选择抗生素的种类和剂量[1]。传统的细菌鉴定方法是将病人体液标本涂布在含有培养基的琼脂平板上培养增菌,继而挑选优势细菌培养鉴定并且进行药敏实验。这种方法存在的问题在于样品消耗量大和检测时间长[2,3],经常无法有效满足临床工作的需求[4]。此外,传统细菌鉴定方法大多依赖于众多的大型专业化设备[5~8],限制了该技术在基层医疗单位的推广。因此,应发展简便、快速和便携式细菌鉴定平台, 以满足临床工作的迫切需要。
为解决传统细菌鉴定平台的不足,先期研究报导了一系列基于微流控芯片的细菌鉴定[9~15]和药物敏感性分析技术[16~20]。上述微流控细菌分析技术较之传统方法具有多方面优势:首先,芯片微分析平台有效降低了试样消耗量并提高了测试通量[21];其次,大多数芯片细菌分析方法可以省略增菌步骤,因而显著缩短了分析时间[22];再者,芯片细菌分析平台操作简便且小巧便携,非常适合于应对现场快速检测[23]。综上所述,微流控芯片技术为细菌分析提供了一种理想的解决方案。
临床上,细菌感染多表现为呼吸、消化、泌尿等系统的炎症,每个系统感染的病原均包括多种细菌,故而要求细菌分析平台具备多重病原菌鉴定能力。前期报导的微流控细菌分析技术,大多只针对一种特定细菌[14,23,24],因而临床应用价值有限。微流控芯片具有结构设计灵活的特点,便于在微小尺寸下实现集成式和高通量分析,这一优势非常适合于高通量细菌分析鉴定[25]。因此,有望借助微流控技术实现多重细菌鉴定。
本研究发展了一种用于多重细菌鉴定的微流控分析方法。所用微流控装置结合芯片和外部控制检测系统,可以实现进样、细菌培养和鉴定。实验选用一组泌尿系统感染常见病原菌作为模拟对象,测试了系统的性能,继而使用临床样品验证了该分析方法的实用性。实验结果显示,这种微流控细菌鉴定方法可以简便可靠地实现多重细菌鉴定。
2 实验部分
2.1 仪器、试剂与材料
3 结果与讨论
3.1 微流控芯片设计
细菌生长需要适宜的温度、湿度、氧含量以及足够的养份供应。本实验的检测对象均为需氧菌,因此选用具有透气性的PDMS加工芯片。芯片底层为PDMS薄层,芯片顶部的扣板具有空隙,允许芯片与外部进行充分的气体交换。芯片置放于37 ℃温控板上为细菌生长提供适宜温度,同时加热条件下蓄水池内水分的蒸发可以保证足够的湿度。芯片培养池内固定的琼脂内包含培养基,为细菌生长提供养分。实验设计培养池体积约为19 μL,容纳14 μL凝固显色培养基及5 μL细菌悬液,可以为细菌生长提供足够的空间。
在重力和表面张力作用下,引入芯片的细菌悬液在流动过程中会顺序充满一系列培养池[27]。由于层流效应,进样中顶层的流体极少扰动培养池中液体,加之琼脂的阻滞效应可以限制不同培养池中显色试剂的交叉污染。培养中,相邻培养池之间的通道被扣板上的突起压闭,起到微阀作用限制培养池间显色物质的相互干扰(图2b)。培养池内的琼脂含有菌种特异性显色培养基,只有某种特定细菌的代谢产物方可使培养基中底物显色。依据显色培养池位置,就可以判定细菌的种类。这样,结合细菌培养池阵列的空间分辨力以及特异性显色反应的菌种分辨力,就可以实现多重细菌检测。
3.2 显色培养基浓度的选择
实验使用的琼脂培养基中含有显色底物,可以在细菌产生的特异性酶作用下发生显色反应。实验考察了培养基浓度对芯片培养细菌显色效果的影响,结果显示显色强度随着培养基浓度的增高而加深(图3a)。然而,使用过高浓度培养基时由于粘度增加使得操作困难。综合考虑,实验选用金黄色葡萄球菌培养基浓度为0.2 g/mL,大肠杆菌、肠球菌、沙门氏菌培养基浓度均为0.15 g/mL。[TS(][HT5”SS]图3 图a1~4为相机拍照不同浓度培养基的显色效果,每种培养基配制4种不同浓度,每种浓度做3个平行测试,培养15 h后拍照。(1:金黄色葡萄球菌;2:大肠杆菌;3:粪肠球菌;4:肠炎沙门氏菌); 图b 1~8为相机拍照不同金黄色葡萄球菌
实验比较了芯片和传统细菌培养方法中细菌的生存率与增殖率。以金黄色葡萄球菌(ATCC25923)为例,在分别培养0,2,4,6,8,10 h后,显微镜下计数结果显示使用两种方法培养的细菌数量在此阶段不断增加(图4 a~f),呈现指数增殖状态(图4g),细菌生存率均为100%。得益于芯片微小培养池中充足的养分和良好的氧气供应,芯片组细菌的增殖率总体上要高于培养瓶组(图4h)。
[TS(][HT5”SS]图4 SYTO 9 /PI染色荧光图片显示金黄色葡萄球菌(ATCC25923)在培养0,2,4,6,8,10 h后的生长情况(a~f)(放大倍数10×10,标尺50 μm);(g)芯片和培养瓶中金黄色葡萄球菌生长曲线;(h)芯片和培养瓶中金黄色葡萄球菌增殖率比较
Fig.4 Fluorescence images (a-f) showing the density of Staphylococcus aureus(ATCC25923)(stained with SYTO 9 /PI)at different incubation time ( 0, 2, 4, 6, 8, 10 h).(Magnification factor: 10×10,scale bar: 50 μm); (g) Plots of bacteria density vs time; (h) Proliferation rates of Staphylococcus aureus cultured on chips and in flasks [HT5][TS)]
3.4 芯片上多重细菌的鉴定
显色培养基的原理是通过微生物自身代谢产物与相应底物反应显色反应进行细菌鉴定。显色底物是由产色基因和微生物可代谢物质组成,在微生物代谢产物作用下游离出产色基因因而显示一定颜色,便于在细菌培养的同时完成菌种鉴定。利用显色培养基进行微生物的筛选分离,其灵敏度和特异性都要优于传统培养基。临床上使用传统方法细菌培养时间需要16~48 h[28],而本实验利用基于显色培养基的芯片方法可以在15 h内同步完成增菌与鉴定。灌入等比例的4种细菌悬液培养后,所得的显色结果与产品说明书一致(图5b)。将4种显色培养基分别加入一张芯片的指定细菌培养池中,即可同时检测4种细菌。这种芯片细菌鉴定方法具有良好的扩展能力,未来我们将使用更多种类的显色培养基以实现多种细菌的同步检测。实验还发现某些细菌具有产气特性导致培养池中较多气泡,因而影响了颜色判读,这个问题需要在后续工作中解决。
3.5 芯片细菌检测方法与传统方法的比较
实验利用芯片和传统方法平行检测了40例尿路感染病人的尿液标本,检测结果如表1所示。在40例标本中,芯片方法鉴定出10例大肠杆菌,5例肠球菌,2例金黄色葡萄球菌,10例阴性,其余13例为除上述金黄色葡萄球菌,大肠杆菌,粪肠球菌和肠炎沙门氏菌以外的其它细菌感染。标本中各种菌的典型显色效果(图5c~e)与阳性对照(标准菌液,图b)一致。对于实验包含的检测对象,芯片方法与传统方法的符合率为
96.3%。由于目前实验设定的检测范围有限,芯片方法的总检出率较低,需要在后续实验中增加显色培养基的种类。
[TS(][HT5”SS]图5 芯片上多重细菌检测结果
Fig.5 Multiplex bacteria identification on the microchip
a. 阴性对照 (含有四种标准菌株等比例混合液的尿液标本,4℃保存15 h);b. 阳性对照 (含有四种标准菌株等比例混合液的尿液标本培养15 h,从左往右4列培养池分别含有金黄色葡萄球菌、大肠杆菌、肠球菌、沙门氏菌显色培养基); c. 金黄色葡萄球菌(+)临床尿液标本(第1列显绿色);d. 大肠杆菌(+)临床尿液标本(第2列显红色);e肠球菌(+)临床尿液标本(第3列显暗黄色)。
a. Negative control (Urine sample contains the four standard bacteria strains of equal density, kept at 4℃ for 15 h); b-e: Urine samples were incubated at 37℃ for 15 h, for simultaneous detection of 4 bacteria using the chromogenic method. b. Positive control (Urine sample contains the four standard bacteria strains of equal density. The four rows of chambers from left to right contains chromogenic medium specific to Staphylococcus aureus,Escherichia coli,Enterococcus and Salmonella, respectively); c. A typical Staphylococcus aureus (+) case, with the first row of chambers appeared green; d. A typical Escherichia coli (+) case, with the second row of chambers appeared red; e. A typical Enterococcus (+) case, with the third row of chambers appeared dark yellow.(Incubation time for b-e: 15 h).[HT5][TS)]
[HT5”SS][HJ*4]表1 微流控芯片和传统方法细菌检测结果比较
Table 1 Comparison of bacteria identification using the microchip and the conventional method
[HT6SS][BG(][BHDFG3,WK9*3/4,WK9*4\.2,K*2,K93/4,WK94。2W]菌名Bacteria传统细菌鉴定法Conventional method微流控芯片显色法Microchip method菌名Bacteria传统细菌鉴定法Conventional method微流控芯片显色法Microchip method
大肠埃希菌Escherichia coli1010
肠球菌Enterococcus55
金黄色葡萄球菌Staphylococcus aureus32无细菌生长Bacteria (-)99其它菌Other bacteria or fungi13*0检出率
Detection rate100%65%[BHDFG6,WKZQ0W]* 传统方法鉴定结果为除外本实验所选4种检测对象的其它细菌和真菌: 5例为奇异变形杆菌、2例为铜绿假单胞菌、4例为白色念珠菌、2例为酵母菌。
* Samples were identified as containing bacteria or fungi other than the 4 detection objects: Proteus mirabilis, 5 cases; Pseudomonas aeruginosa, 2 cases; Candida albicans, 4 cases and Candida, 2 cases. [BG)W][HT5][HJ]
上述结果表明,本研究发展的微流控细菌分析系统可以简便快速地实现多重细菌鉴定,因而有望发展成为一种有力的细菌检测工具。
References
1 Takagi R, Fukuda J, Nagata K, Yawata Y, Nomura N, Suzuki H. Analyst, 2013, 138(4): 1000-1003
2 Gan M, Tang Y, Shu Y, Wu H,Chen L. Small, 2012, 8(6): 863-867
3 Luo X, Shen K, Luo C, Ji H, Ouyang Q,Chen Y. Biomedical Microdevices, 2010, 12(3): 499-503
4 Pulido M R, GarcíaQuintanilla M, MartinPea R, Cisneros J M, McConnell M J. Journal of Antimicrobial Chemotherapy, 2013, 68(12): 2710-2717
5 Driskell J D K K M, Lipert R J, Porter M D, Neill J D,Ridpath J F. Anal. Chem., 2005, 77(19): 6147-6154
6 Matos Pires N M D T. Sensors (Basel), 2013, 13(12): 15898-15911
7 Salam Faridah U Y, Tothill Ibtisam E. Talanta, 2013, 115: 761-767
8 Pierce S E, Bell R L, Hellberg R S, Cheng C M, Chen K S, WilliamsHill D M, Martin W B, Allard M W. Applied and Environmental Microbiology, 2012, 78(23): 8403-8411
9 Zuo P, Li X, Dominguez D C,Ye B C. Lab Chip, 2013, 13(19): 3921-3928
10 Issadore D, Chung H J, Chung J, Budin G, Weissleder R, Lee H. Advanced Healthcare Materials, 2013, 2(9): 1224-1228
11 Cooper R, Leslie D C, Domansky K, Jain A, Yung C W, Cho M, Workman S, Super M,Ingber D. Lab Chip, 2013, 14(1): 182-188
12 Bouguelia S, Roupioz Y, Slimani S, Mondani L, Casabona M G, Durmort C, Vernet T, Calemczuk R, Livache T. Lab Chip, 2013, 13(20): 4024-4032
13 Wang S Q, Inci F, Chaunzwa T L, Ramanujam A, Vasudevan A, Subramanian S, Ip A C F, Sridharan B, Gurkan U A, Demirci U. International Journal of Nanomedicine, 2012, 7: 2591-2600
14 Derda R, Lockett M R, Tang S K Y, Fuller R C, Maxwell E J, Breiten B, Cuddemi C A, Ozdogan A,Whitesides G M. Anal. Chem., 2013, 85(15): 7213-7220
15 David Cowcher Y X, Goodacre R. Anal. Chem., 2013, 85(6): 3297-3302
16 Shariff V A AR S M S, Yadav T, M R. Journal of Clinical and Diagnostic Research, 2013, 7(6): 1027-1030
17 Choi J, Jung Y G, Kim J, Kim S, Jung Y, Na H, Kwon S. Lab Chip, 2013, 13(2): 280-287
18 Deiss F, FunesHuacca M E, Bal J, Tjhung K F,Derda R. Lab Chip, 2013, 14(1): 167-171
19 Kalashnikov M, Lee J C, Campbell J, Sharon A,SauerBudge A F. Lab Chip, 2012, 12(21): 4523-4532
20 Mohan R, Mukherjee A, Sevgen S E, Sanpitakseree C, Lee J, Schroeder C M,Kenis P J A. Biosensors and Bioelectronics, 2013, 49: 118-125
21 Sun P, Liu Y, Sha J, Zhang Z, Tu Q, Chen P,Wang J. Biosensors and Bioelectronics, 2011, 26(5): 1993-1999
22 Sakamoto C, Yamaguchi N,Nasu M. Applied and Environmental Microbiology, 2005, 71(2): 1117-1121
23 FunesHuacca M, Wu A, Szepesvari E, Rajendran P, KwanWong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R. Lab Chip, 2012, 12(21): 4269-4278
24 Edlich A, Magdanz V, Rasch D, Demming S, Aliasghar Zadeh S, Segura R, Khler C, Radespiel R, Büttgenbach S, FrancoLara E,Krull R. Biotechnology Progress, 2010, 26(5): 1259-1270
25 Gan M, Su J, Wang J, Wu H,Chen L. Lab Chip, 2011, 11(23): 4087-4092
26 Duffy D C, McDonald J C, Schueller O J A, Whitesides G M. Anal. Chem., 1998, 70(23): 4974-4984
27 ZHANG Qiong, ZHOU XiaoMian,YAN Wei, LIANG GuangTie, ZHANG QiChao, LIU DaYu. Chinese J.Anal.Chem., 2012, 40(7): 996-1001
张 琼, 周小棉, 严 伟, 梁广铁, 张其超, 刘大渔. 分析化学, 2012, 40(7): 996-1001
28 Morris K W C, Wilcox M H. Journal of Hospital Infection, 2012, 81(1): 20-24
Rapid Identification of Multiple Bacteria on a Microfluidic Chip
WEN XiaoXia1, XU BangLao1,2, WANG WeiXin1, LIANG GuangTie1,2,
CHEN Bin1,2, YANG YinMei1,2, LIU DaYu*1,2
1(Department of Laboratory Medicine, Guangzhou First People′s Hospital,
Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China)
2 (Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China)
Abstract We developed a microfluidic device to integrate sample introduction, bacteria culturing and results reading. The identification of multiple bacteria was achieved by combining the spatial resolution of the arrayed bacteria culture chambers and the color resolution benefited from the bacteria specific chromogenic media. A set of 4 common pathogenic bacteria responsible for urinary tract infection were used as a model to test the microfluidic assay. Our results showed that the bacteria identification assay can be completed in 15 h, with a limit of detection (LOD) of bacteria density down to 10 cfu/mL. Clinical sample testing using the microchip approach showed a coincidence rate of 96.3% as compared with the conventional method. The developed microfluidic approach is simple and rapid, thus hold the potential to serve as a powerful tool for detection of multiple bacteria.
Keywords Microfluidic chip; Bacteria identification; Multiplex chromogenic reaction; Rapid detection
(Received 23 December 2013; accepted 2 March 2014)
This work was supported by the National Natural Science Foundation of China (Nos. 81371649, 81171418, 81201163)
22 Sakamoto C, Yamaguchi N,Nasu M. Applied and Environmental Microbiology, 2005, 71(2): 1117-1121
23 FunesHuacca M, Wu A, Szepesvari E, Rajendran P, KwanWong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R. Lab Chip, 2012, 12(21): 4269-4278
24 Edlich A, Magdanz V, Rasch D, Demming S, Aliasghar Zadeh S, Segura R, Khler C, Radespiel R, Büttgenbach S, FrancoLara E,Krull R. Biotechnology Progress, 2010, 26(5): 1259-1270
25 Gan M, Su J, Wang J, Wu H,Chen L. Lab Chip, 2011, 11(23): 4087-4092
26 Duffy D C, McDonald J C, Schueller O J A, Whitesides G M. Anal. Chem., 1998, 70(23): 4974-4984
27 ZHANG Qiong, ZHOU XiaoMian,YAN Wei, LIANG GuangTie, ZHANG QiChao, LIU DaYu. Chinese J.Anal.Chem., 2012, 40(7): 996-1001
张 琼, 周小棉, 严 伟, 梁广铁, 张其超, 刘大渔. 分析化学, 2012, 40(7): 996-1001
28 Morris K W C, Wilcox M H. Journal of Hospital Infection, 2012, 81(1): 20-24
Rapid Identification of Multiple Bacteria on a Microfluidic Chip
WEN XiaoXia1, XU BangLao1,2, WANG WeiXin1, LIANG GuangTie1,2,
CHEN Bin1,2, YANG YinMei1,2, LIU DaYu*1,2
1(Department of Laboratory Medicine, Guangzhou First People′s Hospital,
Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China)
2 (Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China)
Abstract We developed a microfluidic device to integrate sample introduction, bacteria culturing and results reading. The identification of multiple bacteria was achieved by combining the spatial resolution of the arrayed bacteria culture chambers and the color resolution benefited from the bacteria specific chromogenic media. A set of 4 common pathogenic bacteria responsible for urinary tract infection were used as a model to test the microfluidic assay. Our results showed that the bacteria identification assay can be completed in 15 h, with a limit of detection (LOD) of bacteria density down to 10 cfu/mL. Clinical sample testing using the microchip approach showed a coincidence rate of 96.3% as compared with the conventional method. The developed microfluidic approach is simple and rapid, thus hold the potential to serve as a powerful tool for detection of multiple bacteria.
Keywords Microfluidic chip; Bacteria identification; Multiplex chromogenic reaction; Rapid detection
(Received 23 December 2013; accepted 2 March 2014)
This work was supported by the National Natural Science Foundation of China (Nos. 81371649, 81171418, 81201163)
22 Sakamoto C, Yamaguchi N,Nasu M. Applied and Environmental Microbiology, 2005, 71(2): 1117-1121
23 FunesHuacca M, Wu A, Szepesvari E, Rajendran P, KwanWong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R. Lab Chip, 2012, 12(21): 4269-4278
24 Edlich A, Magdanz V, Rasch D, Demming S, Aliasghar Zadeh S, Segura R, Khler C, Radespiel R, Büttgenbach S, FrancoLara E,Krull R. Biotechnology Progress, 2010, 26(5): 1259-1270
25 Gan M, Su J, Wang J, Wu H,Chen L. Lab Chip, 2011, 11(23): 4087-4092
26 Duffy D C, McDonald J C, Schueller O J A, Whitesides G M. Anal. Chem., 1998, 70(23): 4974-4984
27 ZHANG Qiong, ZHOU XiaoMian,YAN Wei, LIANG GuangTie, ZHANG QiChao, LIU DaYu. Chinese J.Anal.Chem., 2012, 40(7): 996-1001
张 琼, 周小棉, 严 伟, 梁广铁, 张其超, 刘大渔. 分析化学, 2012, 40(7): 996-1001
28 Morris K W C, Wilcox M H. Journal of Hospital Infection, 2012, 81(1): 20-24
Rapid Identification of Multiple Bacteria on a Microfluidic Chip
WEN XiaoXia1, XU BangLao1,2, WANG WeiXin1, LIANG GuangTie1,2,
CHEN Bin1,2, YANG YinMei1,2, LIU DaYu*1,2
1(Department of Laboratory Medicine, Guangzhou First People′s Hospital,
Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China)
2 (Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China)
Abstract We developed a microfluidic device to integrate sample introduction, bacteria culturing and results reading. The identification of multiple bacteria was achieved by combining the spatial resolution of the arrayed bacteria culture chambers and the color resolution benefited from the bacteria specific chromogenic media. A set of 4 common pathogenic bacteria responsible for urinary tract infection were used as a model to test the microfluidic assay. Our results showed that the bacteria identification assay can be completed in 15 h, with a limit of detection (LOD) of bacteria density down to 10 cfu/mL. Clinical sample testing using the microchip approach showed a coincidence rate of 96.3% as compared with the conventional method. The developed microfluidic approach is simple and rapid, thus hold the potential to serve as a powerful tool for detection of multiple bacteria.
Keywords Microfluidic chip; Bacteria identification; Multiplex chromogenic reaction; Rapid detection
(Received 23 December 2013; accepted 2 March 2014)
This work was supported by the National Natural Science Foundation of China (Nos. 81371649, 81171418, 81201163)