刀 艳, 李 峰, 王 蓉, 吴 静, 范柱国, 陆世才
(昆明理工大学 国土资源工程学院,云南昆明 650093)
滇西九顶山斑状花岗岩LA-ICP-MS锆石U-Pb定年及地球化学特征
刀 艳, 李 峰, 王 蓉, 吴 静, 范柱国, 陆世才
(昆明理工大学 国土资源工程学院,云南昆明 650093)
九顶山斑状花岗岩产于扬子板块西缘与金沙江-哀牢山深大断裂构造带东侧交会部位,是矿区内复式小杂岩体群中出露面积最大的岩体。岩体斑晶含量约占30%,主要由正长石、斜长石、石英和少量的黑云母、角闪石等组成;基质为中细粒的石英、斜长石和正长石等组成,副矿物主要有磷灰石和锆石等。斑状花岗岩中锆石U-Pb年龄为34.7±0.6 Ma,为喜马拉雅早中期(始新世)的产物。斑状花岗岩具有高钾富碱高铝的特征,属碱性-碱钙性,高钾钙碱性系列-钾玄岩系列,大部分落入A型花岗岩区域。斑状花岗岩轻稀土富集、重稀土亏损(La/Yb)N=28.90~42.28,负Eu异常(δEu=0.69~0.93)不明显,富集大离子亲石元素Rb、Ba、U、Th和亏损高场强元素Nb、Ta、Zr、Hf。通过斑状花岗岩地球化学特征、图解判别等的综合研究,认为九顶山斑状花岗岩是壳幔混合成因,形成于青藏高原新生代碰撞造山-造山期后拉张的构造环境。
斑状花岗岩 锆石U-Pb年龄 地球化学 九顶山 云南
Dao Yan, Li Feng, Wang Rong, Wu Jing, Fan Zhu-guo, Lu Shi-cai. Zircon U-Pb geochronology and geochemistry of porphyritic granite in the Jiudingshan area, western Yunnan[J]. Geology and Exploration, 2014, 50(3):0533-0542.
九顶山矿区地处青藏高原东南缘三江成矿带的金沙江-哀牢山大成矿带,在构造上处于古近纪以来印度-欧亚大陆碰撞引起的地壳缩短和变形的过渡带(Deweyetal., 1988),具有长期而复杂的地质演化历史。长期以来,前人在该地区进行了大量的地质特征、岩石学、地球化学、同位素、成岩成矿构造、成岩成矿动力学等研究(葛良胜等,2002;彭建堂等,2005;王治华等,2009,2011;周晓峰,2010;郭晓东等,2010;和文言等,2011),而对单一岩体斑状花岗岩的研究尚不全面。近年来研究发现,岩浆侵入时代为喜马拉雅期,最早获得斑状花岗岩K-Ar年龄值为46.5~64.8Ma(西南冶金310队,1981,转自郭晓东,2009),郭晓东等(2011)和楚亚婷等(2011)通过U-Pb法分别获得锆石年龄为33.78±0.21Ma和36.17 ± 0.36Ma,而对斑状花岗岩的地球化学,同位素等研究相对缺乏。因此本文采用LA-ICP-MS锆石U-Pb测年、主微量元素的确定,以期探讨斑状花岗岩的形成年龄、成因及其构造环境。
1.1 地质背景
九顶山斑岩型铜钼金多金属矿床大地构造位置处于扬子板块西缘与金沙江-哀牢山深大断裂构造带东侧交会部位。而金沙江-哀牢山成矿带是西南三江地区重要的多金属成矿带之一,也是世界上著名的构造岩浆带之一,构造运动频繁,岩浆活动强烈,成矿作用特殊,形成了丰富多样的铜、钼、金多金属矿产资源。
矿区内出露古生界下奥陶统向阳组(O1x)长石石英砂岩、粉砂岩、碳泥质细砂岩夹条带状灰岩、泥质白云岩透镜体以及下泥盆统康廊组(D1k)灰岩地层和第四系(Q)地层。下奥陶统向阳组上亚段构成九顶山富碱侵入体围岩,是主要的赋矿地层(葛良胜等,2002),本次研究的斑状花岗岩就侵位于这套岩系中。
矿区构造复杂,具有多期多阶段活动特点,主要有区域性NW向金沙江-哀牢山深大断裂、NE向断裂及近EW向的隐伏断裂构造。矿区褶皱也较发育,主要包括区域性向阳复背斜的南端、金厂箐-人头箐背斜、宝兴厂(铜厂)-乱硐山向斜和双马槽向斜,它们对岩体及矿体的就位也起到明显的控制作用。
1.2 斑状花岗岩岩体特征
斑状花岗岩广泛分布与矿区北接触带、宝兴厂、冷风箐一带,呈岩株状产出;总体呈灰白色,似斑状结构,块状构造(图2a);斑晶占30%,主要由正长石(12%)、斜长石(10%)、石英(8%)和少量的黑云母、角闪石(3%)组成,其中正长石粒径多在0.7~3.2mm,斜长石粒径为0.7~3.2mm,石英为0.5~1.0mm;基质为显晶质,由中细粒的石英、斜长石和正长石等组成。副矿物有锆石、榍石、磷灰石和磷钇石等。显微镜下,基质为显微花斑结构、显微文象结构(图2b),斑晶斜长石呈环带结构,正长石交代斜长石呈云雾状,有时在斜长石的边缘可见蠕虫状的石英,石英具有熔蚀现象,角闪石可见两组解理的横切面。
图1 研究区地质简图(据西南冶金地质勘探公司310地质队,1981①修改)Fig.1 Regional geological map of research area in Jiudingshan, western Yunnan① 1-第四系; 2-下泥盆统康廊组灰岩; 3-下奥陶统向阳组四段二亚段紫灰泥质粉砂岩夹泥灰岩透镜体; 4-碱长花岗斑岩(γπ61-4); 5-花岗斑岩(γπ61-3);6-斑状花岗岩(πγ61-2);7-正长斑岩(ξπ61-1);8-早期煌斑岩;9-晚期煌斑岩; 10-辉长岩; 11-岩体界线; 12-断层(F1为响水断裂;F3为乱硐山断裂)1-Quaternary; 2-limestone of lower Devonian Kanglang Group; 3-gray argillaceous siltstone with marl lens at the bottom of the second sub-member of the four member in lower Ordovician Xiangyang Group; 4-alkali feldspar granite porphyry; 5-granite porphyry; 6-porphyries granite; 7-syenite porphyry; 8-early lamprophyre; 9-late lamprophyre; 10-gabbro; 11-rock mass boundary; 12-fault (F1-Xiangshui fault; F3-Luandongshan fault)
图2 九顶山斑状花岗岩(a)及其镜下特征(b)Fig.2 Porphyritic granite from Jiudingshan, west Yunnan (a) rock sample, (b) microscopic photograph
SpotωB/10-6Pb232Th238UTh/U同位素比值同位素年龄(Ma)207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th比值1σ比值1σ比值1σ比值1σ年龄1σ年龄1σ年龄1σ年龄1σ11JDS037_018.21158710591.500.05520.00310.03950.00220.005260.00010.001710.000142012139.32.133.80.634.51.511JDS037_028.1766113310.500.05330.00280.03770.00190.005250.00010.001680.000134312037.51.933.80.533.91.411JDS037_038.4791512690.720.04850.00260.03630.00200.005380.00010.001730.000112411936.21.934.60.535.01.211JDS037_046.194659710.480.05250.00280.03980.00200.005520.00010.001710.000130912539.61.935.50.634.41.611JDS037_055.854118980.460.05460.00280.04130.00210.005590.00010.001930.000139411741.12.136.00.639.01.811JDS037_069.62174812461.400.05470.00290.04000.00200.005360.00010.001620.000039812339.82.034.40.432.70.811JDS037_075.746268630.730.05610.00330.04100.00220.005360.00010.001720.000145713140.82.234.50.634.71.311JDS037_088.28118911571.030.05550.00300.04020.00190.005370.00010.001610.000143212040.11.934.50.532.51.011JDS037_104.954037520.540.05460.00330.04130.00250.005630.00010.001800.000139413741.12.436.20.736.31.8
本次测年的样品采自九顶山矿区2640中段探矿坑口SZ11-6,样品(JDS037)地理位置:N25°31.426′,E100°25.825′。
锆石挑选在河北廊坊地质调查研究院完成,锆石阴极发光(CL)显微照相和锆石U-Pb测年分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成的。详细的分析方法及仪器参数可参考Chipley等(2007)。普通铅校正采用Andersen(2002)的方法进行,样品的U-Pb年龄谐和图绘制和年龄权重平均计算均采用Isoplot/Ex-ver3(Ludwig,2003)完成,分析结果列于表1。
从斑状花岗岩(JDS037)中挑选出的锆石晶体呈无色,形态多为长柱状,锆石大小约为83~138μm,长宽比近于2∶1,晶面和锥体形态完好。锆石阴极发光图像显示该组锆石发育明显的震荡环带(图3),为岩浆成因锆石的典型特征(Belousovaetal., 2002),且232Th/238U比值均大于0.4,为0.46~1.50,具有岩浆锆石的特点(Hoskin and Schaltegger, 2003; 吴元宝等,2004)。
九顶山斑状花岗岩JDS037测试的10颗锆石U-Pb同位素分析,第9颗锆石样品偏离值过大, 舍弃不用,绝大多数数据在谐和线上,其206Pb/238U年龄变化于33.8±0.5Ma~36.2±0.7 Ma,所有测点均投影在谐和线附近,谐和度在95%以上,其加权平均年龄为34.7±0.6 Ma(n=9,MSWD = 2.3,probability = 0.017)(图4),这个年龄代表了研究区斑状花岗岩的结晶年龄。
表2 九顶山斑状花岗岩主量元素化学分析测试数据%Table 2 Analysis of major elements(ωB/%) of porphyritic granite from Jiudingshan intrusion, Yunnan
注:*表示样品数;①-本文;②-何明勤等,2004;④-Whalenetal., 1987。
图3 九顶山斑状花岗岩锆石阴极发光图像和测点年龄(Ma)Fig.3 Cathodoluminescence images and dating spots of the zircon of porphyritic granite in Jiudingshan (Ma)
图4 九顶山斑状花岗岩LA-ICP-MS 锆石U-Pb年龄谐和图解Fig.4 LA-ICP-MS zircon U-Pb Concordia diagrams of porphyritic granite from Jiudingshan
3.1 主量元素特征
本文对6组斑状花岗岩样品进行分析,其中3组为本次分析样品,另外3组来源于何明勤等(2004)。数据分析表明(表2),斑状花岗斑岩类ω(SiO2)含量在68.96%~77.28%之间,ω(K2O)为4.59%~6.60%,ω(Na2O)为1.15%~3.80%,ω(Al2O3)为10.96%~14.46%,ω(MgO)为0.07%~1.06%,ω(TFeO)为1.01%~3.85%,ω(K2O/Na2O)为1.21~5.74,ω(K2O+Na2O)为7.75%~8.55%。
从化学分析结果来看,斑状花岗岩具有高硅(68.96%~77.28%)、富碱ω(K2O+Na2O=7.75%~8.55%)、高铝(A/CNK=0.93~1.12)的特点。在Al2O3-FeOt-MgO三元图解(图5)中,投点位于过铝质花岗岩区域,在SiO2-K2O图解上表现为钾玄岩-高钾钙碱性系列(图6)花岗岩。
图5 九顶山斑状花岗岩AFM三元图解(据Irvine and Baragar, 1971)Fig.5 AFM triangular diagrams porphyritic granite from Jiudingshan
样号LaCePrNdSmEuGdTbDyHoErTmYbLuY∑REELREE/HREEδEuδCe(La/Yb)N(La/Sm)N文献来源3*48.4987.69.7933.475.251.373.440.432.130.300.900.130.810.1410.52204.779.890.930.940.555.81②4*60.30107.0013.940.307.261.534.470.833.020.571.490.271.410.2115.10257.668.410.760.8428.905.23③JDS-041-163.29117.3515.1841.058.131.767.250.783.480.671.800.241.560.2318.25341.018.960.690.9136.186.45①JDS-17466.72113.2210.9634.925.041.204.410.472.110.431.180.161.070.1512.33254.3710.40.760.942.288.33①
①注:①-本文;②-何明勤等(2004);③-葛良胜等(2002)。
图6 九顶山斑状花岗岩SiO2-K2O图解(底图据Peccerillo et al., 1976)Fig.6 SiO2 versus K2O diagram of porphyritic granite from Jiudingshan (base diagram from after Peccerillo et al., 1976)
3.2 稀土元素和微量元素
稀土元素分析的样品有4组(表3),其中2组为本次实验采样,数据分析由贵阳地球化学研究所完成,另外2组数据来自葛良胜等(2002)的4个样品均值以及何明勤等(2004)的3个样品均值。稀土总量为∑REE=204.77×10-6~341.01×10-6(均值为264.45×10-6),∑LREE/∑HREE = 8.41~10.40,表现为LREE富集,球粒陨石标准化图解为平滑的右倾曲线(图7),负铕异常δEu(0.69~0.93)不明显。样品的(La/Yb)N=28.90~42.28,具有明显的轻重稀土元素分馏;(La/Sm)N=5.23~8.33,轻稀土分异明显。
图7 九顶山斑状花岗岩稀土元素球粒陨石标准化配分图(球粒陨石标准据Sun and McDonough,1989)Fig.7 Chondrite-normalized REE patterns of porphyritic granite from Jiudingshan (chondrite from Sun and McDonough, 1989)
九顶山斑状花岗岩微量元素共3组数据(表4),其中本次数据2组,另一组来源于何明勤等(2004)的3组数据的平均值。大离子亲石元素(LILE)Rb(177.15×10-6~318.02×10-6)、Ba(485.17×10-6~1355.13×10-6)、U(6.66×10-6~9.32×10-6)、Th(21.31×10-6~38.06×10-6)富集,而高场强元素(HFSE)Nb(10.40×10-6~16.20×10-6)、Ta(0.86×10-6~0.99×10-6)、Zr(70.45×10-6~181.23×10-6)、Hf(2.42×10-6~5.02×10-6)相对亏损,Nb和Ta元素具有明显负异常(图8)。
图8 九顶山斑状花岗岩微量元素蛛网图(原始地幔标准据 Sun and McDonough,1989)Fig. 8 Trace element spider diagram of porphyritic granite from Jiudingshan (primitive mantle data from Sun and McDonough,1989)
样号RbBaThUNbTaSrZrHfTiVCrCoNiCuZn文献来源JDS-041-1177.15485.1738.069.3216.200.99816.43181.235.0244.7420.715.7613.5638.3132.60①JDS-174179.831214.5730.096.9813.570.86697.28132.733.7833.2927.714.6314.536.7139.84①3*318.021355.1321.316.6610.400.91500.2670.452.420.3234.5134.935.3320.63536.6781.79②
注:①-本文;②-何明勤等(2004)。
4.1 斑状花岗岩年代学意义
关于九顶山岩体,尤其是与成矿有关的斑状花岗岩的成岩时代,前人开展了大量的研究工作,Liang(2007)通过全岩SHRIMP 年龄获得与Cu-Mo有关的花岗岩为35.0Ma,骆耀南等(1998)应用全岩Rb-Sr法获得与Cu-Mo有关的花岗岩年龄为36Ma,和文言等(2011)锆石U-Pb测年获得37.93Ma,楚亚婷等(2011)应用锆石LA-ICP-MS U-Pb 年龄得出36.17Ma以及郭晓东等(2011)也是通过LA-ICP-MS U-Pb 年龄获得33.78Ma的年龄值,时代为古近纪始新世(E2)。本文测试的斑状花岗岩LA-ICP-MS锆石U-Pb年龄为(34.7±0.6)Ma,进一步证实九顶山斑状花岗岩体与前人获得正长斑岩、煌斑岩、花岗斑岩和碱长花岗斑岩的年龄一致。研究区岩浆侵位为4个阶段,而斑状花岗岩和煌斑岩组合属于第Ⅱ阶段岩浆侵位阶段,在年龄上4个阶段的岩体均为喜马拉雅早-中期岩浆活动的产物,同时与青藏高原新生代碰撞造山中的晚碰撞阶段(40~26 Ma)(侯增谦等,2006)相吻合。郭晓东等(2011)以及和文言等(2011)提出斑状花岗岩与铜钼矿化有密切关系,本次野外观察也观察到斑状花岗岩体内的少量矿化现象,斑状花岗岩成岩年龄为33.78~37.93Ma,但是目前尚未有斑状花岗岩铜钼矿化年龄的研究,因此斑状花岗岩是否与主成矿阶段相关还未可知。根据前人的研究,斑岩型铜钼矿为矿区主要的成矿阶段,已有数据显示矿化年龄为33.9±1.1~35.8±1.6(王登红等,2004;曾普胜等,2006;邢俊兵等;2009;楚亚婷等,2011)。从斑状花岗岩成岩年龄以及主成矿阶段的年龄分析,斑状花岗岩的侵入与主要的铜钼矿化没有直接的联系,该岩体是否与研究区次成矿阶段有关系,有待进一步确认。
4.2 岩石成因类型及源区特征
九顶山斑状花岗岩组成SiO2含量在68.96%~77.28%之间,平均72.15%;碱质含量K2O+Na2O 为7.75%~8.55%,平均8.22%,与世界范围内的A型花岗岩(K2O+Na2O=8.72%;Whalenetal., 1987)相当。在Na2O-K2O图解(图9)中5个点落在A型区域,有1个点落在S型花岗岩范围内。稀土组成中总稀土含量较高(∑REE =264.45×10-6)和相对富集轻稀土,显示了A型花岗岩的组成典型特点。
图9 九顶山斑状花岗岩Na2O-K2O判别图解(底图据Collins et al., 1982)Fig. 9 Na2O versus K2O diagram of genetic types of porphyritic granite from Jiudingshan (after Collins et al., 1982)
侯增谦等(2003)认为,弧造山环境含矿斑岩主要为钙碱性和高钾钙碱性系列,而碰撞造山环境含矿斑岩则主要为高钾钙碱性系列和钾玄岩系列,成岩物质可能来源于上地幔。在高钾岩石中Rb、Sr、Ba 的含量趋于高值,而Nb、Ta、Ti 相对亏损,不相容元素这种高含量特点表明九顶山富碱斑岩体具有壳源物质的参与,而Sr、Nd、Pb 同位素组成变化范围较小,表明其物质来源于富集地幔源区(何明勤等,2004)。张玉泉等(1997)通过对哀牢山-金沙江富碱侵入岩带岩石的微量、稀土元素的地球化学特征进行系统研究认为其物质来源于地幔源区。胡祥昭等 (1995) 认为包括马厂箐岩体在内的滇西北的富碱花岗斑岩的物质来源于地壳深部或上地幔。邓万明等(1998)认为滇西北的富碱斑岩物质来自“壳-幔混合层”的部分熔融。毕献武等(2005)通过对姚安和马厂箐的富碱斑岩的研究认为马厂箐岩体物质来源于富集地幔。赵欣等(2004)认为滇西北的富碱斑岩物质来源于富集地幔。由此可以看出九顶山矿区富碱斑岩的物质来源于壳-幔混合带是没有争议的。
图10 九顶山斑状花岗岩构造环境判别图(底图据Pearce et al.,1984)Fig. 10 Trace discrimination diagrams for the tectonic setting of porphyritic granites (base diagram from after Pearce et al.,1984)
4.3 构造环境判别
前人对包括九顶山复式杂岩体在内的滇西北的富碱花岗斑岩的产出构造环境的认识有争议。曾普胜等(2002) 认为形成于剪切走滑挤压为主、局部引张的构造环境;赵欣等(2004)认为形成于后碰撞弧环境;毕献武等(2005)认为形成于大陆弧环境;而邓万明等(1998)和葛良胜等(2002)认为形成于碰撞后板内构造环境。富碱侵入岩物质来源较深,一般源于上地幔,形成于拉张环境中(涂光炽,1987)。在花岗岩构造环境判别的研究中,Pearceetal(1984)最早系统地讨论了花岗岩与其形成的构造环境问题。Pearceetal(1984)将花岗岩分为4种基本类型:洋脊花岗岩(ORG)、火山弧花岗岩(VAG)、板内花岗岩(WPG)和同碰撞花岗岩(S-COLG)。Pearce等还认为,Rb、Y(Yb)和Nb(Ta)是花岗岩最有效的判别指标。将九顶山矿区斑岩体的相应微量元素含量分别投到Pearce的(Yb+Ta)-Rb、(Y+Nb)-Rb、Ta-Yb、Nb-Y等图解中(图10),样品投在同碰撞花岗岩-火山弧花岗岩。九顶山的6个样品投影点在R1-R2图解(图11)中落在碰撞造山-造山期后范围内。
图11 九顶山斑状花岗岩 R1-R2图解(底图据Bachelor and Bowden, 1985)Fig.11 Diagrams showing R1 vs.R2 of porphyritic granites from Jiudingshan (after Batchelor and Bowden,1985)
(1) 九顶山矿区斑状花岗岩LA-ICP-MS锆石U-Pb年龄为34.7±0.6Ma,为属于喜马拉雅运动早期始新世(E2)岩浆活动,处于滇西新生代富碱岩浆活动高峰期(45~30Ma)范围内,是青藏高原碰撞造山带的晚碰撞造山作用(40~26 Ma)的产物。
(2) 九顶山斑状花岗岩具有高钾富碱高铝的特征,为高钾钙碱性系列-钾玄岩系列,并表现出A型花岗岩的特征。
(3) 根据斑状花岗岩的岩石化学、稀土元素和微量元素地球化学特征等综合因素,判断九顶山斑状花岗岩是壳幔源混合成因的斑状花岗岩,形成于青藏高原新生代碰撞造山-造山期后拉张的构造环境。
致谢 中国地质大学地质过程与矿产资源国家重点实验室宗克清博士和叶晓峰同学在锆石 U-Pb 同位素测试分析中提供了帮助,评审专家及编辑对本文提出宝贵的修改意见,在此一并表示衷心的感谢!
[注释]
① 西南冶金地质勘探公司310 地质队1981. 祥云马厂箐铜钼矿床成矿规律图1∶5000.
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report204Pb[J]. Chemical Geology, 192: 59-79
Batehelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using Multi-cationic Parameters[J]. Chem. Geol., 48(1): 43-55
Belousova E A, Griffin W L, O’Reilly S Y. 2002. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contribution to Mineralogy and Petrology, 143: 602-622
Bi Xian-wu, Hu Rui-zhong, Peng Jian-tang, Wu Kai-xing, Su Wen-chao, Zhan Xin-zhi. 2005. Geochemical characteristics of the Yao’an and Machangqing alkaline-rich intrusions[J]. Acta Petrologica Sinica, 21(1): 113-124(in Chinese with English abstract)
Chipley D, Polito A P, Kyser T K. 2007. Measurement of U-Pb ages of uraninite and davidite by laser ablation-HR-ICP-MS[J]. American Mineralogist, 92(11-12): 1925-1935
Collin W J. 1982. Nature and origin of A-type granites with particular reference to Southeastern Australia[J]. Contrib. Mineral. Petrol., 80: 189-200
Chu Ya-ting, Liu Xian-fan, Zhao Fu-feng, Lu Qiu-xia, Li Chun-hui. 2011. The ages of ore-forming porphyritic granite in Machangqing Copper-Molybdenum-Gold deposit of Western Yunnan and their geological significance [J]. Acta Mineralogica Sinica, 5(Suppl): 567-569(in Chinese with English abstract)
Dewey J F, Shackleton R M, Chang C. 1988. The tectonic evolution of the Tibetan Plateau[J]. Philos ophical Translations of the Royal Society A, 327(1549): 379-413
Deng Wan-ming, Huang Xuan, Zhong Da-lai. 1998. Petrological characteristics and genesis of Cenozoic alkali-rich porphyry in west Yunnan, China[J]. Scientia Geologica Sinica, 33(4): 31-44(in Chinese with English abstract)
Guo Xiao-dong, Wang Zhi-hua, Chen Xiang, Wang Xin, Wang Shu-xian. 2009. Machangqing porphyry-type Cu-Mo-Au Deposit, Yunnan Province: Geological characteristics and its genesis[J]. Acta Geologica Sinina, 83(12): 127-140(in Chinese with English abstract)
Guo Xiao-dong, Wang Zhi-hua, Wang Xin, Chen Xiang, Wang Shao-ming, Tan Wen-ming. 2010. Structural control on formation of igneous and Machangqing porphyry-type copper-molybdenum polymetallic deposit[J]. Geotectonica et Matallogenia, 34 (1): 55-62(in Chinese with English abstract)
Guo Xiao-dong, Wang Zhi-hua, Wang Liang, Yang Yu-xia, Chen Xiao-wu. 2011. LA-ICP-MS zircon U-Pb ages of porphyritic granite in Machangqing complex of Yunnan Province and their geological significance[J]. Geology in China, 38(3): 610-622(in Chinese with English abstract)
Ge Liang-sheng, Zhou Yi-lin, Xing Jun-bing, Li Zhen-hua, Guo Xiao-dong, Zhang Xue-jun. 2002. Geological and rock-chemical characteristics of alkali-rich intrusive rock bodies (vein) in Northwestern Yunnan[J]. Mineral Resources and Geology, 3: 147-153(in Chinese with English abstract)
Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 53: 27-55
He Wen-yan, Mo Xuan-xue, Yu Xue-hui, Li Yong, Huang Xing-kai, He Zhong-hua. 2011. Geochronological study of magmatic intrusions and mineralization of Machangqing porphyry Cu-Mo-Au deposit, Western Yunnan Province[J]. Earth Science Frontiers, 18(1): 207-215(in Chinese with English abstract)
Hou Zeng-qian, Lv Qing-tian, Wang An-jian, Li Xiao-bo, Wang Zong-qi and Wang Er-qi. 2003. Continental collision and related metallogeny: A case study of mineralization in Tibetan orogen[J]. Mineral Deposits, 22(4): 319-334(in Chinese with English abstract)
Hou Zeng-qian, Pan Gui-tang, Wang An-jian, Mo Xuan-xue, Tian Shi-hong,Sun Xiao-ming, Ding-lin,Wang Er-qi, Gao Yong-feng, Xie Yu-lin, Zeng Pu-shen, Qin Ke-zhang, Xu Ji-feng, Qu Xiao-ming, Yang Zhi-ming, Yang Zhu-sen,Fei Hong-cai, Meng Xiang-jin, Li Zhen-qing. 2006. The Tibetan collisional orogenic belt: II Metallogenesis in late_collisional epoch[J]. Mineral Deposits, 25(5): 337-358(in Chinese with English abstract)
Hu Xiang-zhao, Wan Fang. 1995. Petrological charachteristics and gensis of alkali-rich porphyry in West Yunnan, China[J]. The Chinese Journal of Nonferrous Metals, 5(1): 1-3(in Chinese with English abstract)
He Ming-qin, Yang Shi-yu. 2004. Geological geochemistry and genesis of Xiaolongtan-Machangqing Cu-Au polymetallic ore deposit in Western Yunnan[M]. Beijing: Geological Publishing House:1-100 (in Chinese)
Irvine T N and Baragar W R A. 1971. A guid to the chemical classification of the common volcanic rocks[J].Can. J. Earth Sci., 8:523-548
Liang Hua-ying, Campbell I H, Allen C M. 2007. The age of the potassic alkaline igneous rocks along the Ailao Shan-Red River shear zone: Implications for the onset age of left-lateral shearing[J]. The Journal of Geology, 115:231-242
Ludwig K R. 2003. ISOPLOT 3.00: A geochronology toolkit for Microsoft Excel[J]. Berkeley: Berkeley Geochronology center Special Publication: 1-70(in Chinese with English abstract)
Luo Yao-nan, Yu Ru-long, Hou Li-wei. 1998. Longmenshan-Jinpingshan intracontinental orogenic belt [M]. Chengdu: Sichuan Sci. and Tech. Pub. House: 1-171(in Chinese)
Peccerillo R, Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contrib. Mineral Petrol., 58: 63-81
Pearce T A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Petrology, 25: 956-983
Peng Jian-tang, Bi Xian-wu, Hu Rui-zhong, Wu Kai-xing, San Hai-qing. 2005. Determination of ore-and rock-forming time of the Machangqing porphyry Cu (Mo) deposit, western Yunnan Province[J]. Acta Mineralogica Sinica, 25(1): 69-74(in Chinese with English abstract)
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes[M]. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins, Geol. Soc. Lond. Spec. Pub., 42: 313-345
Tu Guang-chi. 1987. A preliminary study on the two alkali-rich intrusive rock belts in South China[A]. In: Geological characteristics of granitiods and their relations with mineralization. Nanjing: Jiangsu Science and Technology Press: 21-37(in Chinese)
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contrib Mineral Petrol, 95: 407-419.
Wang Zhi-hua, Guo Xiao-dong, Ge Liang-sheng, Wang Ke-qiang, Zou Yi-lin, Zhang Yong, Yu Wan-qiang. 2009. Geochemistry of the Machangqing alkaline rich porphyry in Xiangyun, Yunnan Province[J]. Geology and Exploration, 45(4): 343-351(in Chinese with English abstract)
Wang Zhi-hua, Guo Xiao-dong, Chen Xiang, Ge Liang-sheng, Zou Yi-lin. 2010. Geochemistry characteristics of Machangqing alkaline-rich intrusives, Yunnan, and its forming tectonic settings[J]. Geological Review, 56(1): 127-137 (in Chinese with English abstract)
Wang Deng-hong, Qu Wen-jun, Li Zhi-wei, Ying Han-long, Chen Yu-chuan. 2004. Concentrate metallogeny epoch of porphyry copper, molybdenum at Honghe, Yunnan Province: Re-Os isotopic chronology[J]. Science in China(Series D), 34(4): 345-349 (in Chinese with English abstract)
Wu Yuan-bao, Zheng Yong-fei. 2004. A research on the minerageny of zircon: Constraints to a explain on U-Pb age[J]. Chinese Science Bulletin, 16(49):1589-1604 (in Chinese with English abstract)
Xing Jun-bing, Guo Xiao-dong, Qu Wen-jun. 2009. Molybdenite Re-Os age and other geological meaning of Machangqing Porphyry Copper, Molybdenum Deposit[J]. Gold Science and Technology: 17(5)(in Chinese with English abstract)
Zhou Xiao-feng. 2010. Analysis on metallogenic structural of porphyry Cu-Mo-Au deposit of Baoxingchang, Yunnan Province[J]. Gold Science and Technology, Gold, 18(5): 34-37(in Chinese with English abstract)
Zeng Pu-sheng, Hou Zeng-qian, Gao Yong-feng, Du An-dao. 2006. The Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone: Constraints from Re-Os dating of Molybdenite[J]. Geological Review, 52(1): 72-84(in Chinese with English abstract)
ZhangYu-quan, Xie Ying-wen. 1997. Chronology and Nd, Sr isotopic characteristics for the Ailaoshan-Jinshajiang alkali-rich intrusive rocks[J]. Science in China (series D), 27(4): 289-293(in Chinese)
Zhao Xian, Yu Xue-hui, Mo Xuan-xue, Zhang Jin, Lv Bo-xi. 2004. Petrological and geochemical characteristics of cenozioc alkali-rich porphyries and xenoliths hosted in western Yunnan province[J]. Geoscience, 18(2): 217-228 (in Chinese with English abstract)
[附中文参考文献]
毕献武, 胡瑞忠, 彭建堂, 吴开兴, 苏文超, 战新志. 2005. 姚安和马厂箐富碱侵入岩体的地球化学特征[J].岩石学报, 21(1): 113-124
楚亚婷, 刘显凡, 赵甫峰, 卢秋霞, 李春辉. 2011. 滇西马厂箐钼铜金矿床中赋矿斑状花岗岩定年及其地质意义 [J]. 矿物学报, 5(增刊): 567-569
邓万明, 黄 萱, 钟大赉. 1998. 滇西新生代富碱斑岩的岩石特征与成因[J]. 地质科学, 33(4): 31-44
郭晓东, 王治华, 陈 祥, 王 欣, 王淑贤. 2009. 云南马厂箐斑岩型铜钼(金)矿床地质特征与矿床成因[J]. 地质学报, 83(12): 127-140
郭晓东, 王治华, 王 欣, 陈 祥, 王绍明, 覃文明. 2010. 马厂箐斑岩型铜钼金多金属矿床构造控岩控矿作用[J]. 大地构造与成矿学, 34 (1): 55-62
郭晓东,王治华, 王 梁, 杨玉霞, 陈晓吾. 2011. 云南马厂箐岩体(似)斑状花岗岩锆石LA-ICP-MSU-Pb年龄及地质意义[J]. 中国地质, 38(3): 610-622
葛良胜, 邹依林, 邢俊兵, 李振华, 郭晓东, 张学军. 2002. 滇西北地区富碱岩体(脉)地质学及岩石化学特征[J]. 矿产与地质, 3: 147-153
和文言, 莫宣学, 喻学惠, 李 勇, 黄行凯, 和中华. 2011. 滇西马厂箐斑岩型铜钼(金)矿床成岩成矿时代研究[J]. 地学前缘, 18(1): 207-215
侯增谦, 吕庆田, 王安建, 李晓波, 王宗起, 王二七. 2003. 试论陆陆碰撞与成矿作用—以青藏高原造山带为例[J]. 矿床地质, 22(4): 319-334
侯增谦, 潘桂棠,王安建, 莫宣学, 田世洪, 孙晓明, 丁 林, 王二七, 高永丰, 谢玉玲, 曾普胜, 秦克章, 许继峰, 曲晓明, 杨志明, 杨竹森, 费红彩, 孟祥金, 李振清. 2006. 青藏高原碰撞造山带:Ⅱ晚碰撞转换成矿作用[J]. 矿床地质, 25(5): 521-543
胡祥昭, 万 方. 1995. 滇西富碱花岗斑岩的岩石学与成因[J]. 中国有色金属学报, 5 (1): 1-3
何明勤, 杨世瑜. 2004. 滇西小龙潭-马厂箐地区铜金多金属矿床地质地球化学及成因研究[M] . 北京: 地质出版社: 1-100
骆耀南, 俞如龙, 侯立纬. 1998. 龙门山-锦屏山陆内造山带[M]. 成都: 四川科学技术出版社: 1-171
彭建堂, 毕献武, 胡瑞忠, 吴开兴, 桑海清. 2005. 滇西马厂箐斑岩铜(钼)矿床成岩成矿时限的厘定[J]. 矿物学报, 25 (1): 69-74
涂光炽.1987.华南两个富碱侵入岩带的初步研究[A]. 见: 涂光炽. 花岗岩地质与成矿关系[M]. 南京: 江苏科学出版社: 21-37
王治华, 郭晓东, 葛良胜, 王科强, 邹依林, 张 勇, 喻万强. 2009. 云南祥云马厂箐富碱斑岩体的地球化学特征[J]. 地质与勘探. 45(4): 343-351
王治华, 郭晓东, 陈 祥, 葛良胜, 邹依林. 2010. 云南祥云马厂箐富碱斑岩体的地球化学特征及其形成的构造环境[J]. 地质论评, 56(1):127-137
王登红, 屈文俊, 李志伟, 应汉龙, 陈毓川. 2004. 金沙江-红河成矿带斑岩铜钼矿的成矿集中期:Re-Os同位素定年[J] . 中国科学(D辑) 地球科学, 34(4) : 345-349
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 16(49): 1589-1604
邢俊兵, 郭晓东, 屈文俊, 王治华,李汉光. 2009. 云南省马厂箐斑岩型铜、钼矿辉钼矿Re-Os年龄及其地质意义[J]. 黄金科学技术, 17(5)
周晓锋. 2010. 云南大理宝兴厂斑岩型铜钼金矿床成矿构造分析[J]. 黄金科学技术, 18(5): 34-37
曾普胜, 侯增谦, 高永峰, 杜安道. 2006. 印度-亚洲碰撞带东段喜马拉雅期铜-钼-金矿床Re-Os年龄及成矿作用[J]. 地质论评, 52(1): 72-84
张玉泉, 谢应雯. 1997. 哀牢山一金沙江富碱侵人岩年代学和Nd、Sr同位素特征[J]. 中国科学(D辑), 27(4):289-293
赵 欣, 喻学惠, 莫宣学, 张 瑾, 吕伯西. 2004. 滇西新生代富碱斑岩及其深源包体的岩石学和地球化学特征[J]. 现代地质, 18(2): 217-228
Zircon U-Pb Geochronology and Geochemistry of Porphyritic Granite in the Jiudingshan area, West Yunnan
DAO Yan, LI Feng, WANG Rong, WU Jing, FAN Zhu-guo, LU Shi-cai
(Department of Land Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093)
The Jiudingshan porphyritic granite, the largest exposed rock of the Jiudingshan complex, is located at the junction of the west Yangtze plate and the east Ailaoshan-Jinshajiang fault. Megacrysts (10%) of porphyric granite contain orthoclase, plagioclase, quartz and biotite, and matrix comprises quartz, plagioclase and orthoclase. The accessory mineral assemblages consist of apatite, zircon, and so on. LA-ICP-MS zircon U-Pb dating of 10 zircon grains from Jiudingshan porphyritic granite gives a concordant age of 34.7±0.6 Ma, the Eocene. The porphyric granite is petrochemicaly characterized by high potassium, rich alkali and high alumina, belonging to high K calc alkaline series and shoshonite series, which can be classified as A-type granite. The intrusion shows LREE enrichment, HREE depletion, weak negative Eu anomaly (δEu=0.69~0.93) and a smoothly right-declined REE distribution pattern, enrichment of LILE (Rb, Ba, U, Th) and depletion of HFSE (Nb, Ta, Zr, Hf) with negative Nb and Ta. Geochemical characteristics in discrimination diagrams of porphyritic granite in Jiudingshan indicate that this rock body was mainly derived from a crust source mixed with mantle materials and formed at the Cenozoic syn-collision and post-orogenic stage of the Tibetan plateau in an extensional tectonic setting.
porphyritic granite, zircon U-Pb dating, geochemistry, Jiudingshan, Yunnan
2013-11-19;
2014-02-21;[责任编辑]郝情情。
国家危机矿山接替资源勘查项目(编号:20089943)和云南省自然科学基金项目(编号:2011FZ035)资助。
刀 艳(1988年-),女,2011年毕业于昆明理工大学,获学士学位,硕士研究生在读,主要从事矿床学研究。E-mail:daoyan_1120@126.com。
P595,P597+.3
A
0495-5331(2014)03-0533-10